关于电除尘高频电源基础知识课件
合集下载
电除尘培训课件

主回路原理
交流380V电源经断路器(QF1)接通,由反并联晶闸管V1、V2交流调压后,送至整流变压器初 级,再经升压、整流输出直流负高压。R9和R7分别为直流高压侧电流取样电阻和电压取样电阻。 电流和电压取样讯号送至MVC196控制器,由微处理机系统进行运算处理后,输出讯号控制晶闸管 的导通角,形成闭环的自动电压控制系统。
取样板 信 号 取 样
MVC-196控制器
触发板
变 压 器
电场
K型控制器参数显示及其含义
显示参数 U1 I1 U2 单位
V
说明 一次电压有效值 一次电流有效值 二次电压有效值
A KV
I2
Um SP MODE IL UL MAN RP SP-SET
A
KV 次/ 分 无 % % % 无 次/ 分
二次电流有效值
一次投资大:一台电除尘器少则几十万,多则 几百万,甚至上千万。 应用范围受粉尘比电阻的限制: 电除尘器最适合的比电阻范围为104<ρ< 5×1010(Ω.Cm)。 不能捕集有害气体。 对制造、安装和操作水平要求较高。 钢材消耗大。
电除尘器的分类
电除尘器的分类方法很多,主要有以下几种:
按清灰方式分为干式、半湿式、湿式电除尘器及雾状粒子捕集器。 干式电除尘器易产生粉尘二次飞扬。 湿式电除尘器需进行二次处理。 按烟气在电除尘器内的运动方向分为立式和卧式电除尘器。 烟气在电除尘器内自下而上作垂直运动的称为立式电除尘器。 烟气在电除尘器内沿水平方向运动的称为卧式电除尘器。 按电除尘器的形式分为管式和板式电除尘器。 管式电除尘器主要用于处理烟气量小的场合。 板式电除尘器应用广泛。 按收尘板和电晕极的配置分为单区和双区电除尘器。 收尘极与电晕极布置在同一区域内的为单区电除尘器,其应用最为广泛。 收尘极与电晕极布置在两个不同区域内的为双区电除尘器。 按振打方式分为侧部振打和顶部振打电除尘器。 振打清灰装置布置在阴极或阳极的侧部称为侧部振打电除尘器,现应用较多 的为挠臂锤振打。兰州、诸暨、西矿、上冶矿等均采用此结构。 振打清灰装置布置在阴极或阳极的顶部称为顶部振打电除尘器。顶部振打多 为美式结构,龙净采用此结构。
SIR4 高频电源技术培训课件

发生火花闪络后快速恢复电压 输出,不影响ESP粉尘排放水 平
© ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
SIR - Switched Integrated Rectifier 1/3
•Switched
High frequency electronic power processing technique. 高频开关技术
•Integrated
Transformer, power electronics and controller are integrated in the same housing. 一体化设计
•Rectifier
AC input, R 技术培训资料 2016年
电除尘高频电源原理性介绍

-- 输出短路处理
判断条件:二次电压小于15KV,二 次电流大于1/2 额定值。 检查:输出开路试验;
隔离开关是否接地,取样回 路是否正常,阻尼电阻是否烧断。
-- 输出开路处理
判断条件:二次电压大于65KV,二 次电流小于1/16 额定值。 检查:隔离开关是否断开,电场连 接线是否可靠,取样回路是否正常, 高压硅堆断开。当高频处在开 路状态时,实际二次输出电压瞬间 超过额定电压,手操器或上位机上 不会显示数值,高频电源立即自 动停止,并且提示输出开路故障。
串口通讯,广
泛应用于各种 自动控制系统中,尤
其适用于电除尘器振打、卸灰的时序
自动控制,具有多功能、高性能、配
置灵活、精度高、抗干扰能力强、通
信可靠、操作简单等特点。
通讯系统建立 通讯测试 IFIX数据采集 IFIX画面建立
Modubs TCP/IP
Modubs TCP/IP
网线 光纤
Modubs TRU
-- IGBT故障处理
判断条件:IGBT逆变器驱动板故障 状态闭合。 检查:IGBT是否损坏,驱动板是否 故障。
-- IGBT温度高处理 判断条件:IGBT温度高于报警设定 值。 检查:IGBT测温传感器是否故障, IGBT 是否异常,散热风机是否故障, 出气口是否堵塞。
-- 变压器温度高处理 条件:变压器油温高于报警设定值。 检查:变压器油温传感器是否故障, 变压器是否异常,散热风机是否故 障,出气口是否堵塞。
金华大维电子科技有限公司
高频电源原理 高频电源模化设计 高频电源风冷系统 高频电源与工频电源对比 高频电源操作 高频电源常见故障处理
场流 电直 器 馈号 压 反信 变 频 高 ④ 流 交 路 电 变 逆 MCU/DSP控制器③ ⑤ 流 直 统 路 系 电 热 流 散 整 ②⑥ 主回路配电 ①
电除尘器培训教材-PPT课件

总结ESP收尘的四个过程
• 电离--荷电--移动--清灰:四个过程要连续 不断的进行,以保证ESP良好的工作状态。 • 具体过程是:进口封头-气流分布装置-荷电 并收集到电极上-振打清灰-出口封头分布板 (改善气流分布,抑制二次扬尘)-气力输 灰装置。
第二模块 ESP术语和结构 一.ESP术语:
A V
( 1 e
• • • •
) 100 %
η:除尘效率(%) A:收尘极板面积(m2) V:烟气量( m3/s) ω:趋进速度(m/s)
效率公式及其影响因素ຫໍສະໝຸດ • 趋进速度与除尘效率密切相关 • 对趋进速度的分析实际就是对除尘效率的分析,影响趋进 速度的因素很多: • 粉尘粒径:对于1μm以上的粉尘,粒径越大,驱进速度也 越大,除尘效率也越高。粒径还影响电气条件、二次扬尘 等。 • 电场数目:电场数量增多时ω减小。 • 电压与电流:存在一个合理的供电制度。 • 极板间距:宽间距有优越性。 • 收尘面积:A增大,驱进速度下降并趋近于某一值。 • 粉尘比电阻:高比电阻范围内,驱进速度与比电阻近似于 反比的线性关系。
2.阴极系统
• 阴极又称为放电极或电晕极,与阳极一起 形成非均匀电场,产生电晕电流。由阴极 线、阴极框架和阴极吊挂装置等组成。 • 国内常见几种阴极线形式:管型芒刺线、 新型管型芒刺线、星型线、锯齿线、螺旋 线、鱼骨针刺线、螺旋线等。 • 菲达ESP常用的阴极线RSB新型管型芒刺 线和螺旋线。
阴极线应该具备特点:
• 1.牢固可靠、机械强度大、不断线、不掉线。 ESP的一个供电分区往往有上千根阴极线, 一个断线就会造成电场短路。 • 2.电气特性良好。使阳极板上电流密度分布 均匀、平均电场强度高;对于含尘浓度高、 细粉尘及高比电阻粉尘有良好适应性。起 晕电压底,击穿电压高。 • 3.易清灰,制造成本低。
电除尘知识整体系统培训ppt课件

2019 20
f)检修交代掉闸整流变电气回路检查无问题后,联系分控对应灰斗进行反吹, 两小时后试投。 g)试投后仍然掉闸,在不能确定灰斗是否积灰的情况下,联系锅炉查看灰斗积 灰情况。 h)确认灰斗无积灰,通知相关专业采取其他措施查找原因。 i)本班内如果未处理好,没有明确原因和处理结果的下班前填缺陷。
2019
-
17
与上图近似的是#1 炉A1电场因灰斗积 灰短路掉闸,此前, 同样二次电流、电 压、火化率也频繁 波动,但不同的是 掉闸后有残余电压 存在,并且试投运 后可运行一段时间, 灰被击穿短路后才 会再次跳闸。
2019
-
18
#1炉B2接触器故障 脱扣造成整流变电 源侧失电跳闸,二 次电压、电流、一 次电流掉闸之前运 行比较平稳,火化 率是0没有变化,掉 闸后有残余电压存 在。
2019 3
7.电晕放电:在相互对置着的放电极和集尘极之间,通过高压直流电建立起极 不均匀的电场当外加电压升到某一临界值(即电场达到了气体击穿的强度)时,在放 电极附近很小范围内会出现蓝白色辉光,井伴有嘶嘶的响声,这种现象称为电晕放 电,它是由于放电极外的高电场强度将其通过的气体被局部击穿所引起的。 8.反电晕:就是沉积在集尘极板表面上高比电阻粉尘层所产生的局部放电现象。 若沉积在集尘极上的粉尘是高比电阻粉尘,则电荷不容易释放。随着沉积在集尘极 上的粉尘层增厚,释放电荷更加困难。此时一方面由于粉尘层未能将电荷全部释放, 其表面仍有与放电极相同的极性,便排斥后来的荷电粉尘;另一方面由于粉尘层电 荷释放缓慢,于是在粉尘间形成较大的电位梯度,当粉尘层中的电场强度大于其临 界值时,就在粉尘层的孔隙间产生局部击穿。产生与放电极极性相反的正离子,所 产生的离子便向放电极运动,中和电晕区带负电的粒子。另外,粉尘层中气体和固 体的击穿产生电子、阳离子对,电子被排斥,穿过粉尘层流向集尘极,阳离子则被 电场推向放电极。在这些阳离子经过粉尘层时碰撞尘粒,使它们荷正电荷而重返气 流;而那些跑出粉尘层的离子则将碰撞悬浮在气流中的粉尘,减少它们的负电荷, 这些影响将使电除尘器除尘效率大大下降。
f)检修交代掉闸整流变电气回路检查无问题后,联系分控对应灰斗进行反吹, 两小时后试投。 g)试投后仍然掉闸,在不能确定灰斗是否积灰的情况下,联系锅炉查看灰斗积 灰情况。 h)确认灰斗无积灰,通知相关专业采取其他措施查找原因。 i)本班内如果未处理好,没有明确原因和处理结果的下班前填缺陷。
2019
-
17
与上图近似的是#1 炉A1电场因灰斗积 灰短路掉闸,此前, 同样二次电流、电 压、火化率也频繁 波动,但不同的是 掉闸后有残余电压 存在,并且试投运 后可运行一段时间, 灰被击穿短路后才 会再次跳闸。
2019
-
18
#1炉B2接触器故障 脱扣造成整流变电 源侧失电跳闸,二 次电压、电流、一 次电流掉闸之前运 行比较平稳,火化 率是0没有变化,掉 闸后有残余电压存 在。
2019 3
7.电晕放电:在相互对置着的放电极和集尘极之间,通过高压直流电建立起极 不均匀的电场当外加电压升到某一临界值(即电场达到了气体击穿的强度)时,在放 电极附近很小范围内会出现蓝白色辉光,井伴有嘶嘶的响声,这种现象称为电晕放 电,它是由于放电极外的高电场强度将其通过的气体被局部击穿所引起的。 8.反电晕:就是沉积在集尘极板表面上高比电阻粉尘层所产生的局部放电现象。 若沉积在集尘极上的粉尘是高比电阻粉尘,则电荷不容易释放。随着沉积在集尘极 上的粉尘层增厚,释放电荷更加困难。此时一方面由于粉尘层未能将电荷全部释放, 其表面仍有与放电极相同的极性,便排斥后来的荷电粉尘;另一方面由于粉尘层电 荷释放缓慢,于是在粉尘间形成较大的电位梯度,当粉尘层中的电场强度大于其临 界值时,就在粉尘层的孔隙间产生局部击穿。产生与放电极极性相反的正离子,所 产生的离子便向放电极运动,中和电晕区带负电的粒子。另外,粉尘层中气体和固 体的击穿产生电子、阳离子对,电子被排斥,穿过粉尘层流向集尘极,阳离子则被 电场推向放电极。在这些阳离子经过粉尘层时碰撞尘粒,使它们荷正电荷而重返气 流;而那些跑出粉尘层的离子则将碰撞悬浮在气流中的粉尘,减少它们的负电荷, 这些影响将使电除尘器除尘效率大大下降。
HF-01型电除尘高频电源说明书

11)根据电场具体情况选取一定的delay0值在手动连续方式下拷机
12)经过较长的时间拷机,待温度稳定后记录其值 13)更换脉冲模式运行,通过调整参数增大功率,观察一次电流和二次电流
波形,调整参数delay1、delay2、wave1、wave2的值,使高频电源 处于稳定运行的同时输出较大的功率
第二十一页,共44页。
驱动电路直接固定在IGBT 上,驱动IGBT 的导通和关断, 二次电流电压采集板安装于高压变压器顶部,直接与电流 电压瓷柱连接。
第十四页,共44页。
2.4.5 高频高压变压器 大功率高频高压变压器采用油浸式设计,是高频电源的核心部件,其作用将逆变 电路产生的高频交流电升压整流后形成高频高压脉动直流送电除尘器。 2.4.6 散热系统
高频电源控制方式灵活多样,可根 据电除尘器运行工况选择最合适的电 压波形,减少电除尘能耗、提高除尘 效率;另外,高频电源还有体积小、 重量轻、节省电缆用量、三相平衡供 电等诸多优点。
图2.1 HF-01 型高频高压整流电源
第八页,共44页。
2.2 技术性能和参数
2.2.1 产品使用条件
(1) 环境温度为-25℃~+40℃;
第二十八页,共44页。
幅
脉冲周期
值
一次电流
两相 不平衡 简单
第七页,共44页。
高频电源 复杂
系列窄脉冲 20kHz
各种模式 强 好
> 93% > 0.9 小 (1/5) 三相 平衡 复杂
第二章 HF-01 型电除尘高频电源简介
2.1 产品概述
电除尘器高频电源是利用高频开关技术而 形成的逆变式电源,其供电电流是由一系列窄 脉冲构成,可以给电除尘器提供从接近纯直流 到脉动幅度很大的各种电压波形。
12)经过较长的时间拷机,待温度稳定后记录其值 13)更换脉冲模式运行,通过调整参数增大功率,观察一次电流和二次电流
波形,调整参数delay1、delay2、wave1、wave2的值,使高频电源 处于稳定运行的同时输出较大的功率
第二十一页,共44页。
驱动电路直接固定在IGBT 上,驱动IGBT 的导通和关断, 二次电流电压采集板安装于高压变压器顶部,直接与电流 电压瓷柱连接。
第十四页,共44页。
2.4.5 高频高压变压器 大功率高频高压变压器采用油浸式设计,是高频电源的核心部件,其作用将逆变 电路产生的高频交流电升压整流后形成高频高压脉动直流送电除尘器。 2.4.6 散热系统
高频电源控制方式灵活多样,可根 据电除尘器运行工况选择最合适的电 压波形,减少电除尘能耗、提高除尘 效率;另外,高频电源还有体积小、 重量轻、节省电缆用量、三相平衡供 电等诸多优点。
图2.1 HF-01 型高频高压整流电源
第八页,共44页。
2.2 技术性能和参数
2.2.1 产品使用条件
(1) 环境温度为-25℃~+40℃;
第二十八页,共44页。
幅
脉冲周期
值
一次电流
两相 不平衡 简单
第七页,共44页。
高频电源 复杂
系列窄脉冲 20kHz
各种模式 强 好
> 93% > 0.9 小 (1/5) 三相 平衡 复杂
第二章 HF-01 型电除尘高频电源简介
2.1 产品概述
电除尘器高频电源是利用高频开关技术而 形成的逆变式电源,其供电电流是由一系列窄 脉冲构成,可以给电除尘器提供从接近纯直流 到脉动幅度很大的各种电压波形。
电除尘高频电源基础知识-推荐优秀PPT

高频电源的调试
检查设备内部所有连接线及线路板插头是否松动, 是否正确可靠。
按图纸要求,用万用表检查设备接线,保证接线 正确。
断路器QF1及QF2、QF3、QF4置于“断”位置。
确保高压回路的可靠连接。
用2500V兆欧表检查负载(电除尘器电场)绝缘, 一般其电阻值应在100M以上。
设备短路测试,IL设置值为0,工作在手动方式, MAN设置值从0开始慢慢增加。
SPK 地址设定位SW1 1~4 7配置位 8波特率设定位
ON=0 OFF=1
脉冲板作用
取得过零信号,完成处理重复脉冲、过零 信号、保护信号等各逻辑控制信号之间的 逻辑关系,向IGBT(IPM)发出可靠的控 制信号。
禁止调整脉冲板上电位器 防止触电
串、并联混合谐振回路特点
▪ 开关损耗极小,关断冲击小,减少了电磁干扰。 ▪ 串联谐振式逆变器限流能力较好,其恒流特性有
明显的火花抑制作用,火花击穿的临界电压显著 提高。 ▪ 输出电压上升率快,谐振回路的特性阻抗值较小, 器件选型要求更高。 ▪ 局部并联谐振有利于轻载运行稳定性。
经过各种负载条件和使用条件变化的测试,无论 是轻负载,还是重负载,无论是低火花率,还是 高火花率,无论是纯直流式供电,还是间歇式脉 冲供电,系统都能稳定可靠地工作,能满足系统 的全部要求,特别适应电除尘工况条件。
串、并联混合谐振回路特点
(1)高频电源带电正常容电场(升压C试4验-方1法、;C4-2、C4-3、C5-1、 C5-2、C5-3)充电, 充电基本完成后,接触器KM2得电吸合,断开R5。这时主 用2500V兆欧表检查负载(电除尘器电场)绝缘,一般其电阻值应在100M 以上。
主回路原理图包括设备主回路、操作控制电路和辅助电路(如冷却风机)等几个部分。
电除尘器高频电源提效节能原理

的性能表现。
针对高频电源的能效分析和节能 潜力评估,可以开展更为深入的 研究,以为工业节能减排提供更
为可靠的依据。
针对高频电源的环保效果和经济 效益,可以开展更为全面的评价 研究,以为其在环保和能源领域
的推广应用提供支持。
THANKS
感谢观看
实际应用价值
研究成果可应用于实际工业粉尘治理工程,改善环境质量,降低企业治污成本, 促进可持续发展。
02
电除尘器高频电源的基本 原理
电除尘器的工作原理
静电除尘
电除尘器利用静电场使气体电离,使尘粒荷电,并在电场力的作 用下使气体中的悬浮颗粒被分离出来。
颗粒荷电
在电除尘器的电极上施加高电压,使电极附近的空气电离,产生 电晕放电。
针对高频电源的整流技术和智能控制策略,可以开展更为深入的研究,以提高其稳定性和可靠性,进一 步降低能耗。
针对高频电源对电除尘器性能的影响机制,可以开展更为细致的研究,以揭示其内在规律,为电除尘器 的优化设计提供理论支持。
未来研究方向
针对高频电源在工业生产中的应 用,可以开展更为广泛的实验研 究,以验证其在各种实际工况下
颗粒分离
荷电颗粒在电场力的作用下向电极移动,并吸附在电极上,通过 振打或反向电流将其清除。
高频电源的工作原理
01
02
03
整流电路
将交流电转换为直流电, 为高频逆变器提供输入电 源。
高频逆变器
将直流电转换为高频交流 电,为电除尘器提供电源。
控制电路
控制电源的输出电压和电 流,实现自动调节和节能 控制。
智能控制技术
01
人工智能
采用人工智能技术对电除尘器的运行数据进行深度学习和分析,预测电
除尘器的运行状态和烟气工况的变化趋势,提前进行相应的调整和控制。
针对高频电源的能效分析和节能 潜力评估,可以开展更为深入的 研究,以为工业节能减排提供更
为可靠的依据。
针对高频电源的环保效果和经济 效益,可以开展更为全面的评价 研究,以为其在环保和能源领域
的推广应用提供支持。
THANKS
感谢观看
实际应用价值
研究成果可应用于实际工业粉尘治理工程,改善环境质量,降低企业治污成本, 促进可持续发展。
02
电除尘器高频电源的基本 原理
电除尘器的工作原理
静电除尘
电除尘器利用静电场使气体电离,使尘粒荷电,并在电场力的作 用下使气体中的悬浮颗粒被分离出来。
颗粒荷电
在电除尘器的电极上施加高电压,使电极附近的空气电离,产生 电晕放电。
针对高频电源的整流技术和智能控制策略,可以开展更为深入的研究,以提高其稳定性和可靠性,进一 步降低能耗。
针对高频电源对电除尘器性能的影响机制,可以开展更为细致的研究,以揭示其内在规律,为电除尘器 的优化设计提供理论支持。
未来研究方向
针对高频电源在工业生产中的应 用,可以开展更为广泛的实验研 究,以验证其在各种实际工况下
颗粒分离
荷电颗粒在电场力的作用下向电极移动,并吸附在电极上,通过 振打或反向电流将其清除。
高频电源的工作原理
01
02
03
整流电路
将交流电转换为直流电, 为高频逆变器提供输入电 源。
高频逆变器
将直流电转换为高频交流 电,为电除尘器提供电源。
控制电路
控制电源的输出电压和电 流,实现自动调节和节能 控制。
智能控制技术
01
人工智能
采用人工智能技术对电除尘器的运行数据进行深度学习和分析,预测电
除尘器的运行状态和烟气工况的变化趋势,提前进行相应的调整和控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 小型断路器QF2~QF4在设备启动前均须置于 “通”的位置,在设备运行中不得任意断开。 (4) 在停机检修设备时,在按[停止]按钮后至少 1分钟,才能打开控制柜的柜门。注意母线上可能 存在的残留电压会导致触电危险!必须验电后才 能进行检修操作。
(5) 防止操作过电压,不能在设备运行状态下转换 高压隔离开关或直接拉闸。
脉冲板作用
取得过零信号,完成处理重复脉冲、过零 信号、保护信号等各逻辑控制信号之间的 逻辑关系,向IGBT(IPM)发出可靠的控 制信号。
禁止调整脉冲板上电位器 防止触电
串、并联混合谐振回路特点
▪ 开关损耗极小,关断冲击小,减少了电磁干扰。 ▪ 串联谐振式逆变器限流能力较好,其恒流特性有
明显的火花抑制作用,火花击穿的临界电压显著 提高。 ▪ 输出电压上升率快,谐振回路的特性阻抗值较小, 器件选型要求更高。 ▪ 局部并联谐振有利于轻载运行稳定性。
高频设备带电场运行时,高频变压器高压 输出严禁与常规电源变压器高压输出并联 运行,否则会造成高频设备损坏,给高频 电源配备电场做空载试验时,采取两台或 两台以上常规电源并联供电方法,并将高 频设备高频变压器输出可靠接地,防止高 压串入损坏高频变压器。
调试注意事项
(1) 对高频电源设备操作时,不要站在有水或潮湿 的地面上。在电气安装之前,关断设备总电源。 (2) 设备运行时脉冲板和一次电压检测板上存在 高压危险,非制造厂专业人员请勿触碰。
关于电除Байду номын сангаас高频电源 基础知识
高频电源基本原理
高频电源的设计方案 三大组成:变换器、高频变压器、控制器
主回路工作原理
主回路原理图包括设备主回路、操作控制电路和辅助电路 (如冷却风机)等几个部分。三相交流380V电源经断路器 QF1,接触器KM1,经三相整流桥整流后,经电阻R5为电解 电容(C4-1、C4-2、C4-3、C5-1、 C5-2、C5-3)充电, 充电基本完成后,接触器KM2得电吸合,断开R5。这时主 控板给脉冲板提供脉冲信号,脉冲板 进行信号处理,送 出两路驱动信号至IGBT(IPM)器件。IGBT(IPM)与串联 谐振电感Ls、串联谐振电容Cs、并联电感Lb及高频变压器 组成的全桥串并联混合谐振电路,谐振电路工作时,一次 能量经高频高压硅整流变压器传输到次级,次级输出直流 负高压提供给除尘器。
运行期间高频电源发生故障或误动作,确认故障点, 分析原因,做出相关检查处理。 判断电场短路故障还是高频电源故障: (1)高频电源带正常电场升压试验方法; (2)开路试验方法
a、高压输出回路线开路; b、IL值设定为0,MAN值设定为0; c、本地/远控开关置本地,按下启动按钮,主回路接触
器KM1吸合,待充电电压到KM2 接触器自动吸合,高频 电源开始工作,如 高频电源发出开路报警,说明高频电源 正常,判断为本体问题;
主控板主要作用
根制据调采整集高U频C设、备I1、的I运r、行U,2、控I2制等输信出号重,复显脉示冲各信参号数。并实时控 与终端或上位机通讯。 可调整的几个电位器: UC、I1、 Irp、 U2、 U2m、 I2 、
SPK 地址设定位SW1 1~4 7配置位 8波特率设定位
ON=0 OFF=1
按图纸要求,用万用表检查设备接线,保证接线 正确。
断路器QF1及QF2、QF3、QF4置于“断”位置。
确保高压回路的可靠连接。
用2500V兆欧表检查负载(电除尘器电场)绝缘, 一般其电阻值应在100M以上。
设备短路测试,IL设置值为0,工作在手动方式, MAN设置值从0开始慢慢增加。
设备带电场负载升压试验。
经过各种负载条件和使用条件变化的测试,无论 是轻负载,还是重负载,无论是低火花率,还是 高火花率,无论是纯直流式供电,还是间歇式脉 冲供电,系统都能稳定可靠地工作,能满足系统 的全部要求,特别适应电除尘工况条件。
谐振回路工作电流波形
高频电源的调试
检查设备内部所有连接线及线路板插头是否松动, 是否正确可靠。
(6)冷却风机对相位是有要求的,初次上电或更换 风机时,需整定好热继电器电流保护值,检查风 机转向是否正确,确定风机是由外向内吹风,吹 风风扇为顺时针旋转(从马达这边看)。这样会 给发热源吹风,如果风扇的转向错误,关掉风扇 电源,对调至风机的其中两条电源线。重新合闸, 检查风扇的转向是否正确。
故障处理
(5) 防止操作过电压,不能在设备运行状态下转换 高压隔离开关或直接拉闸。
脉冲板作用
取得过零信号,完成处理重复脉冲、过零 信号、保护信号等各逻辑控制信号之间的 逻辑关系,向IGBT(IPM)发出可靠的控 制信号。
禁止调整脉冲板上电位器 防止触电
串、并联混合谐振回路特点
▪ 开关损耗极小,关断冲击小,减少了电磁干扰。 ▪ 串联谐振式逆变器限流能力较好,其恒流特性有
明显的火花抑制作用,火花击穿的临界电压显著 提高。 ▪ 输出电压上升率快,谐振回路的特性阻抗值较小, 器件选型要求更高。 ▪ 局部并联谐振有利于轻载运行稳定性。
高频设备带电场运行时,高频变压器高压 输出严禁与常规电源变压器高压输出并联 运行,否则会造成高频设备损坏,给高频 电源配备电场做空载试验时,采取两台或 两台以上常规电源并联供电方法,并将高 频设备高频变压器输出可靠接地,防止高 压串入损坏高频变压器。
调试注意事项
(1) 对高频电源设备操作时,不要站在有水或潮湿 的地面上。在电气安装之前,关断设备总电源。 (2) 设备运行时脉冲板和一次电压检测板上存在 高压危险,非制造厂专业人员请勿触碰。
关于电除Байду номын сангаас高频电源 基础知识
高频电源基本原理
高频电源的设计方案 三大组成:变换器、高频变压器、控制器
主回路工作原理
主回路原理图包括设备主回路、操作控制电路和辅助电路 (如冷却风机)等几个部分。三相交流380V电源经断路器 QF1,接触器KM1,经三相整流桥整流后,经电阻R5为电解 电容(C4-1、C4-2、C4-3、C5-1、 C5-2、C5-3)充电, 充电基本完成后,接触器KM2得电吸合,断开R5。这时主 控板给脉冲板提供脉冲信号,脉冲板 进行信号处理,送 出两路驱动信号至IGBT(IPM)器件。IGBT(IPM)与串联 谐振电感Ls、串联谐振电容Cs、并联电感Lb及高频变压器 组成的全桥串并联混合谐振电路,谐振电路工作时,一次 能量经高频高压硅整流变压器传输到次级,次级输出直流 负高压提供给除尘器。
运行期间高频电源发生故障或误动作,确认故障点, 分析原因,做出相关检查处理。 判断电场短路故障还是高频电源故障: (1)高频电源带正常电场升压试验方法; (2)开路试验方法
a、高压输出回路线开路; b、IL值设定为0,MAN值设定为0; c、本地/远控开关置本地,按下启动按钮,主回路接触
器KM1吸合,待充电电压到KM2 接触器自动吸合,高频 电源开始工作,如 高频电源发出开路报警,说明高频电源 正常,判断为本体问题;
主控板主要作用
根制据调采整集高U频C设、备I1、的I运r、行U,2、控I2制等输信出号重,复显脉示冲各信参号数。并实时控 与终端或上位机通讯。 可调整的几个电位器: UC、I1、 Irp、 U2、 U2m、 I2 、
SPK 地址设定位SW1 1~4 7配置位 8波特率设定位
ON=0 OFF=1
按图纸要求,用万用表检查设备接线,保证接线 正确。
断路器QF1及QF2、QF3、QF4置于“断”位置。
确保高压回路的可靠连接。
用2500V兆欧表检查负载(电除尘器电场)绝缘, 一般其电阻值应在100M以上。
设备短路测试,IL设置值为0,工作在手动方式, MAN设置值从0开始慢慢增加。
设备带电场负载升压试验。
经过各种负载条件和使用条件变化的测试,无论 是轻负载,还是重负载,无论是低火花率,还是 高火花率,无论是纯直流式供电,还是间歇式脉 冲供电,系统都能稳定可靠地工作,能满足系统 的全部要求,特别适应电除尘工况条件。
谐振回路工作电流波形
高频电源的调试
检查设备内部所有连接线及线路板插头是否松动, 是否正确可靠。
(6)冷却风机对相位是有要求的,初次上电或更换 风机时,需整定好热继电器电流保护值,检查风 机转向是否正确,确定风机是由外向内吹风,吹 风风扇为顺时针旋转(从马达这边看)。这样会 给发热源吹风,如果风扇的转向错误,关掉风扇 电源,对调至风机的其中两条电源线。重新合闸, 检查风扇的转向是否正确。
故障处理