基于三维加速度计的便携式运动能耗测量仪的设计

基于三维加速度计的便携式运动能耗测量仪的设计
基于三维加速度计的便携式运动能耗测量仪的设计

圆园18,33穴10雪基于三维加速度计的便携式运动能耗测量仪的设计DOI :10.19557/https://www.360docs.net/doc/8816032334.html,ki.1001-9944.2018.10.023

焦纯,秦夏臻,师航,唐明,霍旭阳

(西安培华学院智能科学与信息工程学院,西安710125)

摘要:基于加速度计的人体运动能耗测量方法的有效性已经被近几年的研究所证实。结合

微功耗及微型化的总体设计要求,文中阐述了一种利用三维加速度传感器测量人体运动

能耗的便携式测量仪器的设计方案,并具体探讨了该测量仪的总体设计思路及主要功能

单元的实现方法。

关键词:人体测量仪;身体运动能耗;三维加速度计;微功耗

中图分类号:TH79;TH824+.4文献标志码:A 文章编号:1001?9944(2018)10?0099?05

Design of Portable Measuring Instrument for Assessing Physical Activity Energy Expenditure Based on Triaxial Accelerometer

JIAO Chun ,QIN Xia ?zhen ,SHI Hang ,TANG Ming ,HUO Xu ?yang (Intelligent Science &Information Engineering College ,Xi ’an Peihua University ,Xi ’an 710125,China )Abstract :Many studies have confirmed the validity when physical activity energy expenditure is assessed by ac ?celerometer in recent years.In this paper ,combined with the general requirements of low ?power design and miniatur ?ization design ,the design scheme of a portable measuring instrument for assessing physical activity energy expenditure based on triaxial accelerometer was expounded.And also the overall design ideas of the portable measuring instru ?ment and the realization method of main functional units were illustrated in detail.Key words :measuring instruments for anthropometry ;physical activity energy expenditure ;triaxial accelerometer ;low power 收稿日期:2018-08-22;修订日期:2018-09-08基金项目:西安培华学院科研重点项目(PHKT17017);陕西省自然科学基础研究计划项目(2018JM7037025)作者简介:焦纯(1973—),男,博士,教授,研究方向为微机应用控制、智能仪器设计以及生物医学信号处理等。

日常的体育锻炼或训练是人们增进健康的主要

形式,适度的身体运动(physical activity )可以使成年

人的早期死亡率下降20%~30%,使冠心病、II 型糖尿

病、中风等慢性疾病发病率下降50%。运动还可以减

缓肌肉的衰退,保持骨健康,并促进儿童生长发育。

不仅如此,研究者们还通过流行病学研究证实运动

与健康之间存在明确的剂量反应关系,而且这种剂

量反应关系在不同性别、不同年龄的人群中均存在。

在进行运动健康管理的过程中,无论是研究运动与

健康或疾病的关系,还是进行运动干预的相关研究,准

确地评估运动过程中的能量消耗都是一个关键问题。

为此,国内外的研究者们一直在寻找适用于运动现场及日常运动条件下人体运动能耗的测量方法。该方法应能够对运动强度进行连续监测,不仅要操作简便,自动化程度高,成本低,可靠性及准确性较高,还要有较好的便携性,测量过程中不影响人体的正常运动。1系统总体设计1.1工作原理近些年,随着微电子及计算机技术的发展,越来越多的研究者开始采用加速度计(即加速度传感

创新与实践

99

加速度-教学设计新部编版

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

加速度——教学设计 北京师范大学物理学系钟兴勇 1.设计思想 加速度是高中力学中的一个非常重要的概念,是学习运动学的基础。在学习加速度之前已经学习了位移和速度的概念,因此借助于速度概念建立的过程可以类比帮助对加速度概念的理解。与速度不同的是,加速度是一个看不见摸不着的东西,学生在生活当中很难直接感受到加速度,所以,可以先列举一些生活中的现象让学生感受到速度的变化和变化过程中所需要的时间,然后再引出速度变化的快慢。 在列出一系列的现象中,要体现出迫切地需要一个物理量来描述“速度变化的快慢”,这正是引入“加速度”的必要性。在加速度的定义过程中,注意类比速度的定义,即比值法定义物理量。 ?与a 对于加速度方向的确定,应该从矢量相加减的角度,通过始末速度的相减得到v 的方向相同。 对于v t-图像,重要的是使学生能从图像当中获得有价值的信息(如速度,加速度,图像是直线还是曲线,图像的倾斜程度等),这些信息能反映物体的哪些运动特征,而这些信息当中加速度显得尤为重要。 本节课并没有实验,实际上加速度的建立过程中,课堂的演示实验或学生实验并不能有效的反映出“速度变化快慢”这一特征,而生活中的现象及实例更能让学生感受到这一点,同时也更能激发学生的兴趣。 2.教学目标 2.1 知识与能力 2.1.1 理解加速度的概念和物理意义,区别加速度,速度,速度变化量和速度变化率。 2.1.2 了解加速度的矢量性,能根据速度与加速度方向判断运动性质。 2.1.3 通过加速度概念的建立过程和加速度定义式的建立过程,体会比值法定义物理量在科学研究中的作用。 2.1.4 学会认识v t-图像 2.2 过程与方法 培养学生的逻辑推理能力 2.3 情感与态度价值观

电子技术基础数字温度计课程设计

课程设计(论文) 题目名称数字温度计 课程名称电子技术课程设计 学生姓名屈鹏 学号1141201112 系、专业电气工程系电气工程及其自动化 指导教师李海娜 2013年12月17日

邵阳学院课程设计(论文)任务书 年级专业11级电气工程及其自动化学生姓名屈鹏学号1141201112 题目名称数字温度计设计设计时间2013.12.9—2013.12.20 课程名称电子技术课程设计课程编号121202306 设计地点电工电子实验室408、409 一、课程设计(论文)目的 电子技术课程设计是电气工程及自动化专业的一个重要的实践性教学环节,是对已学模拟电子技术、数字电子技术知识的综合性训练,这种训练是通过学生独立进行某一课题的设计、安装和调试来完成,着重培养学生工程实践的动手能力、创新能力和进行综合设计的能力,并要求能设计出完整的电路或产品,从而为以后从事电子电路设计、研制电子产品奠定坚实的基础。 二、已知技术参数和条件 用中小规模集成芯片设计并制作一数字式温度计,具体要求如下: 1、温度范围0-100度。 2、测量精度0.2度。 3、三位LED数码管显示温度。 三、任务和要求 1.按学校规定的格式编写设计论文。 2.论文主要内容有:①课题名称。②设计任务和要求。③方案选择与论证。④方案的原理框图,系统电路图,以及运行说明;单元电路设计与计算说明;元器件选择和电路参数计算的说明等。 ⑤必须用proteus或其它仿真软件对设计电路仿真调试。对调试中出现的问题进行分析,并说明解决的措施;测试、记录、整理与结果分析。⑥收获体会、存在问题和进一步的改进意见等。 注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

基于单片机的重力加速度测量

基于单片机的重力加速度测量 王磊 摘要:重力加速度通常使用重力加速度测量仪进行测量,其测量过程是通过两个光电门检测物体的下降时刻,由数字毫秒计显示物体所经历的时间,最后通过繁琐的手工计算求得,主要缺点是效率较低且不可避免粗大误差的影响。为了提高实验效率以及实验结果的准确度,我们对传统重力加速度测量仪进行了改进,主要是利用单片机对原实验的光电信号进行检测,通过VC编程完成较精确的计算、存储、显示以及数据处理等一系列工作,极大的改善了实验环境、丰富了实验内容以及提高了实验效率。 关键词:重力加速度;单片机;VC++ 0 引言 在力学实验中,通常测量重力加速度所用的重力加速度测量仪[1],是通过光电门得到物体的下降时间,并由数字毫秒计显示,通过设定不同的距离进行多次测量,然后按最小二乘法进行手工计算求得重力加速度值。其主要缺点是手工计算不方便,会引入计算误差,实验效率较低。 为了精确、有效地测量出重力加速度,设计了以上位PC机VC++程序作为主控制机,以AT89C51单片机作为辅助的重力加速度测量装置,所测时间以10μs 计,误差小,精度高,功耗低,比较适合物理实验用。 1 基本测量原理 物理上测量重力加速度的方法有很多,比如落体法、摆球法、液体测量法等等[2]。本文采用落体法测量重力加速度。基本原理如下: (1)根据自由落体运动,测下落的高度和时间.高度可由米尺测出。测量时间可用手表、秒表、打点计时、闪光照片、滴水法(自来水、滴定管)、光电门、单片机等。 (2)利用小球在保证初速度不变的情况下下落两个不同的高度,则有 , 。 是小球经过上光电门时的初速度。由上两式得:

(3)针对上个方案。采用多种数据处理,实验方案也不同,如多次测量、逐差法、作图法、最小二乘法等。 其结构简图如图1所示。开始时小刚球7被电磁铁6吸住,测量时断开电磁铁,使钢球以初速度为零下落,钢球依次通过二只光电管4和5,落到球座2中的球窝内,测量过程结束。 1—底座 2—球座 3—立柱及标尺 4—移动光 电管 5—固定光电管 6—电磁铁 7—小钢球 图1 测量装置简图 2 系统硬件电路及程序 2.1 硬件电路 本系统采用AT89C51芯片,完成从光电门接收数据,并把接收到的数据发送到PC机,而其他外围设备或芯片都起到辅助作用。AT89C51的最小系统电路图如图2中间部分所示,它由三部分组成:复位电路、时钟电路、中断指示电路[3]。复位电路和时钟电路都是使单片机正常工作所必须的电路,而对于指示灯电路是为了说明有外部中断信号。 AT89C51外部中断电路的作用是实现外部中断信号,也就是在遮光杆通过光电门时要单片机产生外部中断。

MEMS加速度计的原理及运用

MEMS加速度计的原理及运用 高鹏黄国胜 2006.12.19

目录 1.MEMS加速度计基本原理分析 1.1 MEMS简介 1.2微加速度计的类型 1.3 差分电容式加速度计的结构模型及其工作原理 1.4 MEMS微加速度计的制造工艺 1.5 MEMS微加速度计主要性能指标的设计和控制 1.6 MEMS加速度计的其它结构 1.7 各厂商MEMS加速芯片参数对比 1.8 线性度 1.9灵敏度与功耗 2.MEMS加速度计国内外现状 3.微加速度计的发展趋势 4.MEMS加速度计应用前景分析 5.用MEMS加速度计测量加速度、角度

1.1MEMS简介 随着MEMS技术的发展,惯性传感器件在过去的几年中成为最成功,应用最广泛的微机电系统器件之一,而微加速度计(microaccelerometer)就是惯性传感器件的杰出代表。微加速度计的理论基础就是牛顿第二定律,根据基本的物理原理,在一个系统内部,速度是无法测量的,但却可以测量其加速度。如果初速度已知,就可以通过积分计算出线速度,进而可以计算出直线位移。结合陀螺仪(用来测角速度),就可以对物体进行精确定位。根据这一原理,人们很早就利用加速度计和陀螺进行轮船,飞机和航天器的导航,近年来,人们又把这项技术用于汽车的自动驾驶和导弹的制导。汽车工业的迅速发展又给加速度计找到了新的应用领域,汽车的防撞气囊(Air Bag)就是利用加速度计来控制的。 作为最成熟的惯性传感器应用,现在的MEMS加速度计有非常高的集成度,即传感系统与接口线路集成在一个芯片上。本文将就微加速度计进行初步设计,并对其进行理论分析。 1.2 微加速度计的类型 1.2.1 压阻式微加速度计 压阻式微加速度计是由悬臂梁和质量块以及布置在梁上的压阻组成,横梁和质量块常为硅材料。当悬臂梁发生变形时,其固定端一侧变形量最大,故压阻薄膜材料就被布置在悬臂梁固定端一侧(如图1所示)。当有加速度输入时,悬臂梁在质量块受到的惯性力牵引下发生变形,导致固连的压阻膜也随之发生变形,其电阻值就会由于压阻效应而发生变化,导致压阻两端的检测电压值发生变化,从而可以通过确定的数学模型推导出输入加速度与输出电压值的关系。压电式微加速度计是最早出现的微加速度计,其优点是:结构简单,芯片的制作相对容易,并且接口电路易于实现。其缺点是:温度系数比较大,对温度比较敏感;和其他原理微加速度计相比,其灵敏度比较低,蠕变和迟滞效应比较明显。

基于压电加速度计速度测量信号调理电路设计要点

课程设计报告 题目基于单片机的压电加速度传感器 低频信号采集系统的设计 2014-2015 第二学期 专业班级2012级电气5班 姓名赵倩 学号201295014196 指导教师马鸣 教学单位电子电气工程学院 2015年7月6日

课程设计任务书 1.设计目的: ①掌握电子系统的一般设计方法和设计流程;并完成加速器低频信号的理论设计。 ②掌握应用电路的multisim等软件对所设计的电路进行仿真,通过仿真结果验 证设计的正确性,完成电路设计。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):压电式加速度传感器作为一种微型传感器,其输出信号比较微弱,通常为几十个毫伏或几百个微伏。所以有必要对其输出电压进行信号调理。主要包括电源模块、放大模块、滤波模块等组成。 3.设计工作任务及工作量的要求: (1)查阅相关资料,完成系统总体方案设计; (2)完成系统硬件设计; (3)对所设计的电路进行仿真; (4)按照要求撰写设计说明书;

一、压电式加速度传感器的概要 (4) 二、信号采集系统的总设计方案 (5) 三、信号采集系统分析 (6) 1、电荷转换部分: (6) 2、适调放大部分 (6) 3、低通滤波部分: (7) 4、输出放大部分 (7) 5、积分器部分: (8) 四、单片机软件设计 (8) 五、Multisim仿真分析 (10) 1.仿真电路图 (10) 2.仿真波形及分析 (11) 六、误差分析 (11) 1、连接电缆的固定 (11) 2、接地点选择 (12) 3、湿度的影响 (12) 4、环境温度的影响 (12) 七、改进措施 (12) 六、心得体会 (12) 七、参考文献 (13)

温度测量仪课程设计[1]

湖南工学院 课程设计说明书 课题题目:温度测量仪 专业名称:xxxxxxxxx 学生班级:xxxxxxxxx 学生姓名:xxxxxxxxx 学生学号:xxxxxxxxx 指导教师:xxxxxxxxx 报告时间:xxxxxxxxx 小组人员:xxxxxxxxx

课程设计任务书 一设计目的 1、通过对温度测量电路的设计、安装和调试了解温度传感器的性能,学会 在实际电路中应用; 2、进一步熟悉集成运放的线性和非线性应用。 二设计要求和技术指标 1、技术指标: 要求设计一个温度测量器件,其主要技术指标如下: (1)测温范围:室温~50℃; (2)被测温度达到50℃时,指示灯亮(或蜂鸣器工作); 2、设计要求 (1)设计一个能满足要求的温度测量及报警电路; (2)要求绘出原理图,并用Protel画出印制板图(选做); (3)根据设计要求和技术指标设计好电路,选好元件及参数; (4)在万能板、PCB板上或面包板上安装好电路并调试; (5)拟定测试方案和设计步骤; (6)撰写设计报告、调试总结及使用说明书。 3、设计扩展要求 (1)能显示输出温度;

目录 第1章绪论 (1) 1.1电子技术的发展趋势 (1) 1.2 本人的主要工作 (2) 第2章温度测量仪的电路设计 (3) 2.1 温度测量仪总体框图 (3) 2.2 AD590集成温度传感器 (3) 2.3 K—℃变换器 (4) 2.4 放大器 (5) 2.5 比较器 (5) 2.6 报警设备 (6) 2.7 电路原理图 (7) 第3章仿真与制作 (8) 3.1 电路的仿真 (8) 3.2 仿真结果及其分析 (12) 3.3 温度测量仪的调试 (12) 第4章总结报告 (13) 附录A元件清单 (14) 附录B实物图 (15) 参考文献 (16)

重力加速度的测量及应用

重力加速度的测量及应用 重力加速度g值的准确测定对于计量学、精密物理计量、地球物理学、地震预报、重力探矿和空间科学等都具有重要意义。 测量: 最早测定重力加速度的是伽利略。约在1590年,他利用倾角为θ的斜面将g的测定改为测定微小加速度a=gsinθ,。1784年,G?阿特武德将质量同为M的重物用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物上附加一重量小得多的重物m,使其产生一微小加速度a =mg/(2M+m),测得a后,即可算出g。 1888年,法国军事测绘局使用新的方法进行了g值的计量.它的原理简述为:若一个物体如单摆那样以相同的周期绕两个中心摆动,则两个中心之间的距离等于与上述周期相同的单摆的长度。当时的计量结果为:g=9.80991m/s2。 1906年,德国的库能和福脱万勒用相同的方法在波茨坦作了g值的计量,作为国际重力网的参考点,即称为“波茨坦重力系统”的起点,其结果为g(波茨坦)=9.81274m/s2。 根据波茨坦得到的g值可以通过相对重力仪来求得其他地点与它的差值,从而得出地球上各地的g值,这样建立起来的一系列g值就称为波茨坦重力系统。国际计量局在1968年10月的会议上推荐,自1969年1月1日起,g(波茨坦)减小到9.81260m/s2。根据上述修正了的波茨坦系统,在地球上的一级点位置的g值的不确定度可小于5×10-7。 应用: 地球对表面物体具有吸引力,重力加速度是度量地球重力大小的物理量。按照万有引力定律,地球各处的重力加速度应该相等。但是由于地球的自转和地球形状的不规则,造成各处的重力加速度有所差异,与海拔高度、纬度以及地壳成分、地幔深度密切相关。 重力预震:地球物理学研究中要求观测重力长期的细微的变化,即所谓g的长度;这种变化可能是由于地壳运动,地球的内部结构和形状的演变,太阳系中动力常数的长度以及引力常数G的变化等等。观测这些变化要求g值的计量不确定度达10-8至10-9量级。观测g值的变化可能对预报地震有密切的关系.据有关方面报道,七级地震相对应的g值变化约为0.1×10-5m/s2。目前,许多国家都在探索用g值的变化作临震预报。 重力探矿:利用地下岩石和矿体密度的不同而引起地面重力加速度的相应的变化。故根据在地面上或海上测定g的变化,就可以间接地了解地下密度与周围岩石不同的地质构造、矿体和岩体埋藏情况,圈定它们的位置。所用的仪器是重力仪和扭秤(目前已为高精度重力仪所代替)。

微加速度计原理与应用

微加速度计原理与应用 a 在20 世纪40 年代初,由德国人研制了世界上第一只摆式陀螺加速度计。此后的半个多世纪以来,由于航天、航空和航海领域对惯性测量元件的需求,各种新型加速度计应运而生,性能和精度也有了很大的完善和提高。加速度计面世后作为最重要的惯性仪表之一,用在惯性导航和惯性制导系统中,与海陆空天运载体的自动驾驶及高技术武器的高精度制导联系在一起。这时候的加速度计整个都很昂贵,使其他领域对它很少问津。 直到微机械加速度计的问世,这种状况才发生了改变。随着MEMS技术的发展,惯性传感器件在过去的几年中成为最成功,应用最广泛的微机电系统器件之一,而微加速度计就是惯性传感器件的杰出代表。 微加速度计的理论基础就是牛顿第二定律,根据基本的物理原理,在一个系统内部,速度是无法测量的,但却可以测量其加速度。如果初速度已知,就可以通过积分计算出线速度,进而可以计算出直线位移。结合陀螺仪(用来测角速度),就可以对物体进行精确定位。根据这一原理,人们很早就利用加速度计和陀螺进行轮船,飞机和航天器的导航,近年来,人们又把这项技术用于汽车的自动驾驶和导弹的制导。汽车

工业的迅速发展又给加速度计找到了新的应用领域,汽车的防撞气囊就是利用加速度计来控制的。微加速度计的工作原理 微加速度计的结构模型如图所示:它采用质量块-弹簧-阻尼器系统来感应加速度。图中只画出了一个基本单元。它是利用比较成熟的硅加工工艺在硅片内形成的立体结构。图中的质量块是微加速度计的执行器,与质量块相连的是可动臂;与可动臂相对的是固定臂。可动臂和固定臂形成了电容结构,作为微加速度计的感应器。其中的弹簧并非真正的弹簧,而是由硅材料经过立体加工形成的一种力学结构,它在加速度计中的作用相当于弹簧。当加速度计连同外界物体(该物体的加速度就是待测的加速度)一起加速运动时,质量块就受到惯性力的作用向相反的方向运动。质量块发生的位移受到弹簧和阻尼器的限制。显然该位移与外界加速度具有一一对应的关系:外界加速度固定时,质量块具有确定的位移;外界加速度变化时(只要变化不是很快),质量块的位移也发生相应的变化。另一方面,当质量块的发生位移时,可动臂和固定臂(即感应器)之间的电容就会发生相应的变化;如果测得感应器输出电压的变化,就等同于测得了执行器(质量块)的位移。既然执行器的位移与待测加速度具有确定的一一对应关系,那么输出电压与外界加速度也就有了确

加速度设计一些概念

听得非常清楚. 类似的有趣现象也在伦敦圣保罗教堂的耳语回廊(Whispering gallery)被发现, 并且早在1910 年LordRaleigh 就已率先开展相关的研究工作。其原理是声波可以不断地在弯曲光滑的墙面反射而损耗很小,所以声音可以沿着墙壁传播很远的距离。这种效应被称为耳语回廊模式(Whispering Gallery Mode,WGM), 这里我们也将其称为“回音壁模式”。 类似于声波在墙面反射, 当光在从光密向光疏介质入射且入射角足够大时, 也可以在两种介质表面发生全反射, 那么在弯曲的高折射率介质界面也存在光学回音壁模式. 在闭合腔体的边界内, 光则可以一直被囚禁在腔体内部保持稳定的行波传输模式 模式体积越小, 相同能量的光引起的局部电磁场强度越大, 因此光和物质的相互作用就越强 品质因数:衡量谐振腔优劣很重要的参数就是其品质因子(Q值),其定义如下: Q = ωI P =ωτ 其中ω为该模式的频率, I为腔内的光场能量, P是能量损失速率. 谐振腔中的能量随时间指数的变化为,对应模式的光子寿命为τ。明显Q 值越高,光子寿命越长,那么被束缚的光场与物质的相互作用就强,反之相互作用就弱。 力—光耦合原理:当光在谐振腔内传输时,光辐射压力产生的微小力导致微腔腔壁发生微小移动,从而将光学谐振腔的机械本征模耦合到光学本征模,并且改变了谐振腔的光学共振模式。当功率足够大时,该相互作用力导致腔壁再生振荡,再次改变了光学共振模式,从而使得透射谱发生明显变化。通过对透射谱变化的研究,可以得到微腔腔壁的受力情况。 很难通过自由空间直接收集或者利用高斯光束来激发. 因此, 人们一般采用外部的近场耦合器件将光有效地耦合进出微腔,如光纤锥, 光学波导和棱镜 波,衰逝波。由于其幅值随与分界面相垂直的深度的增大而呈指数形式衰减,而随切向方向改变相位,因此也是表面波 微环与光波导的参数设计:为了能够实现光在微环谐振腔和波导内的单模传输。 利用有效折射率法对其单模特性进行仿真计算,设定波导的宽、高相等, 通过Matlab 软件得到了如图2(a)所示的仿真结果。m =0,为基模传输曲线; m = 1,为一阶模传输曲线; m = 2,为二阶模的传输曲线,由图可知,当波导高度介于0.2~0.7 μm 时光波导中只可进行单模传输,当波导高度高于0.7 μm 时,该波导可进行多模传输。图2( b) 为利用beamprop 软件对宽、高均为0.35 μm的波导进行模态传输的仿真结果。可以看出: 该波导对光的局域能力较强,实现了光的单模传输。 由公式( 9) 可以看出: 该器件的灵敏度不仅与悬臂梁参数、环形微腔的位置以及质量块大小有关,实际上很大程度还取决于微环腔的品质因数( Q) 。同时,耦合效率也是影响加速度计性能的另一重要因素。在理想的条件下,根据实验背景要求,设定微环半径为4.6μm,为了满足传感要求,必须使其耦合效率达到最大,即临界耦合。图3 表明耦合效率会随耦合间距的增加而减小,呈线性关系,在0.03 μm处有最大的耦合效率。但当耦合间

基于单片机的数字温度计设计课程设计

摘要 温度的检测与控制是工业生产过程中比较典型的应用。本设计以AT89C52单片机为核心,采用DS18B20温度传感器检测温度,由温度采集、温度显示,温度报警等功能模块组成。基于题目基本要求,本系统对温度采集和温度显示系统行了重点设计。本系统大部分功能能由软件实现,吸收了硬件软件化的思想。实际操作时,各功能在开发板上也能完美实现。本系统实现了要求的基本功能,其余发挥部分也能实现。 关键字:AT89C52单片机、DS18B20温度传感器、数码管显示、温度采集

目录 一.绪论 .............................................................................................................

二.设计目的..................................................................................................... 三.设计要求..................................................................................................... 四.设计思路..................................................................................................... 五.系统的硬件构成及功能................................................................. 5.1主控制器............................................................................................... 5.2显示电路............................................................................................... 5.3温度传感器.......................................................................................... 六.系统整体硬件电路................................................................................. 七.系统程序设计 .......................................................................................... 八.测量及其结果分析 ................................................................................... 九.设计心得体会............................................................................................ 十.参考文献..................................................................................................... 附录1 源程序 附录2 元件清单及PCB图 一.绪论

重力加速度测量设计性试验

重力加速度测量(设计性实验) 【实验目的】 (1)推导单摆测量重力加速度的公式。 (2)掌握单摆测量重力加速度实验的实验设计方法及验证方法。 (3)掌握间接测量量不确定度的计算方法。 (4)了解单摆测量重力加速度实验的主要误差来源。 (5)估算实验仪器的选取参数并设计实验数据记录表格。 【设计实验】 设计性实验的设计过程主要有以下几步: (1)根据待测的物理量确定出实验方法(理论依据),推导出测量的数学公式;判定方法误差给测量结果带来的影响。 (2)根据实验方法及误差设计要求,分析误差来源,确定所需要采用的测量仪器(包括量程、精度等)以及测量环境应达到的要求(如空气、电磁、振动、温度、海拔高度等)。 (3)确定实验步骤、需要测量的物理量、测量的重复次数等。 (4)设计实验数据表格及要计算的物理量。 (5)实验验证。要用测得的实验数据,采用误差理论来验证实验结果。若不符合测量要求,则需对上述步骤中的有关参数做出适当调整并重做实验,据测得的实验数据进行实验验证,以此类推直到符合要求为止。 设计实验的原则应在满足设计要求的前提下,尽可能选用简单、精度低的仪器,并能降低对测量环境的要求,尽量减少实验测量次数。 【设计要求】 (1)测定本地区的重力加速度,要求重力加速度的相对不确度小于0.5%,即 g 0.5u g ≤%。确 定所需仪器的量程和精度,以及测量参数(摆长和摆动次数)。 (2)本实验是测量重力加速度的设计性实验,但考虑到设计难度、仪器资源的限制等因素,规定其实验方法采用单摆法。 (3)可用仪器有:钢卷尺(1 mm/2 m ,表示最小分度值为1 mm ,量程为2 m ,下同)、钢直尺(1 mm/1 m )、游标卡尺(0.02 mm/20 cm )、普通直尺(1 mm/20 cm )、电子秒表(0.01 s )、单摆实验仪(含摆线、摆球等)。 【实验内容】 (1)原理分析。写出单摆法测量公式完整的推导过程及近似要求,并画出原理图(查阅相关书籍及网站)。 (2)误差分析。分析实验过程中的主要误差来源并估算。 (3)不确定度的推导与计算。 (4)估算实验参数(摆长和摆动次数)。 (5)设计实验步骤与数据表格。 (6)实验与验证。 【设计提示】

检测技术与仪表课程设计温度检测与控制实验系统设计知识分享

检测技术与仪表课程设计温度检测与控制实验系统设计

本文介绍了一个简单的温度检测与控制系统的设计。该系统的被控对象为小型加热炉,供电电压为220VAC,功率2KW,被测温度1200度,误差不超过±1℃。本设计通过热电偶测量加热炉内液体的温度,将热电偶的输出信号直接传输到调节器,该调节器内部集成有变送器,并且可设定给定温度值,本实验为1200度。调节器将偏差信号变为标准的4—20MA或1—5v电信号。该信号输出到调功器,可改变晶闸管导通时间,从而调节输出平均电压的大小,实现加热炉温度的控制。经验证此控制器的性能指标达到要求。 任务书 设计参数:被测温度1200℃,最大误差不超过±1℃, 设计要求: (1).被控对象为小型加热炉,供电电压220VAC,功率 2KW,用可控硅控制加热炉温度; (2).通过查阅相关设备手册或上网查询,选择温度传感器、调节器、加热炉控制器等设备(包括设备名称、型号、性能指标等);(3).设备选型要有一定的理论计算; (4).用所选设备构成实验系统,画出系统结构图; (5).列出所能开设的实验,并写出实验目的、步骤、要求等

一摘要 本文介绍了一个简单的温度检测与控制系统的设计。该系统的被控对象为小型加热炉,供电电压为220VAC,功率2KW,被测温度1200度,误差不超过±1℃。本设计通过热电偶测量加热炉内液体的温度,将热电偶的输出信号直接传输到调节器,该调节器内部集成有变送器,并且可设定给定温度值,本实验为1200度。调节器将偏差信号变为标准的4—20MA或1—5v电信号。该信号输出到调功器,可改变晶闸管导通时间,从而调节输出平均电压的大小,实现加热炉温度的控制。经验证此控制器的性能指标达到要求。 二系统框图

自由落体重力加速度测量仪

自由落体重力加速度测量仪/重力加速度测量仪型号:HAD-LG-2 利用自由落体(条形物体)测定重力加速度,比球体测量准确.方便.配有数字毫秒计,五位半数显. 自由落体实验仪 1 自由落体重力加速度测量仪概述 自由落体实验仪是基础力学教学实验的必备仪器,利用自由落体实验仪可进行定性观测和定量研究物体在自由落体状态下的运动规律。从而达到教学演示实验的目的。 HAD-LG-2型为:主体高度1.6m,铸铁腿三脚支架,底座稳固,抗震动好,利于实验室摆放操作。 从教学使用出发,HAD-LG-1型为:主体高度1.2m,便携式三脚支架,底座轻巧,便于移动,利于课堂演示教学。 以上两种自由落体实验仪均可与J0201-G-2型计时器, J0201-CC存贮式计时器,J0201-CHJ存贮式数字毫秒计,J0416-2型多用大屏幕数字显示测试仪配合使用,适用于中学进行物理教学的演示实验或分组实验。 本仪器还可以与J02015-2型简易频闪光源和照相机同步配合使用,用频闪照像法研究自由落体运动的规律。 2 重力加速度测量仪技术性能 2.1 仪器总高: HAD-LG-1型≥1.2m ;HAD-LG-2型≥1.6m 2.2 实验有效高度: HAD-LG-1型≥1.0m ;xe77FT-LG-2型≥1.4m 2.3 电磁铁电源: DC6V 2.4 钢球直径: 18mm 2.5 g值实验相对误差:≤ 2% 3 结构与特点 3.1 见图一。仪器由带有标尺的铝合金型材为主体,顶端装有电磁铁吸球器,中间装有两个可任意移动的光电门光电传感器,下端装有接球架网,立柱下端固定在可调节的三脚支架上。 3.2 钢球的起始位置由电磁铁的固定支架端板的下端“ ”形的下边沿作为位置指针,能方便地调节确定钢球自由下落的起始刻度基准。 3.3 立柱上端装有电磁铁吸球器,当电磁铁线圈接通直流6V电源时,电磁铁吸住钢球,切断电源时,钢球下落作自由落体运动。电磁铁的支架上还装有两个接线柱,可以与频闪光源的同步输入开关及学生实验电源直流6V相连接用于频闪照相实验用。(注:原接电缆的接线端子可卸下不用) 3.4 两个光电门由小型聚光电珠和光敏接收管组成。两个光电门可以上下任意移动,在立柱上的位置由光电门支架的凹型槽底边所对标尺的刻度决定。

完整word版,人教高中物理必修一 1.5《加速度教学设计》

【加速度教学设计】 【教材选择】 普通高中课程标准实验教科书粤教版《物理》必修1,第一章第五节---《速度变化的快慢加速度》.广东教育出版社(14-16页)。【教学设计】 一.教材分析 加速度是物理教学中的一个重要概念,也是一个较难的知识点。在日常生活中,学生虽接触一些生活实例,但却少有提及这一概念,对它了解甚少。加上高一学生对抽象概念的学习还存在一定的难度,所以它就成了教学中的一个难点。 教材把本节安排到位移、时间和速度之后,同学们掌握了这些直线运动的基础再学习这一节就会相对容易。这一节的内容教学主要分为三个部分:第一部分讲授加速度概念,初步认识加速度定义、公式、单位;第二部分讲授加速度的矢量性,在学习概念的基础上,进一步学习加速度在直线运动中的矢量性;第三部分讲授加速度与速度、速度变化量的关系,更深一步学习加速度在直线运动中的变化规律和实际应用。 二.教学目标 1.知识与技能 (1)理解加速度的概念,知道加速度是表示速度变化快慢的物理量。知道它的定义、公式、符号和单位,能用加速度公式进行定量计

算。 (2)知道加速度是矢量。知道加速度与速度、速度变化量的区别和联系,会根据加速度与速度的方向关系判断物体是加速运动还是减速运动。 2.过程与方法 (1)将生活中的实际上升到物理概念,理解物理与生活的联系,初步了解如何描述运动。通过事例,引出生活中物体运动的速度存在加速和减速的现实,提出了描述物体运动速度变化的快慢,引入了加速度的必要性,激发学生学习的兴趣。 (2)帮助学生学会分析数据,归纳总结得出加速度。 3.情感态度与价值观 (1)利用生活实例激发学生的求知欲,激励其探索精神。 (2)理解加速度的意义,培养学生区分事物的能力及学生的抽象思维能力。 (3)通过加速度的教学引导学生从现实的生活经历与体验出发,激发学生的学习兴趣。 三.教学的重点和难点 1.教学重点: (1)加速度的概念及物理意义; (2)加速度是速度的变化率,它描述速度变化的快慢和方向。 (3)区别速度、加速度、速度变化量。 2.教学难点:

“人教版”教材《加速度》的教学设计

高中物理新课程总目标之一是:“学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题。”应当说,在高中物理新课标教材中蕴含着众多的培养学生探究能力的资源。高中物理新课程第一个共同必修模块中的《速度改变快慢的描述――加速度》就是其中一例。 1 教材分析 本节课安排在高中物理新课程标准实验教科书(人教版必修1)第一章《运动的描述》的第5节,在整个共同必修课程中,对本节内容的学习和掌握是非常必要和重要的。加速度是运动学中的一个重要的基本物理量,是将运动和力联系起来的桥梁。由于加速度概念与其它物理知识的联系性强,涉及面广,特别是在分析、解决跟动力学相关的实际问题中经常牵涉到,因此对加速度的理解和掌握程度如何,不仅直接关系到本章后续必修模块的进一步学习,而且还将影响以后选修模块的学习和掌握。所以这一节课的内容是本章知识的重点之一,本节课的关键是促进学生对加速度概念的形成和理解。在学生的生活经验中,与加速度有关的现象不多,这就给学生理解加速度概念带来了不少困难。为此,教材先列举小型轿车和旅客列车的加速过程,让学生讨论它们速度变化的快慢以增强学生的感性认识。教材还展示了飞机的起飞过程,要求学生从具体问题中了解“速度快”、“速度变化大”,“速度变化快”等物理名词的不同含义,又在旁批中指出“物体运动的快慢”与“运动速度变化的快慢”不同。在此基础上再说明平均加速度的意义,进而说明瞬时加速度,加速度的矢量性。教材在这部分的处理上也比较通俗易懂,比如,在“说一说”这个栏目后又给出了一些物体运动的加速度图表,给了学生一些直观、生动的印象;对重要的v―t图象,教材又设置了一个“思考与讨论”,让学生通过v―t图象加深对加速度的认识和对图象的理解。节后在“科学漫步”栏目中也较深入地介绍了一般情况下的变化率概念。 2 从实际出发确定三维教学目标 加速度是高中物理共同必修模块教学的重点内容,要想正确理解加速度的物理意义,掌握加速度的定义公式,学生必须具有较高的抽象思维能力。因此,在确定加速度教学目标时,应该注意教材处理的这一实际情况。否则,教学目标过高,不仅不能达到预期的教学效果,而且易于在学生中产生物理难学的心理障碍。当然,也不能把教学目标定得太低,这样也不利于物理课堂教学效率的提高。 2.1 知识与技能。 (1)理解加速度的概念,知道加速度是表示速度变化快慢的物理量,知道它的定义、公式、符号和单位。 (2)理解加速度是矢量,知道加速度的方向确定法,会区分加速度与速度、速度的变化、速度的变化率之间的关系。 (3)会用匀变速直线运动的v―t图像求加速度。 2.2 过程与方法。 通过多媒体课件对生活实例中运动物体速度变化快慢的感受,以及类比法的探究推理,培养学生抽象逻辑思维能力;培养学生主动、积极的科学探究能力和创新精神;强化用比值定义的物理思想方法;培养学生运用比较、类比的学习方法。 2.3 情感、态度与价值观。 培养学生学习物理的兴趣和积极性及善于区分事物的能力。

智能温度测量仪课程设计

智 能 温 度 测 量 仪 课 程 设 计 报 告 专业:电气工程及其自动化 班级:10级电气1班 姓名:柴冬 学号:14894029 Pt100温度传感器 温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。 热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,

这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。 热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。 非接触式温度传感器主要是被测物体通过热辐射能量来反映物体温度的高低,这种测温方法可避免与高温被测体接触,测温不破坏温度场,测温范围宽,精度高,反应速度快,既可测近距离小目标的温度,又可测远距离大面积目标的温度。目前运用受限的主要原因一是价格相对较贵,二是非接触式温度传感器的输出同样存在非线性的问题,而且其输出受与被测量物体的距离、环境温度等多种其它因素的影响。 本设计的要求是采用“PT100”热电阻,测温范围是-200~+600℃,精度0.5%,具体的型号选为WZP型铂电阻。 AT89C51单片机 AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 LCD显示器 液晶显示器是一种采用了液晶控制透光度技术来实现色彩的显示器。和CRT 显示器相比,LCD的优点是很明显的。由于通过控制是否透光来控制亮和暗,当色彩不变时,液晶也保持不变,这样就无须考虑刷新率的问题。对于画面稳定、无闪烁感的液晶显示器,刷新率不高但图像也很稳定。LCD显示器还通过液晶控制透光度的技术原理让底板整体发光,所以它做到了真正的完全平面。

用凯特摆测量重力加速度实验报告

用凯特摆测量重力加速度 实验目的:学习凯特摆的实验设计思想和技巧,掌握一种比较精确的测量重力加速度的方法。 实验原理:1、当摆幅很小时,刚体绕O轴摆动的周期: 刚体质量m,重心G到转轴O的距离h,绕O轴的转动惯量I,复 摆绕通过重心G的转轴的转动惯量为I G 。 当G轴与O轴平行时,有I=I G+mh2 ∴ ∴复摆的等效摆长l=( I G+mh2 )/mh 2、利用复摆的共轭性:在复摆重心G旁,存在两点O和O′,可使 该摆以O为悬点的摆动周期T?与以O′为悬点的摆动周期T?相同, 可证得|OO′|=l,可精确求得l。 3、对于凯特摆,两刀口间距就是l,可通过调节A、B、C、D四摆 锤得位置使正、倒悬挂时得摆动周期T?≈T?。 ∴4π2/g=(T?2+T?2)/2l + (T?2-T?2)/2(2h?-l) = a + b 实验仪器:凯特摆、光电探头、米尺、数字测试仪。 实验内容:1、仪器调节 选定两刀口间得距离即该摆得等效摆长l,使两刀口相对摆杆基本 对称,并相互平行,用米尺测出l的值,粗略估算T值。 将摆杆悬挂到支架上水平的V形刀承上,调节底座上的螺丝,借 助于铅垂线,使摆杆能在铅垂面内自由摆动,倒挂也如此。 将光电探头放在摆杆下方,让摆针在摆动时经过光电探测器。

让摆杆作小角度摆动,待稳定后,按下reset钮,则测试仪开始 自动记录一个周期的时间。 2、测量摆动周期T?和T? 调整四个摆锤的位置,使T?和T?逐渐靠近,差值小于0.001s, 测量正、倒摆动10个周期的时间10T?和10T?各测5次取平均 值。 3、计算重力加速度g及其标准误差σg 。 将摆杆从刀承上取下,平放在刀口上,使其平衡,平衡点即重心G。 测出|GO|即h?,代入公式计算g。 推导误差传递公式计算σg 。 实验数据处理:1、l的值 l=?(l?+l?+l?)=74.17cm σ=0.03055cm,u A =σ/=0.01764cm, ∴ΔA =t P?u A =1.32*0.01764=0.02328cm u B=ΔB /C=0.1/3=0.03333cm ∴u L ==0.04066cm T e ==1.729s 2、T?和T?的值 T?=1.72746s σ=2.525*10ˉ?s,u A =σ/=1.129*10ˉ?s ∴ΔA =t P?u A =1.14*0.0001129=1.287*10ˉ?s u B=ΔB /C=0.0001/3=0.3333*10ˉ?s ∴u T1 ==1.329*10ˉ?s

加速度教学设计

课题:速度改变快慢的描述加速度 【教材分析】 本节课选自《物理》必修(人教版)第一章第5节“速度变化快慢的描述――加速度”。加速度是高一物理教学中的重点内容,也是难点内容。它是联系动力学和运动学之间的桥梁。即力是通过加速度这个物理量与速度、位移建立了数量的关系,加速度还是演绎推导动能定理、动量定理,以及导出动量守恒定律的中间过渡的重要物理量。因此,讲好上好加速度这节课,对学生能否理解加速度的概念,乃至后面力学知识的学习都是至关重要的。 这一节是概念课,但加速度的概念不像质点等概念那样,质点概念虽然抽象,但由于学生有直觉思维为基础,还是比较容易理解的,而加速度这个概念具有“动态性”,对学生来说更加抽象,更加难以理解,应更讲究教学策略。高中物理新课程标准在课程目标上的基本理念之一就是:“高中物理课程应促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考。通过多样化的教学方式,帮助学生学习物理知识与技能,培养其科学探究能力,使其逐步形成科学态度与科学精神。”一般对概念课的教学方法有:(1)直接给出概念或定义,然后对此进行巩固练习,加深理解。(2)提供一大堆数据或物理现象,归纳出共同点,然后给出概念,再巩固练习,加深理解。对加速度概念的得出应采取第二种方法较好,因为,它是从易到难,从现象到本质,从形象到抽象,符合学生的思维发展规律,容易为学生所接受,具有探究性的特点,让学生用探究的方法,“走”一遍加速度概念的建立过程,应当是学生掌握加速度概念的最有效途径。 【学习者分析】 加速度概念的学习是在学生已经掌握了速度的概念以及用打点计时器测量速度方法的基础之上进行的。 速度是通过比值定义的物理量,学生在初中物理中也学过诸如密度、压强、功率等通过比值定义的物理量。在数学中也已经学习了诸如增长率、发芽率等问题。所以,通过类比的教学方法更容易使学生接受加速度这一个用比值定义的物理量。在日常生活中几乎没有与加速度对应的词语。可以说,不学物理,在头脑里不会自发地形成加速度的概念。在本节的学习过程中,学生通过类比的方法学习加速度的概念,理解加速度的物理意义,观察生活实例体会其现实意义,通过思维探究,激发学生学习物理的热情和兴趣,培养科学的思维方式。学生在生活经验中较少关注与加速度有关的现象,这就给学生理解加速度概念带来了不少困难。 【教学目标】 1.知识与技能目标: a.理解加速度的概念,加速度是表示速度变化快慢的物理量,知道它的定义符号、公式单位,能用公式a=⊿v/⊿t进行定量计算。 b.理解加速度是矢量,知道加速度的方向确定法,会区分加速度与速度、速度的变化、速度的变化率之间的关系,会根据加速度与速度的方向关系判断物体是加速运动还是减速运动。 c.会用匀变速直线运动的图像求加速度,能从匀变速直线运动的v-t图象理解加速度的意义。 2.过程与方法目标: a.通过类比法的探究推理,掌握抽象逻辑思维能力、积极主动的科学探究能力和创新能力;

相关文档
最新文档