七年级下册数学6.2 立方根 同步练习2
初中数学同步训练必刷题(人教版七年级下册 6

初中数学同步训练必刷题(人教版七年级下册 6.2 立方根)一、单选题(每题3分,共30分)1.(2022七下·顺平期末)8的立方根是( )A .±2B .±4C .2D .4【答案】C【知识点】立方根及开立方【解析】【解答】由23=8可得8的立方根是2;故答案为:C .【分析】根据立方根的性质求解即可。
2.(2022七上·衢州期中)下列说法正确的是( )A .9的算术平方根是±3B .-8没有立方根C .-8的立方根-2D .8的立方根是±2【答案】C【知识点】算术平方根;立方根及开立方【解析】【解答】解:A 、9的算术平方根是3,故A 不符合题意;B 、-8的立方根为-2,故B 不符合题意;C 、-8的立方根为-2,故C 符合题意;D 、8的立方根是2,故D 不符合题意; 故答案为:C【分析】利用正数的算术平方根只有一个,可对A 作出判断;利用任何数都立方根,可对B 作出判断;利用正数的立方根是正数,负数的立方根是负数,可对C ,D 作出判断.3.(2022七上·萧县期中)−127立方根为( ) A .−13B .13C .−19D .19【答案】A【知识点】立方根及开立方【解析】【解答】解:∵(−13)3=−127,∴√−1273=−13,故答案为:A .【分析】利用立方根的性质求解即可。
4.(2022七上·苍南期中)下列选项中计算正确的是( )A .√4=±2B .√273=3C .43=12D .−32=9【答案】B【知识点】算术平方根;立方根及开立方;有理数的乘方 【解析】【解答】解:A 、√4=2,故A 选项不符合题意;B 、√273=3,故B 选项符合题意;C 、43=64,故C 选项不符合题意;D 、−32=−9,故D 选项不符合题意. 故答案为:B.【分析】A 选项的左边求的是4的算术平方根,而一个正数的算术平方根是一个正数,据此即可判断; B 选项左边求的是27的立方根,根据立方根的定义,一个数的立方等于a ,则这个数就是a 的立方根,据此可判断;C 选项的左边求的是4的立方,根据有理数乘方的意义,表示的是3个4相乘,据此即可判断;D 选项的左边求的是3的平方的相反数,根据有理数乘方的意义及相反数的概念即可判断.5.(2022七上·乐清期中)若a 是(−8)2的平方根,则√a 3等于( )A .-8B .2C .2或-2D .8或-8【答案】C【知识点】平方根;立方根及开立方【解析】【解答】解:∵(-8)2的平方根为:±√(−8)2=±|−8|=±8,∴a=±8,当a=8时,√a 3=√83=2, 当a=-8时,√a 3=√−83=−2,故答案为:C.【分析】首先根据平方根的定义求出a 的值,进而再根据立方根的定义算出答案.6.(2022八上·沈北新期中)√643的平方根是( )A .±8B .±4C .±2D .±√2【答案】C【知识点】平方根;立方根及开立方 【解析】【解答】解:∵√643=4,又∵(±2)2=4, ∴√643的平方根是±2, 故答案为:C .【分析】先化简,再利用平方根的性质求解即可。
6.2.2 立方根应用+平方根与立方根-简单数学之2021-2022学年七年级下册考点专训(解析版

6.2.2 立方根应用+平方根与立方根一、单选题1.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( ) A .16的4次方根是2 B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大 【答案】C【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意; B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设352,2,x y == 则155153232,28,x y ====1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.2.下列说法:①2-是4的平方根;②16的平方根是4;③125-的立方根是15;④0.25的算术平方根是0.5;⑤27125的立方根是35±;819,其中正确的说法是( ) A .1个B .2个C .3个D .4个【答案】B【分析】根据平方根、算术平方根及立方根的定义即可依次判断.【详解】2-①是4的平方根,正确;16②的平方根是4±,故错误﹔125-③的立方根是5-,故错误;0.25④的算术平方根是0.5,正确﹔⑤27125的立方根是35,故错误; 819,9=的平方根是3±,故错误;其中正确的说法是:①④,共2个,故选:B.【点睛】此题主要考查实数的性质,解题的关键是熟知平方根、算术平方根及立方根的定义.3.一个正方体的体积扩大为原来的8倍,它的棱长变为原来的()倍.A8B.64C.8D.2【答案】D【分析】设正方体棱长为a,变化后的棱长为n a,分别按照正方体体积公式写出关系式,然后利用变化前后的体积关系列出方程即可求解.【详解】设正方体棱长为a,变化后的棱长为na由题意得:变化前正方体的体积:3a,变化后的正方体的体积:33n a∵3338n aa=,解得n=2∴它的棱长变为原来的2倍故选D.【点睛】本题考查了正方体的体积公式,立方根的实际应用,关键是根据题意找出体积关系然后求解.二、填空题4.把一个长、宽、高分别为5,10,16的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是_______.3800【分析】立方体的棱长就是体积的立方根,据此即可求解.【详解】解:立方体的体积是:5×10×16=800,38003800【点睛】此题主要考查了立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.5.若将一个棱长为5米的立方体的体积增加V立方米,而保持立方体形状不变,则棱长应增加_______米.31255V【分析】计算出原体积,得到增加后的体积,从而得到增加后的棱长,可得结果.【详解】解:∵立方体的棱长为5,∴体积为5×5×5=125,∴增加后的体积为125+V,31255V(米),31255V.【点睛】本题考查了立方根的应用,掌握立方根的定义是解题的关键.6.一个正方体,它的体积是棱长为5cm的正方体体积的8倍,这个正方体的棱长是______cm.【答案】10【分析】直接利用已知得出立方体的体积,进而利用立方根的定义得出答案.【详解】解:棱长为5cm 的正方体的体积为:5×5×5=125(cm 3),∵一个正方体,它的体积是棱长为5cm 的正方体体积的8倍,∴这个正方体的体积为:125×8=1000(cm 3),31000=10cm .故答案为:10.【点睛】此题主要考查了立方根,正确把握定义是解题关键.三、解答题7.计算()238492--【答案】7.【分析】先计算立方根、算术平方根,再计算有理数的加减即可得.【详解】解:原式274=-++ 52=+,7=.【点睛】本题考查了立方根、算术平方根等知识点,熟练掌握各定义和运算法则是解题关键.8.求下列各式的值: (1)310227-- (23321145⨯+(3331864-(423327(3)1---(5)310031(2)2(1)4---【答案】(1)43;(2)9;(3)12-;(4)1;(5)73 【分析】 (1)根据立方根的定义即可化简求解;(2)根据立方根的定义即可化简求解;(3)根据立方根的定义即可化简求解;(4)根据立方根与算术平方根的定义即可化简求解;(5)根据立方根与算术平方根的定义即可化简求解.【详解】解:(1)310227-3644273== (23321145⨯+331164257299=⨯+== (3)331864-11=242⎛⎫⨯-=- ⎪⎝⎭ (4)23327(3)1---3311=-++=(5)310031(2)2(1)4---347=211233÷+=+=. 【点睛】 此题主要考查实数的计算,解题的关键是熟知立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.9.(1)求32243-的5次方根; (2)求()227-的6次方根.【答案】(1)23-;(2)3±. 【分析】(1)根据52323243⎛⎫-=- ⎪⎝⎭即可求解; (2)根据()()26277293-==±,故可求解.【详解】 解:(1)∵52323243⎛⎫-=- ⎪⎝⎭555322224333⎛⎫-=-=- ⎪⎝⎭; (2)∵()()26277293-==±,∴()227-的6次方根为3±.【点睛】此题主要考查实数的性质,解题的关键是熟知正数a 的偶次方根有两个,它们互为相反数.10.已知7x +的平方根是3±,213x y --的立方根是-2,求56y x -的算术平方根.【答案】5x−6y 的算术平方根为4.【分析】由题意可知:x+7=9,2x−y−13=-8,分别求出x ,y 的值,再求出5x−6y 的值,即可求解.【详解】解:由题意可知:x+7=9,2x−y−13=-8,∴x=2,y=-1,∴5x−6y =5×2-6×(-1)=16,∴16的算术平方根为4.∴5x−6y 的算术平方根为4.【点睛】本题考查了算术平方根与立方根的性质,涉及解方程,代数式求值等问题,属于基础问题.11.已知2x +3的算术平方根是5,5x +y +2的立方根是3,求x ﹣2y +10的平方根.【答案】±9【分析】根据立方根与算术平方根的定义得到5x +y +2=27,2x +3=25,则可计算出x =11,y =﹣30,然后计算x﹣2y +10后利用平方根的定义求解.【详解】解:因为2x +3的算术平方根是5,5x +y +2的立方根是3,∴23255227x x y +=⎧⎨++=⎩ 解得:1130x y =⎧⎨=-⎩, ∴x ﹣2y +10=81,∴x ﹣2y +10的平方根为:819=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键.12.已知3既是x ﹣4的算术平方根,又是x +2y ﹣10的立方根,求x 2﹣y 2的平方根.【答案】±5【分析】根据算术平方根的平方,可得被开方数,根据立方根的立方,可得被开方数,根据平方差公式,可得答案.【详解】解:∵3既是(x -4)的算术平方根,又是(x+2y -10)的立方根,∴x -4=32=9,x+2y -10=33,∴x=13,y=12,x 2-y 2=(x+y )(x -y )=(13+12)×(13-12)=25∴x 2-y 2的平方根为±5.【点睛】本题考查了平方根、算术平方根和立方根,以及非负数的性质.解题的关键是掌握平方根、算术平方根和立方根的定义,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键. 13.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.【答案】3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.14.已知一个正数的平方根是2a +和6a -,b 的立方根是2-,求4a b -的平方根.【答案】4a -b 的平方根为4±【分析】首先根据:一个正数的平方根是2a +和6a -,可得:(2a +)+(6a -)=0,据此求出a 的值是多少;然后根据:b 的立方根是-2,可得:b =(-2)3=-8,据此求出4a -b 的平方根是多少即可.【详解】解:∵一个正数的平方根是2a +和6a -,∴(2a +)+(6a -)=0,∴a =2,∵b 的立方根是-2,∴b =(-2)3=-8,∴4a b -=4×2-(-8)=16,∴4a b -的平方根是±4.【点睛】此题主要考查了平方根的性质和应用,以及立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.15.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.【答案】(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a 的值是多少;然后根据3a +b ﹣1的立方根为2,可得:3a +b ﹣1=8,据此求出b 的值是多少即可.(2)把(1)中求出的a 与b 的值代入2a +4b ,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a +b ﹣1的立方根为2,∴3a +b ﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键.16.已知5a +2的立方根是3,3a +b ﹣1的算术平方根是4.(1)求a ,b 的值.(2)求4a ﹣b 的平方根.【答案】(1)a =5,b =2;(2)32±【分析】(1)运用立方根和算术平方根的定义求解.(2)根据平方根的定义即可解答.【详解】解:(1)∵5a+2的立方根是3,3a+b -1的算术平方根是4,∴5a+2=27,3a+b -1=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴4a -b=4×5-2=18, ∵18的平方根为2,∴4a -b 的平方根为2【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义. 17.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.【答案】(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =;∵3114<<,c 11的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.18.已知y x 22x 3=-- 312z -与33z 5-yz x -的平方根. 【答案】10依据非负数的性质以及相反数的定义,即可得到x ,y ,z 的值,进而得到yz -x 的平方根.【详解】 解:∵223y x x =--中,x -2≥0,2-x≥0,∴x=2,∴y=3,312z -335z - 3312350z z --=,∴12350z z -+-=,解得:z=4,∴yz -x=3×4-2=10,∴yz -x 的平方根为10.【点睛】本题主要考查了非负数的性质以及平方根和立方根,当几个非负数相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.19.已知1x -的算术平方根为3,112y +的立方根为3,求22x y -的平方根.【答案】±6【分析】根据已知得出x−1=9,112y +=27,求出x =10,y =8,求出22x y -的值,即可求出答案. 【详解】∵1x -的算术平方根是3,112y +的立方根是3,∴x−1=9,112y +=27,解得:x =10,y =8,∴x 2−y 2=100−64=36,∴x 2−y 2的平方根是±6.本题考查了平方根,立方根,算术平方根的应用,关键是求出x 、y 的值.20.在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【答案】烧杯内部的底面半径为6cm ,铁块的棱长 4cm【分析】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【详解】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y = 设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm . 【点睛】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.21.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 【答案】3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm , ∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3),即34363r ππ=, 解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程.22.已知某个长方体的体积是3480cm ,它的长、宽、高的比是5:4:3,请问该长方体的长、宽、高分别是多少?【答案】10cm 、8cm 、6cm【分析】根据长、宽、高的比是5:4:3可设每份为x ,则长宽高分别为5x 、4x 、3x ,再根据长方体的体积可列出方程,解出方程的解即可得到答案.【详解】解:∵长、宽、高的比为5:4:3∴设每份为x ,则长为5x ,宽为4x ,高为3x∴依题意得:543480x x x ⋅⋅=∴2x cm =∴55210x cm =⨯=,4428x cm =⨯=,3326x cm =⨯=答:长、宽、高分别为10cm 、8cm 和6cm .【点睛】本题考查了开立方运算、长方体的体积等知识,数量掌握相关知识点是解题的关键.23.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.【答案】(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】⨯=18(cm),解:(11622答:正方形纸板的边长为18厘米;(23343=7(cm),则剪切纸板的面积=7×7×6=294(cm2),剩余纸板的面积=324﹣294=30(cm2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.24.观察下列各式,并用所得出的规律解决问题:(12=1.414200=14.1420000=0.03=0.17323=1.732300=17.32…由此可见,被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(25=2.23650=7.0710.5=,500=;(3)31=1,31000=10,31000000=100…小数点变化的规律是:.(4310=2.1543100=4.642,则310000=,30.1=.【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(12=1.414200=1420000=141.4… 0.03=0.17323=1.732300=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(25=2.23650=7.0710.5=0.7071500=22.36,(331=131000=1031000000=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位; (4310=2.1543100=4.642,310000=21.54,30.1=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.25.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙.你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)33101000,1001000000==,则54872的立方根是___位数,54872的个位数字是2,则54872的立方根的个位数字是_____.(2)如果划去54872后面的三位“872”得到数54,而33327,464==,由由此可确定54872的立方根的十位数字是_____,此54872的立方根是______.(3)现在换一个数185193,你能按这种方法得出它的立方根吗?请求出立方根,并说明理由.【答案】(1)两,8;(2)3;38;(3)57,理由见详解【分析】(1)依据夹逼法和立方根的定义进行解答,分别求得1至9的立方,然后依据原数的末位数字判断出它的个位数;(2)利用夹逼法判断出十位数字即可;(3)利用(1)(2)中的方法确定出个位数字和十位数字即可.【详解】解:(1)∵1000<54872<1000000,∴10354872100,∴54872的立方根是两位数.∵13=1,23=8,33=27,43=64,53=125,63=216,73=343,83=512,93=729,且54872的个位数字是2,∴54872的立方根的个位数字是8.故答案为:两,8;(2)∵27<54<64,∴54872的立方根的十位数字是3.因此54872的立方根是38.故答案为:3;38;(3)185193的末位数字是3,∴185193的立方根的个位数字是7.∵53=125,63=216,且125<185<216,∴185193的立方根的十位数字是5.∴185193的立方根是57.【点睛】本题主要考查的是立方根的概念,依据尾数特征进行解答是解题的关键.26.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<332768______位数; (2)由32768的个位上的数是8,332768________,划去32768后面的三位数768得到32,因为333=27,4=64332768_____________;(3)已知13824和110592-3138243110592-【答案】(1)两;(2)2,3;(3)24,﹣48;【分析】(1)由题意可得31032768100<<,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8332768的个位上的数,由333=27,4=64可得27<32<64,进而可确定3303276840<332768的十位上的数,进而可得答案; (3)仿照(1)(2)两小题中的方法解答即可.【详解】解:(1)因为1000327681000000<<,所以31032768100<<,332768故答案为:两;(2)因为只有个位数是2的数的立方的个位数是8,3327682,划去32768后面的三位数768得到32,因为333=27,4=64,27<32<64,所以3303276840<<,3327683;故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10313824100,313824∵只有个位数是4的数的立方的个位数是4,3138244,划去13824后面的三位数824得到13,∵8<13<27,∴2031382430.313824;由103=1000,1003=1000000,1000<110592<1000000,∴103110592100,3110592∵只有个位数是8的数的立方的个位数是2,31105928,划去110592后面的三位数592得到110,∵64<110<125,∴40311059250,311059248=;3110592-﹣48.【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.。
人教版数学七年级下册6.2 立方根 课堂练习

人教版数学七年级下册6.2 立方根 课堂练习一、选择题1.下列说法正确的是( C )A .的平方根是5B .8的立方根是±2C .﹣1000的立方根是﹣10D .=±8 2.下列说法正确的是(D )A .如果一个数的立方根是这个数本身,那么这个数一定是0B .一个数的立方根不是正数就是负数C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是03.下列说法错误的是(C)A. 1的平方根是B. 的立方根是C. 是 的平方根D. 是2的平方根4.﹣8的立方根是( C )A .±2B .2C .﹣2D .24 5.3-8等于(D )A .2B .2 3C .-12D .-2 6.若一个数的平方根是±8,则这个数的立方根是( D )A .±2B .±4C .2D .47.用计算器计算28.36的值约为(B)A.3.049 B.3.050C.3.051 D.3.0528.已知正方体的体积为2,则这个正方体的棱长为( B )A.1 B.C.D.39.判断下列说法错误的是(B)A.2是8的立方根B.±4是64的立方根C.-13是-127的立方根D.(-4)3的立方根是-410.化简:38=(C)A.±2 B.-2C.2 D.2 2二、填空题11.(﹣2)3的立方根为212.如果﹣b是a的立方根,那么b是﹣a的立方根13.若3a=-7,则a=-343.14.)化简:38=2三、解答题15.求下列各式的值:(1)-3729+3512;解:原式=-9+8=-1.(2)30.027-1-124125+3-0.001.解:原式=0.3-31125+(-0.1)=0.3-15-0.1=0.16.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,17.若,求的立方根.解:,,,,解得,,的立方根为3.18.将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2).答:每个小立方体铝块的表面积为0.54 m2.19.解下列各式中的x.(1)25x2=16;(2)(x﹣1)3=27.【解答】解:(1)25x2=16∴x2=,∴x=±(2)(x﹣1)3=27,∴x﹣1=3,解得x=4.。
数学七年级下人教新课标 6.2 立方根同步练习(无答案)

立方根一、1.平方根是如何定义的 ? 平方根有哪些性质?2、问题:要制作一种容积为27 m 3的正方体形状的包装箱,这种包装箱的边长应该是3、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm 3,正方体的边长又该是4、立方根的概念:如果一个数的立方等于a ,这个数就叫做a 的 .(也叫做数a 的 ).换句话说,如果 ,那么x 叫做a 的立方根或三次方根. 记作: .读作“ ”,其中a 是 ,3是 ,且根指数3 省略(填能或不能),否则与平方根混淆.5、开立方求一个数的 的运算叫做开立方, 与开立方互为逆运算(小组合作学习)6、立方根的性质 (1)教科书49页探究(2)总结归纳: 正数的立方根是 数,负数的立方根是 数,0的立方根是 .(3)思考:每一个数都有立方根吗? 一个数有几个立方根呢?(4)平方根与立方根有什么不同?二、边学边练例1、 求下列各式的值:(1)364; (2)327102例2、求满足下列各式的未知数x :(1)3x 0.008练习1. 判断正误:(1)、25的立方根是 5 ;( )(2)、互为相反数的两个数,它们的立方根也互为相反数;( )(3)、任何数的立方根只有一个;( )(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )(6)、一个数的立方根不是正数就是负数.( )(7)、–64没有立方根.( )2、(1) 64的平方根是________立方根是________.(2) 的立方根是________. (3) 37-是_______的立方根.(4) 若 ,则 x=_______, 若 ,则 x=________. (5) 若 , 则x 的取值范围是__________, 若 有意义,则x 的取值范围是_______________.3、计算:(1)38321+4、已知x-2的平方根是4±,2x y 12-+的立方根是4,求()x y x y ++的值.327()92=-x ()93=-x x x -=23x -。
人教版数学七年级下册--6.2立方根 作业

6.2立方根一、选择题:1.下列等式成立的是( )=±2.下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0( )A.±4B.4C.-4D.-84.下列各数中,立方根一定是负数的是( )A.-aB.-a 2C.-a 2-1D.-a 2+15.0.27的立方根是( )A. D.±0.36.下列计算或命题中正确的有( )①±4都是64的立方根; =x; 2; =±4A.1个B.2个C.3个D.4个7.一个数的算术平方根与它的立方根的值相同,则这个数是( )A.1B.0或1C.0D.非负数8.若a 是(-3)2的平方根,( )或或-3二、填空:9.125的立方根是________,________的立方根是-5.10.若a 2=(-3)2,则a=_______,若a 3=(-3)3,则a=______.11.若x-1是125的立方根,则x-7的立方根是_______.12.若(4x)3=-216,则x=_____.14.5个同样大小的正方体的体积是135cm3,则每个正方体的棱长为_______.)3=______,________.三、解答题:17.求下列各式中x的值.(1)12x3+32=0 (2)(x-2)3=64; (3)512-27x3=0 (4)(x+3)3+27=018.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:_________________________________________________________________________________________________.(3)根据你发现的规律填空:=0.07696,三、解答:19.一个正方体的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?20.将一个体积为64cm2的正方体木块,锯为8个同样大小的正方体木块,则每个小正方体木块的棱长是多少厘米?21.某金属冶炼厂,将27个大小相同的立方体钢锭在炉中熔化后浇铸成一个长方体钢锭,量得这个长方体钢锭的长、宽、高分别为160cm、80cm和40cm,•求原来立方体钢锭的边长为多少?22.已知一个小正方体的棱长是6cm,要做一个大正方体,使它的体积是小正方体体积的3倍,求这个大正方体的表面积(精确到0.1cm2).答案:1.C2.D3.B4.C5.C6.B7.B8.C9.5,-125 10.±3,-3 11.-1 •12.-24 13.1414.3cm 15.-8,2 16.±217.(1)-4 (2)6 (3) 38(4)-618.(1)0.01,0.1,1,10,100(2)被开方数扩大1000倍,则立方根扩大10倍(3)①14.42 •0.1442 ②7.69619.6厘米20.2cm21.设立方体的边长为xcm,则27.x3=160•×80×4022.设大正方体的棱长为xcm,则x3=33×63.。
七年级数学-立方根练习含解析 (2)

七年级数学-立方根练习含解析一.选择题(共12小题)1.正方体的体积为7,则正方体的棱长为()A.B.C.D.732.的平方根是()A.2 B.﹣2 C.D.±23.用计算器求35值时,需相继按“3”,“y x”,“5”,“=”键,若小颖相继按“”,“4”,“y x”“3”,“=”键,则输出结果是()A.6 B.8 C.16 D.484.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.95.若a满足,则a的值为()A.1 B.0 C.0或1 D.0或1或﹣16.若=a,则a的值不可能是()A.﹣1 B.0 C.1 D.37.﹣8的立方根是()A.2 B.﹣2 C.4 D.﹣0.58.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.19.若a2=16,=﹣2,则a+b的值是()A.12 B.12或4 C.12或±4 D.﹣12或410.若a3=﹣216,则a的相反数是()A.6 B.﹣6 C.36 D.﹣3611.计算的结果为()A.±B.﹣C.D.12.的立方根是()A.2 B.4 C.±2 D.±8二.填空题(共8小题)13.﹣的立方根为.14.已知x的平方根是±8,则x的立方根是.15.用计算器计算:≈(精确到0.01)16.已知2a﹣1的平方根是±3,则7+4a的立方根是.17.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.18.=.19.﹣0.008的立方根是.20.算术平方根和立方根等于本身的数是.三.解答题(共4小题)21.求下列各式的值:(1)(2)(3)﹣(4).22.已知2x﹣1的算术平方根是3,y+3的立方根是﹣1,求代数式2x+y的平方根.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+b的立方根.24.已知﹣8的平方等于a,b立方等于﹣27,c+2的算术平方根为3.(1)写出a,b,c的值;(2)求+5c的平方根.2020年春人教版七年级下册同步练习:6.2 立方根参考答案与试题解析一.选择题(共12小题)1.正方体的体积为7,则正方体的棱长为()A.B.C.D.73【分析】由立方根的定义可得正方体的棱长为.【解答】解:正方体的体积为7,则正方体的棱长为,故选:B.2.的平方根是()A.2 B.﹣2 C.D.±2【分析】利用立方根定义计算即可求出值.【解答】解:=2,2的平方根是±,故选:C.3.用计算器求35值时,需相继按“3”,“y x”,“5”,“=”键,若小颖相继按“”,“4”,“y x”“3”,“=”键,则输出结果是()A.6 B.8 C.16 D.48【分析】计算器按键转为算式,计算即可.【解答】解:计算器按键转为算式=23=8,故选:B.4.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9【分析】利用计算器得到的近似值即可作出判断.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.5.若a满足,则a的值为()A.1 B.0 C.0或1 D.0或1或﹣1【分析】只有0和1的算术平方根与立方根相等.【解答】解:∵,∴a为0或1.故选:C.6.若=a,则a的值不可能是()A.﹣1 B.0 C.1 D.3【分析】根据立方根的概念进行解答,可以设这个数为x,根据立方根是它本身,求出这个数.【解答】解:因为=a,所以a=0,﹣1,1,即a的值不可能是3.故选:D.7.﹣8的立方根是()A.2 B.﹣2 C.4 D.﹣0.5【分析】根据立方根的定义即可求出答案.【解答】解:﹣8的立方根为﹣2,故选:B.8.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1【分析】根据开立方的意义,可得答案.【解答】解:立方根等于它本身的有﹣1,0,1.故选:B.9.若a2=16,=﹣2,则a+b的值是()A.12 B.12或4 C.12或±4 D.﹣12或4【分析】根据a2=16,=﹣2,可得:a=±,﹣b=(﹣2)3,据此分别求出a、b的值各是多少,再把它们相加,求出a+b的值是多少即可.【解答】解:∵a2=16,=﹣2,∴a=±=±4,﹣b=(﹣2)3=﹣8,∴a=±4,b=8,∴a+b=4+8=12或a+b=﹣4+8=4.故选:B.10.若a3=﹣216,则a的相反数是()A.6 B.﹣6 C.36 D.﹣36 【分析】先根据立方根的定义求出a,再根据相反数的定义即可求解.【解答】解:∵a3=﹣216,∴a==﹣6,则a的相反数是6.故选:A.11.计算的结果为()A.±B.﹣C.D.【分析】根据立方根的定义,可得答案.【解答】解:=,故选:C.12.的立方根是()A.2 B.4 C.±2 D.±8 【分析】根据立方根的定义,即可解答.【解答】解:=8,8的立方根的为2.故选:A.二.填空题(共8小题)13.﹣的立方根为﹣.【分析】根据立方根的定义即可求出﹣的立方根.【解答】解:﹣的立方根为﹣.14.已知x的平方根是±8,则x的立方根是 4 .【分析】根据平方根的定义,易求x,再求x的立方根即可.【解答】解:∵x的平方根是±8,∴x=(±8)2,∴x=64,∴==4,故答案是4.15.用计算器计算:≈12.63 (精确到0.01)【分析】在计算器中输入所求式子即可.【解答】解:在计算器中输入所求式子,得到≈12.63,故答案为12.63.16.已知2a﹣1的平方根是±3,则7+4a的立方根是 3 .【分析】利用平方根、立方根定义判断即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得:a=5,∴7+4a=7+20=27,则27的立方根是3,故答案为:317.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.18.= 1 .【分析】原式利用立方根定义计算即可求出值.【解答】解:原式=﹣(﹣1)=1,故答案为:119.﹣0.008的立方根是﹣0.2 .【分析】利用立方根定义计算即可求出值.【解答】解:∵(﹣0.2)3=﹣0.008,∴﹣0.008的立方根是﹣0.2,故答案为:﹣0.220.算术平方根和立方根等于本身的数是0,1 .【分析】判断出算术平方根、立方根等于本身的数各有哪些,即可判断出算术平方根和立方根等于本身的数是哪个.【解答】解:∵算术平方根等于本身的数是0,1,立方根等于本身的数是0,1,﹣1,∴算术平方根和立方根等于本身的数是0,1.故答案为:0,1.三.解答题(共4小题)21.求下列各式的值:(1)(2)(3)﹣(4).【分析】各式利用立方根定义计算即可得到结果.【解答】解:(1)原式=﹣;(2)原式=;(3)原式=;(4)原式=.22.已知2x﹣1的算术平方根是3,y+3的立方根是﹣1,求代数式2x+y的平方根.【分析】利用算术平方根、立方根定义求出x与y的值,进而求出2x+y的值,即可求出平方根.【解答】解:∵2x﹣1的算术平方根为3,∴2x﹣1=9,解得:x=5,∵y+3的立方根是﹣1,∴y+3=﹣1,解得:y=﹣8,∴2x+y=2×5﹣8=2,∴2x+y的平方根是±.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+b的立方根.【分析】根据平方根的定义,即可得到2a﹣1=32,然后即可求得a的值;同理可以得到3a+b ﹣1=42,即可得到b的值,进而求得a+b的立方根.【解答】解:∵2a﹣1的平方根为±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16.∵a=5,∴3×5+b﹣1=16,∴b=2,∴a+b=5+×2=8,∴a+b的立方根是2.24.已知﹣8的平方等于a,b立方等于﹣27,c+2的算术平方根为3.(1)写出a,b,c的值;(2)求+5c的平方根.【分析】(1)根据平方根与立方根的定义即可求出答案;(2)将a、b、c代入原式即可求出答案.【解答】解:(1)由题意可知:a=(﹣8)2=64,b3=﹣27,c+2=32,a=64,b=﹣3,c=7;(2)当a=64,b=﹣3,c=7时,=﹣2×9+5×7=49,的平方根为±7。
人教版数学七年级下册 6.2 立方根 同步练习题(无答案)
6.2 立方根一、选择题1.计算√273的结果是( )A.±3B.3C.3√3D.√32.√1643的算术平方根是( ) A.12 B.14 C.18 D.±123.下列计算错误的是( )A.√9=3B.√|-16|=-4C.√273=3D.√-83=-24.已知某正数的两个平方根分别是m+4和2m-16,则这个正数的立方根为( )A.2B.3C.4D.55.下列等式成立的是( )A.√-13=1B.√163=12C.√-273=-3D.-√83=-3 6.若 √x 3=1.02,√xy 3=10.2,则y=( )A.1 000 000B.1 000C.10D.10 000 二、填空题7.若 √a 3=-3,则a 的值为 .8.49的平方根是 ,125的立方根是 ,√64的立方根是 .9.若 √0.367 03≈0.716 0,√3.6703≈1.542,则√3673≈ ,√-3 6703≈ .10.已知一个数的平方根是3a+1和a+11,则这个数的立方根是 .11.已知a 的算术平方根是3,b 的立方根是2,则a-b 的平方根是 .12.小正方体的体积是16 cm 3,大正方体的体积是小正方体体积的4倍,则大正方体的表面积为 . 三、解答题13.求满足下列式子的x的值:(1)-8(x+1)3=27;.(2)(3x+2)3-1=616414.已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.15.已知一个正方体的体积是1 000 cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488 cm3,问截得的每个小正方体的棱长是多少?答案1. B2. A3. B4. C5. C6. B7. -278. ±23;5;29. 7.16;-15.4210. 411. ±112. 96 cm 213. (1)∵-8(x+1)3=27,∴(x+1)3=-278, ∴x+1=-32,∴x=-52.(2)∵(3x+2)3-1=6164,∴(3x+2)3=12564,∴3x+2=54,∴x=-14.14. ∵2a+1的平方根是±3,3a+2b -4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×(-8)+8=64,∴4a-5b+8的立方根是4.15.设截得的每个小正方体的棱长为x cm, 依题意,得1 000-8x3=488,解得x=4.答:截得的每个小正方体的棱长是4 cm.。
七年数学下册“立方根习题6.2 ”答案详解
复习巩固1. 判断下列说法是否正确:(1) 2是8的立方根;23=8; 83= 233=2;(2)±4是64的立方根;43=64,(-4)3=-64; 643= 433=4; −643= (−4)33=−4;(3)−13是−127的立方根; −13 3=−127; −1273= −13 33=−13; (4) (-4)3的立方根是-4.−4 33=-4.2、下列各式是否有意义?为什么?(1)− 33; (2) −33; (3) (−3)33; (4)11033. 解:以上各式都有意义,因为正数和负数都有立方根.3. 求下列各式的值:(1) − 0.0273; (2) −8273; (3) 1−37643; (4) 78−13. 解:(1) − 0.0273=− 0.333=−0.3;(2) −8273=− 23 33=−23; (3) 1−37643= 27643= 34 33=34;(4) 78−13= −183=− 12 33=−12. 4. 用计算器计算下列各式的值(精确到0.001):(1) 8683; (2) 3 (3)− 8253; (4) ± 2 4023. 解:(1) 8683≈9.539;(2) 0.426 2543≈0.753;(3)− 8253=− 0.323≈−0.684; (4) ± 2 4023≈±13.392.综合运用5. 求下列各式中的x 的值:(1)x 3=0.008;(2)x 3-3=38; (3) (x-1)3=64. 解:(1)x= 0.0083= 0.233=0.2;(2)x 3=278;x= 2783= 32 33=32; (3)x-1= 643= 433=4;x=5.6. 一个正方体的体积扩大为原来的8倍,它的棱长变为原来的多少倍?扩大为原来的27倍呢?n 倍呢?解:设原体积为V ,棱长为a则有V=a 3, a= V 3体积扩大为原来的8倍,27倍,n 倍后分别为:8V,27V,nV棱长分别扩大为:8V 3=2 V 3=2a ;27V 3=3 V 3=3a ;nV 3= n 3· V 3= n 3a ;∴棱长分别扩大为原来的2倍,3倍, n 3倍.7. 要生产一种容积为50L 的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少分米(用计算器计算,结果保留小数点后一位)? 解:设半径为r dm ,则直径为2r dm. 高为4r dm ,依题意, πr 2·4r=50.r 3=252π≈3.981 r ≈ 3.9813≈1.62r=3.2∴这种容器的底面直径应取3.2dm.8. 比较下列各组数的大小:(1) 93与2.5; (2) 33与32. 解:(1)2.53=15.625;∵9<15.625,∴ 93<2.5;(2) 32 3=278=338;∵3<338,∴ 33<32. (1)2.53= 523=1258=1558;∵9<1558,∴ 93<2.5 拓广探索9. (1)求 233, (−2)33, (−3)33, 433, 033的值. 对于任意数a , a 33等于多少?(2) 求( 83)3,( −83)3,( 273)3,( −273)3,( 03)3的值. 对于任意数a ,( a 3)3等于多少?解:(1) 33, (−2)33=−2, (−3)33=-3, 33=4, 33=0.a 33=a.(2)( 83)3=8,( −83)3=-8,( 273)3=27,( 03)3=0.( a 3)3=a.10. 任意找一个数,比如1 234,利用计算器对它开立方,再对得到的立方根开方……如此进行下去,你有什么发现?解:①对于1,0,-1,每次开立方的结果均为它们本身;②小于-1的数不断开立方的结果逐渐增大,并趋近于-1;③大于-1的负数不断开立方的结果逐渐减小,并趋近于-1;④小于1的正数不断开立方的结果逐渐增大,并趋近于1;⑤大于1的数不断开立方的结果逐渐减小,并趋近于1.。
6.2 立方根 人教版数学七年级下册重难点专项练习(含答案)
6.2《立方根》重难点题型专项练习考查题型一求一个数的立方根典例1.的立方根是( )A.B.2C.±2D.【答案】A【分析】利用立方根定义求出值即可.【详解】解:∵,∴的立方根是.故选:A.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.变式1-1.的立方根是()A.B.8C.2D.【答案】C【分析】根据算术平方根和立方根的性质求解即可.【详解】解:,,故选C【点睛】此题考查了算术平方根和立方根的求解,解题的关键是熟练掌握算术平方根和立方根的求解.变式1-2.立方根为( )A.B.C.D.【答案】A【分析】根据立方根的定义即可求解,如果的立方是,则的立方根是.【详解】解:∵,∴,故选:A.【点睛】本题考查了求一个数的立方根,掌握立方根的定义是解题的关键.变式1-3.下列结论正确的是()A.的立方根是B.立方根是等于其本身的数为C.没有立方根D.的立方根是【答案】D【分析】根据立方根的概念和求一个数的立方根的方法求解并判断即可.【详解】解:A、,,所以的立方根是,故选项A错误,不符合题意;B、立方根是等于其本身的数为,,,故选项B错误,不符合题意;C、,所以的立方根是,故选项C错误,不符合题意;D、,所以的立方根是,故选项D正确,符合题意,故选:D.【点睛】本题考查了立方根的概念和求一个数的立方根的方法,熟练掌握求一个数的立方根的方法是解答本题的关键.考查题型二已知一个数的立方根求这个数典例2.已知,则的平方根为()A.B.C.D.【答案】C【分析】根据平方根和立方根的定义可以解答.【详解】解:,,,的平方根为.故选:C.【点睛】本题考查立方根和平方根,解题的关键是正确理解立方根和平方根的定义,本题属于基础题型.变式2-1.若一个数的立方根是-,则该数为()A.-B.-C.±D.±【答案】B【解析】略变式2-2.(2022秋·广东东莞·七年级东莞市竹溪中学校考期中)一个数的立方根是-2,则这个数是()A.4B.8C.-8D.-4【答案】C【分析】根据立方根的定义求解即可,立方根:如果一个数的立方等于,那么这个数叫做的立方根.【详解】一个数的立方根是-2,则这个数是-8故选C【点睛】本题考查立方根的定义,掌握立方根的概念及求一个数的立方根的方法是本题的解题关键.一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.变式2-3.(2022秋·安徽滁州·七年级校联考期末)已知一个数的立方根是﹣,则这个数是()A.﹣B.C.D.﹣【答案】A【分析】根据立方根的定义求解可得.【详解】解:(−)3=−,即−的立方根是−,故选:A.【点睛】本题主要考查了立方根,解题的关键是掌握立方根的定义.考查题型三立方根规律的探究典例3.若,,则()A.632.9B.293.8C.2938D.6329【答案】B【分析】把,再利用立方根的性质化简即可得到答案.【详解】解:,故选:【点睛】本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.变式3-1.已知,若,则x的值约为()A.326000B.32600C.3.26D.0.326【答案】A【分析】根据立方根的定义,得出与被开方数的倍数关系,即一个数的立方根扩大10倍,则被开方数就扩大到1000倍,可得答案.【详解】解:∵68.82=6.882×10,∴x=326×103=326000,故选:A.【点睛】本题考查立方根,理解一个数扩大1000倍,则它的立方根扩大10倍是得出正确答案的关键.变式3-2.已知:,则a=()A.2360B.-2360C.23600D.-23600【答案】D【分析】由立方根的定义进行判断,即可得到答案.【详解】解:∵,∴2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,则=-23600;故选:D.【点睛】本题考查了立方根的定义,解题的关键是掌握定义进行判断.变式3-3.若,则等于( )A.1000000B.1000C.10D.10000【答案】B【分析】根据,,可得,据此求出与的关系,进而求得.【详解】∵,,∴,∴,∴.故选:B.【点睛】本题主要考查了立方根的性质和应用,要熟练掌握,得到是解题的关键.考查题型四立方根的应用典例4.魔方是匈牙利建筑师鲁比克发明的一种智力玩具,每一个2阶魔方由8个完全相同的小立方体组成.已知该魔方的体积为立方厘米.(1)求这个魔方的棱长.(2)求每一个小立方体的表面积.【答案】(1)这个魔方的棱长为4厘米(2)每一个小立方体的表面积为平方厘米【分析】(1)根据立方根的知识可得魔方的棱长;(2)求出小立方体的边长,根据立方体的表面积公式计算即可.【详解】(1)解:∵,∴这个魔方的棱长为4厘米,答:这个魔方的棱长为4厘米;(2)∵,∴,答:每一个小立方体的表面积为平方厘米.【点睛】本题考查了立方根以及立方体的表面积,熟知立方根的定义:若一个数的的立方等于,即,则这个数就叫做的立方根;是解本题的关键.变式4-1.(2022春·浙江宁波·七年级校考期中)一个正方体的体积是,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的边长及其表面积.【答案】边长,表面积【分析】根据题意知大正方体的体积为,则其边长为体积的立方根,可求得表面积.【详解】解:正方体的体积为:,即正方体的边长为:,则正方体的表面积为:,答:边长,体积.【点睛】本题主要考查了有理数的乘法运算以及立方根的知识,掌握正方体的体积公式和表面积公式是解答本题的关键.变式4-2.(2022秋·黑龙江齐齐哈尔·七年级统考期中)王老师为班级图书角购买了四本同一型号的字典,这种字典的长与宽相等.班长将这4本字典放入一个容积为512的正方体礼盒里,恰好填满.求这一本字典的厚度.【答案】一本字典的厚度为2.【分析】先利用立方根的定义求得正方体礼盒的边长,据此即可求得一本字典的厚度.【详解】解:∵正方体礼盒的容积为512,∴正方体礼盒的边长为=8(),∴一本字典的厚度为8÷4=2(),答:一本字典的厚度为2.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根.变式4-3.(2022秋·陕西商洛·七年级校考期末)在一个长,宽,高分别为9cm,8cm,3cm的长方体容器中装满水,然后将容器中的水全部倒入一个正方体容器中,恰好倒满(两容器的厚度忽略不计),求此正方体容器的棱长.【答案】6cm【分析】先根据长方体体积公式求出长方体的容积,再由正方体的容积与长方体的容积相同进行求解即可.【详解】解:由题意得:长方体的容积为∵将容器中的水全部倒入一个正方体容器中,恰好倒满,∴长方体和正方体的容积相等,∴正方体的棱长为.【点睛】本题主要考查了立方根,解题的关键在于能够熟练掌握求立方根的方法.。
6.2立方根2024年七年级数学下学期重点题型方法与技巧(人教版)(原卷版)
第六章 实数6.2 立方根1 立方根(1)一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
这就是说,如果x 3=a ,那么x 叫做a 的立方根. 【例】因为53=125,所以125的立方根是5; 因为(−23)3=−827,所以−827的立方根是−23。
(2)求一个数的立方根的运算,叫做开立方。
开立方与立方互为逆运算.(3)一个数a 的立方根,用符号“√a 3”表示,读作“三次根号a ”,其中a 是被开方数,3是根指数.如√83=2,√−83=−2. 【题型1】 求一个数的立方根 【典题1】 √643的平方根是( ) A .±2B .﹣2C .2D .±8【典题2】已知√1.9933=1.2584,√19.933=2.711,则√19933= ,√−0.019933= . 【巩固练习】1. (★)﹣64的立方根是( ) A .﹣4B .±4C .±2D .﹣22.(★)√9的立方根是( ) A .3B .±3C .√33D .±√333. (★)已知x 没有平方根,且|x |=125,则x 的立方根为( ) A .25B .﹣25C .±5D .﹣54. (★)若a 2=25,√b 3=2,则a +b 的值为( ) A .﹣3B .13C .13或﹣3D .13或35. (★★)如果√2.373≈1.333,√23.73≈2.872,那么√23703约等于( ) A .28.72B .0.2872C .13.33D .0.13336. (★★)已知√x −13=x −1,则x 2﹣x 的值为( ) A .0 或 1B .0 或 2C .0 或 6D .0、2 或 67. (★★)方程12x 3+4=0的解是 .8. (★★★)对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”.(1)举一个具体的例子来验证上述结论成立;(2)若√1+y 3和√2y −73互为相反数,且x +3的平方根是它本身,求x +y 的立方根.【题型2】 一个数立方根的估值 【典题1】 设a =√93,则( ) A .1.5<a <2 B .2<a <2.5 C .2.5<a <3 D .a =3【巩固练习】1.(★)a =√123的整数部分是( ) A .1B .2C .3D .42.( ★★)a =√993介于m 和m +1之间(m 为整数),则m 的值为( ) A .1B .2C .3D .43. (★★★)据说著名数学家华罗庚有次搭乘飞机时,看到邻座的乘客阅读的杂志上有一道智力题:一个数是59319,求它的立方根.华罗庚脱口而出,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗? (1)【发现与思考】∵103=1000,1003=1000000; 又∵1000<59319<1000000; ∴√593193是两位数; ∵59319的个位数字是9; ∴√593193的个位数字是 . ∵303=27000,403=64000; ∴√593193的十位数字是 . ∴√593193= . (2)【运用并解决】类比上述的发现与思考,推理求出110592的立方根. 【题型3】立方根的实际应用【典题1】 已知一个体积为48dm 3的长方体纸箱,它的长、宽、高的比为2:1:3,求纸箱的高. 【巩固练习】1. (★)在一个长,宽,高分别为9cm ,8cm ,3cm 的长方体容器中装满水,然后将容器中的水全部倒入一个正方体容器中,恰好倒满(两容器的厚度忽略不计),求此正方体容器的棱长.2. (★★) “魔方”(如图)是一种立方体形状的益智玩具,它由三层完全相同的小立方块组成,如果“魔方”的体积为216cm 3,那么组成它的每个小立方块的棱长为多少?3. (★★★)小梅用两张同样大小的长方形硬纸片拼接成一个面积为900cm 2的正方形,如图所示,按要求完成下列各小题. (1)求长方形硬纸片的宽;(2)小梅想用该正方形硬纸片制作一个体积512cm 3的正方体的无盖笔筒,请你判断该硬纸片是否够用?若够用,求剩余的硬纸片的面积;若不够用,求缺少的硬纸片的面积.【A 组基础题】1. (★)对于√−83说法错误的是( ) A .表示﹣8的立方根 B .结果等于﹣2C .与−√83的结果相等D .没有意义2. (★)下列各式中正确的是( ) A .√9−√4=√5B .√9=±3C .√93=3D .−√(−9)2=−93. (★)已知x ,y 为实数,且√x −3+(y +2)2=0,则y x 的立方根是( ) A .√63B .﹣8C .﹣2D .±24. (★)已知√3263≈6.882,若√x 3≈68.82,则x 的值约为( ) A .326000B .32600C .3.26D .0.3265. (★★)对于实数a 、b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b ,例如:min {1,﹣2}=﹣2.已知min{√30,a}=a,min{√30,b}=√30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( ) A .﹣1B .1C .﹣2D .26. (★)方程13x 3+9=0的解是 .7. (★)已知√2a +2的算术平方根是2,﹣a +b +1的立方根是﹣2.则2a ﹣b 的平方根为 . 8. (★★)已知a 为整数,且√403<a +2<√18,则a 的值为 .9. (★★)已知第一个正方体纸盒的棱长为6cm ,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127cm 3.(1)求第二个正方体纸盒的棱长;(2)第二个正方体纸盒的表面积比第一个正方体纸盒的表面积多多少?10. (★★★)在我校科技节活动中爱探究思考的小明,在实验室利用计算器计算得到下列数据:… √0.0324 √0.324 √3.24 √32.4 √324 √3240 √32400 … …0.180.5691.85.691856.9180…(1)通过观察可以发现当被开方数扩大100倍时,它的算术平方根扩大 倍; (2)已知√7≈2.646,根据上述规律直接写出下列各式的值: √0.07≈ ,√700≈ ;(3)已知√10404=102,√x =10.2,√y =1020,则x = ,y = ; (4)小明思考如果把平方根换成立方根,若√0.33≈0.669,√33≈1.442, 则√3003≈ ,√30003≈ .11. (★★★)类比平方根(二次根式)、立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x 4=a (a ≥0),那么x 叫做a 的四次方根;②如果x 5=a ,那么x 叫做a 的五次方根.请根据以上两个定义,解答下列问题. (1)求81的四次方根; (2)求﹣32的五次方根;(3)若√a 4有意义,则a 的取值范围为 ;若√a 5有意义,则a 的取值范围为 ; (4)解方程:①x 4=16;②100000x 5=243.【B 组提高题】1. (★★★★)对于一个各数位上的数字均不为0的三位自然数N ,若N 的百位数字与十位数字的平均数等于个位数字,则称N 为“均衡数”.将“均衡数”N 的百位数字与十位数字交换位置后得到的新数再与N 相加的和记为F (N ).若三位数n 是“均衡数”,满足百位数字小于十位数字,√F(n)1113整数,且F (n )能被十位数字与百位数字的差整除,则n 的值为 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 立方根
课前预习:
要点感知1一般地,如果一个数的立方等于a,那么这个数
叫做a的__________,即如果x3=a,那么__________叫做
__________的立方根.
预习练习1-1 (2014·黄冈)-8的立方根是( )
A.-2
B.±2
C.2
D.-1
2
是__________的立方
1-2 -64的立方根是__________,-1
3
根.
要点感知2 求一个数的立方根的运算,叫做开立方,开立
方与立方互为逆运算.正数的立方根是__________;负数的
立方根是__________;0的立方根是__________.
预习练习2-1下列说法正确的是( )
A.如果一个数的立方根是这个数本身,那么这个数一定是
B.一个数的立方根不是正数就是负数
C.负数没有立方根
D.一个不为零的数的立方根和这个数同号,0的立方根是
要点感知3一个数a
,读作
“__________”,其中__________是被开方数,__________是
根指数.
=__________.
预习练习3-1
当堂练习:
知识点1 立方根
( )
1.
A.-1
B.0
C.1
D.±1
2.若一个数的立方根是-3,则该数为( )
B.-27
C.
D.±27
3.下列判断:①一个数的立方根有两个,它们互为相反数;
②若x3=(-2)3,则x=-2;③15
数都有立方根,它不是正数就是负数.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
4.立方根等于本身的数为__________.
的平方根是__________.
6.若x-1是125的立方根,则x-7的立方根是__________.
7.求下列各数的立方根:
(1)0.216; (2)0;
; (4)-5.
(3)-210
27
8.求下列各式的值:
;;
.
知识点2 用计算器求立方根
的值约为( )
9.
A.3.049
B.3.050
C.3.051
D.3.052
10.估计96的立方根的大小在( )
A.2与3之间
B.3与4之间
C.4与5
之间 D.5与6之间
11.
≈__________(精确到百分位).
12.
则
13.(1)填表:
(2)由上表你发现了什么规律?请用语言叙述这个规律:
______________________________. (3)根据你发现的规律填空: =1.442,
;
则
课后作业:
14.下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
B.一个数的立方根比这个数平方根小
C.如果一个数有立方根,那么它一定有平方根 互为相反数
15.( )
A.7
B.-7
C.±7
D.无意义
16.正方体A的体积是正方体B的体积的27倍,那么正方体
A的棱长是正方体B的棱长的( )
A.2倍
B.3倍
C.4倍
D.5倍
__________.
17.-27
=__________=__________.
18.计算:
19.已知2x+1的平方根是±5,则5x+4的立方根是
__________.
20.求下列各式的值:
21.比较下列各数的大小:
;与-3.4.
22.求下列各式中的x:
(1)8x3+125=0; (2)(x+3)3+27=0.
(b-27)2的立方根.
23.
24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”
如图所示,不妨设原祭坛边长为a,想一想:
(1)做出来的新祭坛是原来体积的多少倍?
(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?
挑战自我
25.请先观察下列等式:
3
2
2
7
3
2
7
3
3
3
26
3
3
26
,
3
4
4
63
3
4
63
…
(1)请再举两个类似的例子;
(2)经过观察,写出满足上述各式规则的一般公式.
参考答案
课前预习
要点感知1立方根(或三次方根) x a
预习练习1-1 A
1-2 -4 -1
27
要点感知2 正数负数 0
预习练习2-1 D
要点感知3 三次根号a a 3
预习练习3-1 3
当堂训练
1.C
2.B
3.B
4.0,1或-1
5.±2
6.-1
7.(1)∵0.63=0.216,
∴0.216的立方根是0.6
=0.6;
(2)∵03=0,
∴0的立方根是0
;
(3)∵-210
27=-64
27
,且(-4
3
)3=-64
27
,
∴-210
27的立方根是-4
3
=-4
3
;
(4)-5
8.(1)0.1;
(2)-7
5
;
(3)-2
3
.
9.B 10.C 11.2.92 12.10.38 -0.482 0 13.(1)0.01 0.1 1 10 100
(2)被开方数扩大1 000倍,则立方根扩大10倍
(3)14.42 0.144 2 7.696
课后作业
14.D 15.B 16.B 17.0或-6 18.-4 -3
4
19.4
20.(1)-10;
(2)4;
(3)-1;
(4)0.
21.
;
-3.4.
22.(1)8x3=-125,x3=-125
8,x=-5
2
;
(2)(x+3)3=-27,x+3=-3,x=-6.
23.由题意知a=-8,b=27,
24.(1)8倍;
.
25.
(n≠1,且n为整数).。