水处理-膜技术
给排水工艺中的膜技术在水处理中的应用

给排水工艺中的膜技术在水处理中的应用膜技术是给排水工艺中广泛应用的一种先进处理技术。
通过膜的微孔或选择性渗透作用,可以有效地去除水中的悬浮物、胶体、细菌、病毒等污染物质,实现高效的水处理和净化。
本文将探讨膜技术在给排水工艺中的应用及其优势。
一、膜技术在污水处理中的应用膜技术在污水处理中的应用主要包括微滤、超滤、纳滤和反渗透等过程。
具体应用如下:1. 微滤微滤是一种基于物理过滤机制的膜技术,通过微孔滤膜有效去除水中的悬浮物和部分胶体。
在给排水工艺中,微滤常用于预处理过程,起到初步去除大颗粒污染物的作用,可使后续处理过程更加高效。
2. 超滤超滤是一种基于物理过滤和分子筛选机制的膜技术,其膜孔径较微滤更小,可以有效去除水中的胶体、细菌和病毒等微生物污染物。
超滤在污水处理中被广泛应用于二次处理过程,可大幅降低水中微生物的浓度,保证出水的安全性和卫生性。
3. 纳滤纳滤是一种介于超滤和反渗透之间的膜技术,其膜孔径介于1nm至100nm之间。
纳滤膜可以除去水中的溶解性有机物质、重金属离子和微量营养物质等,同时保留水中的有益矿物质,获得更加纯净和健康的水质。
4. 反渗透反渗透是一种通过高压作用使水逆向渗透,通过反渗透膜有效去除水中的溶解性物质、无机盐和有机物质等。
反渗透在给排水工艺中主要用于海水淡化、饮用水净化和工业废水处理等领域,具有高效、经济、环保的特点。
二、膜技术的优势膜技术在给排水工艺中的应用具有以下优势:1. 高效性:膜技术可以去除水中的微小颗粒、微生物和溶解性物质,使水处理更加高效和彻底,获得更好的水质。
2. 选择性:膜技术可以根据需要选择合适的膜孔径,以实现对不同大小和种类污染物的选择性去除,保留有益物质。
3. 节能性:与传统的物理化学处理方法相比,膜技术所需的能量消耗较低,具有较高的能源利用效率。
4. 可控性:通过调整膜孔径、通量和截留效率等参数,可以实现对处理过程的精确控制,保证出水质量的稳定性。
膜技术在水处理中的应用与发展

膜技术在水处理中的应用与发展一、膜技术在水处理中的应用情况膜技术是利用半透膜对水进行过滤和分离的一种水处理技术。
它具有高效、节能、无化学品添加等优点,所以在水处理领域得到了广泛的应用。
目前,膜技术在水处理中主要包括以下几个方面的应用:1. 海水淡化:随着人口的增长和工业的发展,供水紧张问题日益严重。
海水淡化技术通过膜技术可以将海水中的盐分和杂质去除,得到符合饮用水标准的淡水。
在一些水资源紧缺的地区,海水淡化技术成为了解决供水问题的重要手段。
2. 污水处理:城市污水处理是保障城市环境卫生的重要措施。
膜技术在污水处理中可以用于去除污水中的有机物和微生物等有害物质,生产出清洁的再生水。
3. 饮用水处理:膜技术可以应用于自来水、地下水等饮用水源的处理,去除其中的细菌、微生物、重金属等有害物质,提高水质,保障居民的健康。
4. 工业废水处理:工业生产中产生的废水中往往含有大量的有机物质、重金属和化工原料等有害物质。
膜技术可以有效去除这些有害物质,达到排放标准,防止对环境造成污染。
5. 压力驱动与电动式反渗透膜除盐技术:电动反渗透技术是近年来膜技术的新发展趋势,它利用电能来提高膜的去除盐效率,成为一种极具潜力的技术。
膜技术在水处理中的应用正在不断发展和完善,未来的发展趋势主要包括以下几个方面:1. 技术革新:随着科技的不断进步,新型的膜材料、膜结构、膜模块等不断涌现,使得膜技术在水处理中的应用范围更加广泛、性能更加优越。
2. 集成化发展:膜技术在水处理中将逐渐向集成化方向发展,即与生物反应器、化学氧化等其他水处理技术结合,形成多种技术协同作用,提高水处理效率。
3. 绿色环保发展:传统水处理工艺往往需要大量的化学药剂,而膜技术在水处理中不需要外加化学品,且能有效地减少二次污染,因此将是绿色环保水处理技术的重要组成部分。
4. 智能化应用:随着自动化技术和人工智能技术的不断发展,膜技术在水处理中将更加智能化,例如通过智能控制系统实现膜设备的自动运行和故障检测等功能,提高设备运行效率。
膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用
膜技术是一种利用半透膜分离物质的工艺技术,其应用十分广泛,尤其在饮用水处理
领域具有重要作用。
膜技术可以高效去除水中的悬浮固体、胶体物质、有机物质、微生物
和溶解离子等,是一种理想的水处理方法。
本文将介绍膜技术在饮用水处理中的应用。
膜技术在饮用水处理中的应用有三个主要方面:微滤膜、超滤膜和反渗透膜。
微滤膜是一种孔径较大的膜,其孔径范围在0.1-10微米之间,可以有效去除水中的悬浮固体颗粒、胶体物质和微生物等。
微滤膜具有操作简便、工艺流程简单、投资成本低等
优点,广泛应用于饮用水厂的预处理过程中。
可以用微滤膜对水中的泥沙、悬浮颗粒和藻
类等进行预处理,提高后续处理工艺的效果。
超滤膜的孔径范围在0.001-0.1微米之间,可以去除水中的胶体物质、有机物质和微
生物等。
与微滤膜相比,超滤膜对颗粒物质的去除效果更好,可以去除微米级别的颗粒物质。
超滤膜在饮用水处理中的应用非常广泛,可以用于富集、浓缩或分离水中的有机物质、细菌、病毒等。
超滤膜可以有效去除水中的有机物质和胶体物质,提高水处理的效果。
反渗透膜也是一种常用的膜技术,在饮用水处理中应用广泛。
反渗透膜的孔径非常小,只有纳米级别,可以去除细菌、病毒和溶解离子等。
反渗透膜可以实现对水中离子、有机
物质和微生物等的高效去除,提供高品质的饮用水。
可以用反渗透膜对水中的全氟化合物、重金属离子和有机物质等进行去除,提高饮用水的安全性和适用性。
反渗透膜工艺技术在
饮用水处理厂中广泛应用,成为一种理想的水处理方法。
水处理中的膜技术

水处理中的膜技术水处理是我们生活中必不可少的一环,早期传统的水处理方法往往采用化学药品来消除有害微生物和化学物质,但是这种方法处理出来的水品质不稳定,并且对环境造成严重的污染。
随着科技的不断发展,膜技术的出现逐渐改变了水处理方式的格局,特别是在海水淡化以及固废处理领域,膜技术已经成为了最受欢迎的一种水处理方式。
一、膜技术在水处理领域中的应用1. 海水淡化海水淡化是指通过处理海水,去除其中的盐分和其他有害物质,从而得到新鲜的淡水。
传统的海水淡化方法大多采用的是热扩散或蒸发技术,这些方法不仅成本高昂,而且对环境造成严重的影响。
而利用膜技术进行海水淡化,既能提高净水效率,同时也能显著地降低处理成本和对环境的污染程度。
2. 城市污水处理城市污水处理是指将市区污水经过预处理、深度处理、消毒等一系列流程,使其达到国家规定的排放标准。
膜技术在城市污水处理中扮演着重要的角色,使得处理出来的污水更加稳定和高效。
3. 工业废水处理工业废水中往往含有各种有毒有害的物质,传统的处理方式存在一些弊端,也不能达到理想的处理效果。
而膜技术因其高效、可靠、环保的特点,在工业废水处理中得到了广泛的应用。
二、膜技术的优点1. 高效性膜技术所采用的微孔膜可以过滤细小的微粒和水中的其他有害物质,使得处理后的水质更加纯净、更能符合国家规定的排放标准。
2. 低能耗相比传统的水处理方法,膜技术耗能较少,同时能够减少处理成本和对环境的污染程度。
3. 可控性强膜技术可以根据不同的用途和水质要求进行不同程度的调整,从而达到更好的处理效果,具有非常强的可控性。
三、膜技术的存在问题1. 膜污染膜技术在应用过程中可能会存在一定的膜污染问题,需要定期进行清洗和更换,从而确保处理效果。
2. 需要高水平的技术人员膜技术的处理过程相对较为复杂,需要有一定的专业知识和技术支持,对操作人员的技术要求也比较高。
3. 设备维护成本高膜技术所使用的设备比传统设备要复杂得多,因此对设备的维护和保养成本也会相应提高。
膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用膜技术是一种高效的饮用水处理技术,具有很多优点,如高效、可靠、节能等。
它被广泛应用于饮用水处理中,包括直接饮用水处理、水源污染处理、反渗透技术、海水淡化等。
膜技术在直接饮用水处理中发挥了重要作用。
膜过滤技术能够有效去除水中的细菌、病毒、有机物、重金属等有害物质,提供安全、卫生的直饮水。
膜过滤膜的孔径非常小,可以过滤掉微小的污染物质,保证水质达到国家标准。
膜技术还具有高效、节能的特点,可以大幅降低能源消耗和人工成本。
膜技术在水源污染处理中也具有广泛应用。
随着工业化和城市化进程的加速,水资源污染日益严重,有效地处理水源污染成为亟待解决的问题。
膜技术能够有效去除水中的微生物、有机物、重金属等污染物质,使污染水源得到有效治理,恢复水体生态环境,保护人类健康。
反渗透技术是膜技术在饮用水处理中的重要应用之一。
反渗透技术是利用半透膜对水进行过滤,将水中的溶解固体、重金属、有机污染物等去除,实现水的浓缩和纯化。
这种技术可以应用于海水淡化、高盐水处理等场景,使海水等不可利用的水资源得到有效利用。
膜技术还可以应用于饮用水处理厂和家庭用水净化设备中。
在饮用水处理厂中,膜技术可以与传统的混凝沉淀、过滤等处理工艺相结合,形成高效的综合处理系统。
在家庭用水净化设备中,膜技术可以应用于自来水的净化和过滤,提供安全、卫生的家庭饮用水。
膜技术在饮用水处理中的应用非常广泛,可以应对不同水质和不同污染源的处理需求。
它不仅可以提供安全、卫生的直饮水,还能够有效处理水源污染和海水淡化等问题,为人们提供高质量的饮用水资源。
水处理技术之7种膜技术简介

水处理技术之7种膜技术膜分离技术被公认为是目前最有发展前途的高科技之一。
膜分离技术是以选择性多孔薄膜为分离介质,使分子水平上不同粒径分子的混合物/溶液借助某种推动力(如:压力差、浓度差、电位差等)通过膜时实现选择性分离的技术,低分子溶质透过膜,大分子溶质被截留,以此来分离溶液中不同分子量的物质,从而达到分离、浓缩、纯化目的。
近些年来,扩散定理、膜的渗析现象、渗透压原理、膜电势等研究为膜技术的发展打下了坚实的理论基础,膜分离技术日趋成熟,而相关科学技术的突飞猛进也使得膜的实际应用已十分广泛从环境、化工、生物到食品各行业都采用了膜分离技术。
迄今为止,水处理的膜技术主要有以下几种:(1)反渗透(RO)膜技术。
反渗透(又称高滤)过程是渗透过程的逆过程,推动力为压力差,即通过在待分离液一侧加上比渗透压高的压力,使原液中的溶剂被压到半透膜的另一侧。
反渗透技术的特点是无相变,能耗低、膜选择性高、装置结构紧凑,操作简便,易维修和不污染环境等。
(2)纳滤(NF)膜技术。
纳滤技术是超低压具有纳米级孔径的反渗透技术。
纳滤膜技术对单价离子或相对分子质量低于200的有机物截留较差,而对二价或多价离子及相对分子质量介于200-1000的有机物有较高脱除率。
纳滤膜具有荷电,对不同的荷电溶质有选择性截留作用,同时它又是多孔膜,在低压下透水性高。
(3)微滤(MF)膜技术。
微滤膜是以静压差为推动力,利用筛网状过滤介质膜的筛分作用进行分离。
微滤膜是均匀的多孔薄膜,其技术特点是膜孔径均一、过滤精度高、滤速快、吸附量少且无介质脱落等。
主要用于细菌、微粒的去除,广泛应用在食品和制药行业中饮料和制药产品的除菌和净化,半导体工业超纯水支配过程中颗粒的去除,生物技术领域发酵液中生物制品的浓缩与分离。
(4)超滤(UF)膜技术。
超滤是以压差为驱动力,利用超滤膜的高精度截留性能进行固液分离或使不同相对分子质量物质分级的膜分离技术。
其技术特点是:能同时进行浓缩和分离大分子或胶体物质。
膜技术在水处理领域中的应用研究

膜技术在水处理领域中的应用研究随着人口的增加和工业化的发展,水资源的短缺和水质的恶化已成为全球关注的热点问题。
为了解决水资源短缺和水污染问题,水处理技术不断发展,膜技术作为一种高效可行的水处理方法,逐渐成为水处理领域的重要技术手段。
一、膜技术的基本原理和分类膜技术是利用介于微滤过程和离子交换过程之间的膜分离原理进行水处理的技术。
其基本原理是通过膜的选择性渗透性,将水中的溶质分离出来。
根据膜的材质和分离机制的不同,膜技术可以分为微滤膜、超滤膜、纳滤膜和反渗透膜四种类型。
微滤膜和超滤膜主要是通过筛选的机制分离物质,纳滤膜则是通过孔径大小和电荷的区别分离物质,而反渗透膜则是通过逆渗透的原理分离物质。
二、膜技术在水处理中的应用1. 膜分离技术在饮用水处理中的应用膜技术在饮用水处理中的应用主要包括微滤膜和超滤膜的使用,通过过滤工艺去除水中的悬浮固体、胶体颗粒和微生物等杂质,使其满足饮用水质量标准。
微滤膜和超滤膜具有较高的过滤效率和较好的水质稳定性,能够有效去除水中的颗粒物和微生物,在夺取基本饮用水进行处理的同时能保留水中的矿物质等对人体有益的成分,提高了饮用水的整体品质。
2. 膜反应器在废水处理中的应用膜反应器(MBR)是一种将膜技术与生物反应器技术相结合的废水处理技术。
MBR将生物反应器和微滤或超滤膜结合在一起,实现了废水污染物的生物降解和膜分离的一体化。
MBR技术具有接触时间长、降解效果好、排泥量小等优点。
由于MBR 技术能够有效去除有机物、氮、磷等污染物,并且产生的清水可直接回用,因此被广泛应用于工业废水和城市污水处理领域。
3. 膜处理技术在海水淡化中的应用海水淡化是一种将海水转变为淡水的过程,膜技术在海水淡化中起到了重要的作用。
反渗透膜是海水淡化工艺中常用的膜技术。
通过将海水压力驱动通过反渗透膜,能够有效去除海水中的盐分和其他溶解物质,获得高质量的淡水。
膜技术在海水淡化中具有能耗低、占地面积小、操作简单等优点,成为满足水资源短缺地区淡水需求的重要手段。
关于水处理膜技术发展现状探讨

关于水处理膜技术发展现状探讨水处理膜技术是一种通过将水通过膜进行过滤和分离的技术,广泛应用于污水处理、饮用水净化、海水淡化以及工业生产中的水处理等领域。
随着人们对水资源的需求不断增加,水处理膜技术也得到了越来越多的关注和重视。
本文将就水处理膜技术的发展现状进行探讨,分析其存在的问题和未来的发展方向。
一、水处理膜技术的发展历程水处理膜技术最早可以追溯到上世纪60年代,当时主要应用于海水淡化和废水处理的领域。
随着材料科学、化工工程和环境工程的发展,水处理膜技术逐渐得到了改进和完善。
1990年以后,随着聚合物膜、陶瓷膜和金属膜等新型膜材料的涌现,水处理膜技术迎来了快速发展的时期。
目前,水处理膜技术已经成为水处理领域的主流技术之一,应用广泛,技术含量和市场前景都非常可观。
1. 技术水平不断提高近年来,水处理膜技术在膜材料、膜结构、膜模块、膜系统等方面的研究取得了显著成果,膜的通量、分离效率和寿命等性能不断提高,使得水处理膜技术能够更加高效地实现对水的净化和处理。
2. 应用领域不断拓展水处理膜技术已经逐渐渗透到污水处理、饮用水净化、海水淡化、工业废水处理、医药和化工生产中的水处理等领域。
尤其在城市供水和工业生产中的水资源利用中得到了广泛应用,成为提高水资源利用效率和保护水资源的重要技术手段。
3. 市场需求不断增加随着人们对水质的要求不断提高,以及水资源的日益紧缺,水处理膜技术的市场需求不断增加。
尤其在中国和发展中国家,水处理膜技术具有巨大的市场潜力,有望成为未来水处理技术市场的主导技术。
三、水处理膜技术存在的问题和挑战1. 能耗问题水处理膜技术在运行过程中需要消耗大量能源,尤其是在高压逆渗透膜应用中,能耗较高。
如何降低水处理膜技术的能耗,成为了目前水处理膜技术面临的一个重要问题。
2. 膜污染问题膜污染是水处理膜技术中一个严重的问题,会影响膜的通量和寿命,甚至导致膜的失效。
目前,如何有效地预防和清洗膜污染成为了水处理膜技术研究的重点之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体主体的反向运动,提高了过精选滤PP速T 度。
7
2.1概述
----五、膜过程的一些术语
▪ 2.选择性:将混合物总的组分分离开来的能力。 截留率:表示液体分离的选择性
R=(Cf-Cp)/Cp Cf----原料液浓度,%(w/w);Cp----透过液浓度,%(w/w)。
精选PPT
8
2.1概述
----五、膜过程的一些术语
▪ 3.推动力:
1)对多孔膜而言,在对流流动的情况下,传质推动力是膜两侧的压 力差。
P2 P1
P3
P=(P1+P2)/2-P3
膜压降:P1-P2,是由于流体流动引起的。
2)对致密膜而言,推动力为膜两侧的化学势之差。
精选PPT
9
2.1概述
----五、膜过程的一些术语
4.浓差极化:在膜分离 过程中,一部分溶质被 截留,在膜表面及靠近 膜表面区域的浓度越来 越高,造成从膜表面到 本体溶液之间产生浓度 梯度,这一现象称为 “浓差极化”。
推动力
压力差(也称跨膜压差)、浓度差、 电位差、温度差等 。
如 微 滤 ( MF)、 超 滤 ( UF)、 纳 滤 ( NF) 与 反 渗 透 (RO)都是以压力差为推动力的膜分离过程。
精选PPT
2
2.1概述
▪ 二、膜的简介
▪ 特征:具有选择性分离功能的 薄膜材料,以及以其为核心的 装置、过程、工艺的集成与应 用
及沉积等现象而引起的。
精选PPT
11
2.1概述
----五、膜过程的一些术语
▪ Rm 膜管本身阻力 ▪ Ri 膜孔内污染阻力 ▪ Rg 凝胶层阻力 ▪ Rc 浓差极化阻力
Cg
C
u
Cb
Rm Ri
Rg
Rc
膜污染阻力的概念模型
精选PPT
12
2.1概述
----五、膜过程的一些术语
6.膜污染
▪ 膜污染:指处理物料中的微粒、胶体粒子或溶质大分子 由于与膜存在物理化学相互作用或机械作用而引起的在 膜表面或膜孔内吸附、沉积造成膜孔径变小或堵塞,使 膜产生渗透通量与分离特性的不可逆变化现象。
精选PPT
17
膜法海水淡化
几种分离方法能耗比较
分离方法 反渗透 低温多效 多级闪蒸
能耗(kWh/m3) 3.5
>7
பைடு நூலகம்
>10
多级闪蒸:经过加热的海水,依次通过多 个温度、压力逐级降低的闪蒸室,进行蒸 发冷凝的蒸馏淡化方法。
低温多效水的沸点和它所受到的压力有关, 压力越低,水的沸点就越低。第1效蒸发 海水所得的蒸汽可以用作第2效的热源 (见图2)。第2效的沸点温度和压力比第 1效低,效与效之间的热量再生利用可以 重复数次。
膜法海水淡化
▪ 特点: ➢ 无相变、低能耗 ➢ 高效率、污染小 ➢ 工艺简单、操作方便 ➢ 便于与其它技术集成
浓缩液 渗 透 液
进料液
精选PPT
3
三、膜的分类
2.1概述
精选PPT
4
四、膜元件
2.1概述
精选PPT
5
四、膜元件
2.1概述
精选PPT
6
2.1概述
五、膜过程的一些术语 1.膜分离的形式——错流过滤
精选PPT
1
2 3
Cf Cm Cp
浓差 膜层 渗透侧
极化层
极化层
10
2.1概述
----五、膜过程的一些术语
5.传递阻力: 1)膜阻Rm:与膜本身的结构有关,包含膜层到支撑层的传递
阻力; 2)浓差极化阻力Rc:由于被截留组分在膜面浓度的增大而引
起的; 3)推动力的损失:进料侧和渗透侧的压力损失; 4)膜污染阻力:由于物料中的成分对膜产生吸附、堵塞、以
精选PPT
15
2.1概述
----七、膜的应用
海水淡化 工业废水处理 城市废水资源化
天然气
生物质利用
燃料电池
水资源
膜
传统工业
能源 生态环境
冶金
制药
食 品 化工与石化 电 子
CO2 控制
除尘
洁净燃烧
精选PPT
16
2.1概述
----七、膜的工业应用
工业领域 金属工艺 纺织及制革工业 造纸工业 食品及生化工业 化学工业 医药及保健 水处理 国防工业
第二章 膜分离
精选PPT
1
2.1概述
▪ 一、概念 ▪ 膜分离是以对组分具有选择性透过功能的膜为分离载
体,通过在膜两侧施加(或存在)一种或多种推动力, 使原料中的组分选择性地优先透过膜,从而达到混合 物分离,并使产物提取、浓缩、纯化等的一种新型分 离过程。 ▪ 渗透----水通过;渗析----溶质通过
终端过滤 污染严重
错流过滤 污染轻
错流过滤的优点:
(1)便于连续化操作过程中控制循环比;
(2)流体流动平行于过滤表面,产生的表面剪切力带走膜表面的沉积 物,防止污染层积累,使之处于动态平衡,从而有效地改善液体 分离过程,使过滤操作可以在较长的时间内连续进行;
(3)错流过滤所产生的流体剪切力和惯性举力能促进膜表面的溶质向
(截留物为产物) ▪ 2.纯化:除去杂质; ▪ 3.分离:将混合物分成两种或多种目的产物; ▪ 4.反应促进:把化学反应或生化反应的产物连续取出,能
提高反应速率或提高产品质量。
精选PPT
14
2.1概述
七、膜的应用 20世纪90年代,膜技术基本已经从实验室步入工业化, 并在水处理、食品工业、环境保护、化工与石油化工、 电子、冶金、国防……等领域得到成功的应用。目前全 球膜产业的规模超过百亿美元,正以年30%的速度递增 着。
应用举例
金属回收;污染控制;富氧燃烧 余热回收;药剂回收;污染控制 代替蒸馏;污染控制;纤维及药剂回收 净化;浓缩;消毒;代替蒸馏;副产品回收 有机物除去或回收;污染控制;气体分离;药剂回收和再利用 人造器官;控制释放;血液分离;消毒;水净化 海水、苦咸水淡化;超纯水制备;电厂锅炉用水净化;废水处理 舰艇淡水供应;战地医院污水净化;低放射性水处理;野战供水
反渗透淡化厂的能耗及产水成本
国家或地区
设备能力 m3/d
原水含盐量 mg/L 能耗 kwh/m3
产水成本 精选PRPMBT/m3
沙特 56800 43700
7 4.88
中国 长海
1000
中国 长岛
1000
中国 沧化
18000
35000 34000 13000
5
4.5
2.75
6.69
5.13
1.8318
▪ 物理污染包括膜表面的沉积,膜孔内的阻塞,这与膜孔结构、膜表 面的粗糙度、溶质的尺寸和形状等有关。
▪ 化学污染包括膜表面和膜孔内的吸附,这与膜表面的电荷性、亲水 性、吸附活性点及溶质的荷电性、亲水性、溶解度等有关。
精选PPT
13
2.1概述
▪ 六、膜的用途 ▪ 1.浓缩:目的产物以低浓度形式存在,因此需要除去溶剂;