第一讲:方程的解法和含参方程的讨论

第一讲:方程的解法和含参方程的讨论
第一讲:方程的解法和含参方程的讨论

第一讲:方程的解法、含参方程的讨论

本部分主要解决方程的求解问题,以及简单的含参数方程的讨论。在对初中学习过的方程解法总结的基础上,使学生对求解方程有一个整体的认识.从而提高他们进行代数式变形的能力,使他们深刻理解方程的同解变形 一、方程的分类

整式方程(一元一次方程、一元二次方程、简单的高次方程)、分式方程、无理方程、方程组〔二元一次方程组、二元二次方程组)等

二、同解定理

(1)方程的两边都加上(或减去)同一个数或同一个整式,所得方程与原方程是同解方程; (2)方程的两边都乘以〔或除以)不等于0的同一个数,所得方程与原方程是同解方程; (3)如果方程的一边为0,另一边可分解为n 个因式的乘积,那么使各个因式分别等于零 这样得到n 个方程与原方程是同解方程。

三、同解变形

是指变形前后的两个方程是同解方程。解方程时要保证每一步都是同解变形

四、方程的解法

(1)对于方程ax b =,其中x 表示未知数。求解时须进行讨论: ①当0a ≠时,方程的解为b x a

=

; ②当0,0a b ==时,方程的解为全体实数; ③当0,0a b =≠时,方程无解。

(2)对于一元二次方程2

0(0)ax bx c a ++=≠,其解的情况如下

①当2

40b ac =-> 时,方程有两个不相等的实根 ②当2

40b ac =-= 时,方程有两个相等的实根:2b a

-; ③当2

40b ac =-< 时,方程无解。 五、例题选讲

六、课后练习

方程的解法、含参方程的讨论

本部分主要解决方程的求解问题,以及简单的含参数方程的讨论。在对初中学习过的方程解法总结的基础上,使学生对求解方程有一个整体的认识.从而提高他们进行代数式变形的能力,使他们深刻理解方程的同解变形 一、方程的分类

二、同解定理

三、同解变形

四、方程的解法

(1)对于方程ax b =,其中x 表示未知数。求解时须进行讨论:

(2)对于一元二次方程20(0)ax bx c a ++=≠,其解的情况如下

五、例题选讲

六、课后练习

最新七年级一元一次方程经典题型计算题100道

经 典 题 型 一、解方程(等式的性质)20分 1、x x 232-=- 2、463127.253.13?-?-=-+-x x x x 3、x x 21-=- 4、x 355-= 5、15=-x 6、1835+=-x x 7、x x 237+= 8、x x x 58.42.13-=-- 9、26473-=+-x x x 10、x x x 910026411-=-+ 11、x x x x 43987--=+- 12、x x x 25.132-=+- 13、x x 3.15.67.05.0-=- 14、3.05.064-=-+-x x x 15、15 2+-=-x x 16、35 36+-=-x x 17、3 223=x 18、168421x x x x x ++-+ = 19、4 32214+=-x x

20、x x x 3 212-=- 二、解方程(去括号)30分 1、4)1(2=-x 2、5)1(10=-x 3、95)3(+=--x x 4、)12(1)2(3--=+-x x x 5、)15(2)2(5-=+x x 6、)4(3)2()1(2x x x -=+-- 7、1)1(234+-=+x x 8、x x x 31)1(2)1(-=--+ 9、)1(3)14(6)2(2x x x -=--- 10、)1(9)15(3)2(4x x x -=--- 11、)12(3)32(21+-=+-x x 12、x x x 31)1(2)1(-=--+ 13、)9(76)20(34x x x x --=-- 14、)3()2(2+-=-x x 15、)1(72)4(2--=+-x x x 16、)43(23)165(2--=+-x x x 17、)12(41)2(3--=+--x x x 18、)4(12)2(24+-=-+x x x 19、)1(9)14(3)2(2x x x -=--- 20、)1(9)14(3)2(2y y y -=--+ 21、)9(76)20(34x x x x --=-- 22、17}20]8)15(4[3{2=----x 23、2)]}4(8[2{3]5)4(3[2----=-+--x x x x x x 24、)1(3 2)1(2121-=??????--x x x

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

(完整word版)重庆中考专题训练二含参的方程和不等式的计算-

中考专题训练二 一、含参数方程组和不等式的结合 1.若整式a 使得关于x 的不等式组20113 x a x ì->?í-???至少有一个整数解,且使得关于x 的方程415ax x =-有整数解,那么所有满足条件的整数a 的值之和是( ) A. 12 B.1 C.52 D.3 2.从22,1,,0,13---这五个数字中,随机抽取一个记为a ,则使得关于x 的方程213ax x +=-的解为非负数,且满足关于y 的不等式组0321 x a x ì->?í-+???恰有三个整数解,那么这5个数中所有满足条件的a 的值有( ) A.0个 B.1个 C.2个 D.3个 二、含参数的函数和方程、不等式的结合 3. 一直一个口袋中装有5个完全相同的小球,小球上分别标有2,6,9,12,15五个数字,搅匀后从中摸出一个小球,将小球上的数字记为a ,若使得一次函数6y ax a =+-不经过第四象限且关于x 的分式方程 6466 ax x x x =+--的解为整数,则这5个数中所有满足条件的a 的值之和是( ) A.21 B.27 C.29 D.44 4. 从2,1,0,1,2,4--这六个数中,任取一个数作为a 的值,恰好使得关于x,y 的二元一次方程组2x y a x y ì-=?í+=?? 有整数解,且函数242y ax x =++的图象与x 轴有公共点,那么这6个数所有满足条件的a 的值之积是( ) A. 16- B.4- C.0 D.8 练习: 1. 有五张正面分别标有数组12,0,,1,32-的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,若使得关于x 的分式方程 11222ax x x -+=--有整数解,则这5个数中满足条件的a 的值之和是( ) B. 0 B.3 C.4 D. 32 2. 使关于x 的分式方程122k x -=-的解为非负数,且使反比例函数3k y x -=的图象过第一、三象限时满足条件的所有整数k 的和为( ) C. 1 B.2 C.3 D.5 3. 在平面直角坐标系中,抛物线2 23y x x =--与x 轴交于B,C 两点,(点B 在点的左侧),点A 在抛物线上,且横坐标为-2,连接AB ,AC ,现将背面完全相同,正面分别标有2,1,0,1,2--的五张卡片洗均匀后,背面朝上,从中任取一张,将该卡片上的数作为P 的横坐标,将该数加1作为点P 的纵坐标,点P 落在△ABC 内(不含边界),则满足条件的点P 的个数为( ) D. 1 B.2 C.3 D.4

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

一元一次方程总复习经典练习题(供参考)

一元一次方程板块 1.已知等式2(2)10a x ax -++=是关于x 的一元一次方程(即x 未知),则这个方 程的解为______ 2.方程12=+a x 与方程2213+=-x x 的解相同,则a 的值为( ) A. -5 B . -3 C. 3 D. 5 3.若关于x 的方程a x x -=+332的解是2x =-,则代数式21a a -的值是_________ 4.关于x 的方程729+=-kx x 的解是自然数,则整数k 的值为 5.当m 取什么整数时,关于x 的方程1514()2323 mx x -=-的解是正整数? 6、关于x 的方程143+=+x ax 的解为正整数,则a 的值为( ) A 、2 B 、3 C 、1或2 D 、2或3 7.小李在解方程135=-x a (x 为未知数)时,误将x -看作x +,解得方程的解 2-=x ,则原方程的解为___________________________. 8. 解方程 (1)x x 325.2]2)125.0(32[23=-++ (2)13 5467221--=---x x x (3)14 3)1(2111=-+-x (4)、200320042003433221=?++?+?+?x x x x 9.某公司向银行贷款40万元,用来生产某种产品,已知该贷款的利率为15%(不 计复利,即还贷款前两年利息不计算),每个新产品的成本是2.3元,售价是4元, 应纳税款是销售额的10%,如果每年生产该种产品20万个,并把所得利润(利 润=销售额-成本-应纳税款)用来归还贷款,问需要几年后才能一次性还清? 10.(2009年牡丹江)五一期间,百货大楼推出全场打八折的优惠活动,持贵宾 卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共 节省2800元,则用贵宾卡又享受了 折优惠. 11.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合做这项工程 所需天数为( ) A.1x y + B.11x y + C.1xy D.1 11x y +

【精品】分式方程的几种特殊解法

【关键字】精品 分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式,则可以通过在方程两边都加上分式,就将原方程化简成,从而轻松获解。 解:原方程两边都加上,则可得: 去分母,得: 解得: 经检验,是原分式方程的解。 二、巧用合比性质法。 例2:解方程:。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得: 去分母并化简得:,即 解得: 经检验,是原分式方程的解。 三、巧用等比性质法。 例3、解方程:。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原

方程化简后再求解。 解:由等比性质可得:。 化简得: 经检验,是原分式方程的解。 四、分组化简法。 例4、解方程:。 分析:此方程若直接通分将会出现高次方程,并且运算过程十分复杂,做法不可取。此题可采用分组组合后各自通分的方法来求解。 解:原方程可化为: 分别通分并化简,得: 解得: 经检验,是原分式方程的解。 五、倒数法。 例5、解方程:。 分析:本题若按常规方法去做,需通分和去分母,然后再求解,过程较复杂。但如果采用倒数法,则可以简化解题过程。 解:原方程两边取倒数,得: 移项化简,得: 方程两边取倒数,得: 解得: 经检验,是原分式方程的解。 六、列项变形法。 例6、解方程:。 分析:将该方程直接去分母,方程两边的运算十分繁杂。若注意到方程的分母特点是两个连续因式的积,它们的差为1。凡是这样的分式或分数都能拆开成两个分式或分数的差,使得除首、末两项之外的中间项可以相互抵消,从而达到化繁为简。。

含参不等式题型知识讲解

含参不等式题型 一、给出不等式解的情况,求参数取值范围: 总结:给出不等式组解集的情况,只能确定参数的取值范围。记住:“大小小大有解;大大小小无解。”注:端点值格外考虑。 1:已知关于x 的不等式组3x x a >-???????+>-??的解集是x>2a,则a 的取值范围是 。 4、已知关于x 的不等式组2113x x m -?>???>?的解集为2x >,则( ) .2.2.2.2A m B m C m D m ><=≤

5、关于x 的一元一次不等式组x a x b >?? >?的解集是x>a,则a 与b 的关系为( ) ...0.0A a b B a b C a b D a b ≥≤≥>≤< 6、若关于x 的不等式组841x x x m +-??? p f 的解集是x >3,则m 的取值范围是 7、若关于x 的不等式组8x x m ?,有解,则m 的取值范围是__ ___。 8、若关于x 的不等式组?? ?->+<121m x m x 无解,则m 的取值范围是 。 二、给出不等式解集,求参数的值 总结:给出不等式组确切的解集,可以求出参数的值。方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。 1:若关于x 的不等式组2123x a x b -? 的解集为11x -<<,求()()11a b +-的值。 2:已知关于x 的不等式组()324213 x x a x x --≤???+>-??的解集是13x ≤<,求a 的值。 3、若关于x 的不等式组 的解集为 ,求a,b 的值 {a b x b a x 22>+<+3 3<<-x

解一元一次方程50道练习题(经典、强化、带答案)

解一元一次方程(含答案) 1、71 2=+x ; 2、825=-x ; 3、7233+=+x x ; 4、735-=+x x ; 解:(移项) (合并) (化系数为1) 5、914211-= -x x ; 6、2749+=-x x ;7、162=+x ; 8、9310=-x ; 解:(移项) (合并) (化系数为1) 9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32 1 41+=-x x 解:(移项) (合并) (化系数为1 13、1623 +=x x 14、253231+=-x x ;15、152+=--x x ; 16、23 312+=--x x 解:(移项) (合并) (化系数为1) . 17、 4 75.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号) (移项) (合并) (化系数为1) 21、)12(5111+=+x x ; 22、32034)=-(- x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号) (移项) (合并) (化系数为1) 25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、3 232 36)=+(-x ; 解:(去括号) (移项) (合并) (化系数为1) 29、x x 2570152002+)=-( ; 30、12123)=+(x .31、452x x =+; 32、3 4 23+=-x x ; 解:(去分母) (去括号) (移项) (合并) (化系数为1)

特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法 解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程, 但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加 大,易出现错误,因此要善于观察具体方程的特点,对一些特殊分式方程,采用特殊方法, 会简化解题过程。 一 ?比例法 x 1 a b 例1.解方程 (b 0) x 1 a b A D 分式:观察方程,形如: 的形式,可根据比例"两外项之积等于两内项之积” B C 而直接求解。 解:原方程化为 (x 1)(a b) (a b)(x 1) 2a a x b 2 3x 3 2x 3x 1 2x 2 解:原方程化为 (2 3x)(2x 2) (3 2x)(3x 整理得13x 7, 7 x 13 经检验x —是原方程的根。 13 二.换元法 y 3 4y 8 例3.解方程 y 2 y 3 分析:本题若移项,形如— D ,如果用比例法则去分母后方程变为 B C 2 3y 24y 7 0,对一元二次方程我们还不能求解。因此,经观察发现 8 4 匚2,其中匚2与丄虫互为倒数关系,可利用换元法简便求解。 y 3 y 3 y 3 y 2 解:设'一3 A ,则原方程变形为 y 2 整理得2bx b 0, 例2.解方程: 1)

4 A 0 A 整理得A 2 4 A 2 y 3 当A 2时, 2,解得y i 7 ; y 2 当A 2时,乂卫 2,解得y y 3 3 1 、 经检验,y 1 7, y 2 都是原方程的解。 3 例4.解方程组 3 2 5 (1) x y x y 1 4 4 ⑵ y x x y 分析:方程(1),( 2)中都含有 --------------- x y 1 i 设 a , b x y x y 则方程组变形为 3b 2a 5 b 4a 4 解这个二元一次方程组, 1 1 求出a 、b 的值,代入 禾口 中,即可解出x , y 的值。 x y x y 三.倒数法 关系,可有下面解法。 解: x - 2,或x 1 4 4 因此可运用换元法, 例5.已知:x - x 分析:已知条件中, 1 ~2 x , 1 —互为倒数2- 2 21,求 x 2 2 1 ......... x , x 2 -,其中 2 2, 1 —互为倒数关系,利用此 2 1 ~~2 x 例6. 解方程: 2x 3x 2 17 分析: 3x 2 方程的左边两项为倒数之和, 2x 1 4 因此可用倒数法简化求解,

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

一元一次方程知识点及经典例题

精心整理一、知识要点梳理 知识点一:方程和方程的解 1.方程:含有_____________的______叫方程 注意:a.必须是等式b.必须含有未知数。 易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。 考法:判断是不是方程: 例:下列式子:(1).8-7=1+0(2). 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区别开。 2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 变 形 步 骤 具体方法变形根据注意事项 去分母方程两边都乘以 各个分母的最小 公倍数 等式性质 2 1.不能漏乘不含分母的项; 2.分数线起到括号作用,去 掉分母后,如果分子是多项 式,则要加括号 去括号先去小括号,再 去中括号,最后 去大括号 乘法分配 律、去括 号法则 1.分配律应满足分配到每一 项 2.注意符号,特别是去掉括 号 移项把含有未知数的 项移到方程的一 边,不含有未知 数的项移到另一 边 等式性质 1 1.移项要变号; 2.一般把含有未知数的项移 到方程左边,其余项移到右 边 合并同类项把方程中的同类 项分别合并,化 成“b ax=”的形 式(0 ≠ a) 合并同类 项法则 合并同类项时,把同类项的 系数相加,字母与字母的指 数不变 未知数的系方程两边同除以 未知数的系数a, 得 a b x= 等式性质 2 分子、分母不能颠倒

分式方程的特殊解法

分式方程的特殊解法 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验2 7- =x 是原方程的解 练习:② 6 5327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数 例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天. )133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:3 2224212+++=+++x x x x x x x x

重庆市2018年中考数学12题含参方程和不等式专训(含解答)

重庆市2018年中考数学12题专训 1.(2018?宜宾模拟)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是() A.﹣1 B.2 C.﹣7 D.0 2.(2017?重庆)若数a使关于x的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是() A.3 B.1 C.0 D.﹣3 3.(2017?重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为() A.10 B.12 C.14 D.16 4.(2017?渝中区校级二模)若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为() A.28 B.﹣4 C.4 D.﹣2 5.(2017?江北区校级模拟)若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+6 成立,且使关于x的分式方程=3+有整数解,那么符合条件的所有整数a值之和是() A.19 B.20 C.12 D.24 6.(2017?高密市三模)关于x的方程的解为正数,且关于y的不等式组 有解,则符合题意的整数m有()个. A.4 B.5 C.6 D.7 7.(2017?南岸区一模)若关于x的不等式组有且只有三个整数解,且关于x的分式方程﹣=﹣1有整数解,则满足条件的整数a的值为()

A.15 B.3 C.﹣1 D.﹣15 8.(2017?渝中区校级一模)如果关于x的分式方程﹣=2有正数解,关于x的不等式组有整数解,则符合条件的整数a的值是() A.0 B.1 C.2 D.3 9.(2017?沙坪坝区一模)若关于x的不等式组,有且仅有五个整数解,且关 于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是() A.﹣4 B.﹣3 C.﹣1 D.0 10.(2017?南岸区校级二模)若关于x的不等式组有三个整数解,且关于x 的分式方程有正数解,则所有满足条件的整数a的值之和是() A.﹣3 B.﹣1 C.0 D.2 11.(2017?九龙坡区校级模拟)如果关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是() A.﹣2 B.﹣4 C.﹣7 D.﹣8 12.(2017?重庆模拟)如果关于x的分式方程有整数解,且关于x的不等式组 有且只有四个整数解,那么符合条件的所有整数a的个数为() A.0 B.1 C.2 D.3 13.(2017?沙坪坝区校级一模)从﹣3,﹣1,,2,3,5这六个数中,随机抽取一个数,记 为a,若数a使关于x的不等式组至少有三个整数解,且关于x的分式方程 +=2有正整数解,那么这6个数中所有满足条件的a的值之积是() A.7 B.6 C.10 D.﹣10

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

一元一次不等式的含参问题

《含参数的一元一次不等式组的解集》教学设计 教材分析:本章内容在学习了《一元一次方程》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。教学准备(预习学案)

1、⑴不等式组? ??-≥>12x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组???≥≤14x x 的解集是 . ⑷不等式组???-≤>4 5x x 的解集是 . 2、关于x 的不等式组12x m x m >->+??? 的解集是1x >-,则m = . 3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是( ) A. 4 B. 5 C. 6 D. 7 4、不等式组? ??--≤-.32,281x >x x 的最小整数解是( ) A .-1 B .0 C .2 D .3 5、满足21≤<-x 的所有整数为___________ __. 6、满足21≤≤-x 的所有整数为________________ __. 7、请写出一个只含有三个整数1、2和3的解集为 。 预习要求: 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:同大取大;同小取小;大小小大(大于较小的数,小于较大的数)在中间;大大小小(大于较大的数,小于较小的数)不存在. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 教学步骤: 一、例题教学 例1、 1、关于x 的不等式3m-x<5的解集x>2,求m 的值。 2、不等式 mx-2<3x+4的解集是 , 则m 的取值范围是 变式1.如果不等式(m ﹣2)x >m ﹣2的解集为x <1,那么( ) A .m≠2 B.m >2

一元一次方程典型例题(用)

一元一次方程典型例题 类型一、有关概念的识别和应用 什么是方程?什么是一元一次方程?等式有哪些性质? 1. 下列算式: y y 4)1(= 2 1 41) 2(-=-x x 5)3(=+y x 72)4(22=++y xy x 7142)5(-=-? 21 ) 6(=x 其中是方程的是_____________,一元一次方程方程的是_______。 若方程(m-4)x |m-3|-2=0是一元一次方程,则m=_______。 2. 下列方程中,是一元一次方程的是( ) (A )2 43x x -= (B )0=x (C )12=+y x (D )x x 11= - 3. x 比它的一半大6,可列方程为 。 4. 类型二、解一元一次方程 解方程的一般步骤:去分母→去括号→移项→合并同类项→两边同除以未知数的系数 5. 解方程21101 1510 x x +--=时,去分母后正确的是〔 〕 A 、4x+1-10x+1=1 B 、4x+2-10x-1=1 C 、4x+2-10x-1=10 D 、 4x+2-10x+1=10 6. 将下列各式中的括号去掉: (1) a+(b-c)= ; (2) a-(b-c)= ; (3) 2(x+2y-2)= ; (4)-3(3a-2b+2)= 。 7. 将方程4x+1=3x-2进行移项变形,正确的是〔 〕 A 、4x -3x=2-1 B 、4x+3x=1-2 C 、4x -3x=-2-1 D 、4x+3x=-2-1 8. 下列变形不正确的是〔 〕 A 、若2x -1=3,则2x = 4 B 、若3x =-6,则x =2 C 、若x+3=2,则x =-1 D 、若-1/2x=3,则x=-6 9. 当代数式-4x+7与代数式2x+6的值互为相反数时, x=_____;相等时,x=_____。 10. 若x=5是3x+2a=5x+2的解,则a=______。 11. 下列方程中,解为1/2的是〔 〕 A 、5(t -1)+2=t -2 B 、1/2x -1=0 C 、3y -2=4(y -1) D 、3 (z -1) =z -2 12. 解方程: (1) 5(x+2)=2(2x+7) (2) 3(x -2)=x -(7-8x) (3) 9232344=---x x (3) 15 .08 402.013.0=---x x 类型三、应用题 列一元一次方程解应用题的一般步骤: 1) 审题:;

分式方程的几种特殊解法

分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程; (2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:2017 2018112017201811222++-=++-+x x x x x 。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式 2017 201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。 解:原方程两边都加上2017201812++x x ,则可得:11 2=+x 去分母,得:12+=x 解得:1=x 经检验,1=x 是原分式方程的解。 二、巧用合比性质法。

例2:解方程:7 81222++=++x x x x 。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得:7 7-811-2222+++=+++x x x x x x )()()()( ∴ 7 1112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x ( 解得:23-==x x 或 经检验,23-==x x 或是原分式方程的解。 三、巧用等比性质法。 例3、解方程:1 3242344++=++x x x x 。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。 解:由等比性质可得: 1324)13()23(2444++=+-++-+x x x x x x )()(。 ∴ 13242++= x x 化简得: 02=x ∴ 0=x 经检验,0=x 是原分式方程的解。

:含参方程和不等式(一)

For personal use only in study and research; not for commercial use 同学你好,网校试题均为高清大图,如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。第1题 第2题 第3题 第4题 第5题 第6题 第7题 第8题 第9题 第10题 试题答案 第1题: 正确答案:A 答案解析 第2题: 正确答案:C 答案解析 第3题: 正确答案:A 答案解析 第4题: 正确答案:B 答案解析 第5题: 正确答案:C 答案解析

第6题: 正确答案:C 答案解析 第7题: 正确答案:C 答案解析 第8题: 正确答案:B 答案解析 第9题: 正确答案:D 答案解析 第10题:正确答案:B 答案解析

仅供个人参考 仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文 不得用于商业用途

相关文档
最新文档