基于最小最大割算法的阈值分割算法
医疗图像分析中的病灶分割算法使用方法

医疗图像分析中的病灶分割算法使用方法病灶分割算法在医疗图像分析中扮演着重要的角色。
医疗图像分析是一门快速发展的领域,通过使用病灶分割算法,可以帮助医生更准确地检测和诊断患者的疾病。
本文将详细介绍病灶分割算法的使用方法,以帮助读者了解如何在医疗图像分析中应用这些算法。
首先,我们需要了解病灶分割算法的基本原理。
病灶分割算法旨在从医疗图像中准确提取和分割出患者的病灶区域。
这些算法通常基于图像处理和计算机视觉技术,使用机器学习的方法来训练模型,并通过对图像进行像素级的分类和分割来实现病灶的识别。
下面我们将介绍几种常见的病灶分割算法和它们的使用方法。
1. 基于阈值的分割算法:这是最简单和最常用的分割方法之一。
它基于设定一个阈值,将图像中像素灰度值与该阈值进行比较,并将低于阈值的像素标记为背景,高于阈值的像素标记为病灶。
这个过程通常需要根据具体的应用场景进行参数调整以获得最佳的结果。
2. 区域生长算法:区域生长算法是一种基于种子点的像素分类方法。
它从一个或多个种子像素开始,根据一定的准则将相邻的像素逐渐合并到同一类别中。
这个准则可以通过像素间的灰度差异、纹理特征或其他图像特征来定义。
区域生长算法通常可以得到较为准确的分割结果,但是对于图像中存在强烈纹理变化或边界模糊的情况下,其结果可能不稳定。
3. 基于图割的分割算法:图割算法是一种基于图论的分割方法,它将图像视为一个图,并使用最小割算法在图的节点之间进行切割。
图割算法考虑了像素之间的相似性和关联性,能够比较好地处理图像中存在的复杂纹理和边界问题。
然而,由于算法的复杂性,它的计算效率相对较低,需要较长的时间来完成分割。
4. 深度学习算法:最近,深度学习算法在医疗图像分割中取得了很大的成功。
深度学习算法利用神经网络模型,通过对大量训练数据的学习,能够自动学习到特定病灶的特征,并进行准确的分割。
常见的深度学习模型包括全卷积神经网络(FCNN)、U-Net 等。
这些模型通常具有较高的准确率和鲁棒性,但是需要大量的训练数据和计算资源。
图像分割处理实验报告

图像分割处理实验报告1. 引言图像分割是计算机视觉中的重要任务之一,其目标是将图像划分成具有相似特征的子区域。
图像分割在很多应用领域中都有着广泛的应用,比如医学影像分析、目标检测和图像编辑等。
本实验旨在探索不同的图像分割算法,并比较它们在不同场景下的效果和性能。
2. 实验方法2.1 实验数据本实验选取了一组包含不同场景的图像作为实验数据集,包括自然景观、人物肖像和城市街景等。
每张图像的分辨率为500x500像素。
2.2 实验算法本实验使用了两种经典的图像分割算法进行比较,分别是基于阈值的分割和基于边缘的分割。
2.2.1 基于阈值的分割基于阈值的分割算法是一种简单而直观的方法,其原理是根据像素值的亮度信息将图像分割成不同的区域。
在本实验中,我们将图像的灰度值与一个事先设定的阈值进行比较,如果大于阈值则设为白色,否则设为黑色,从而得到分割后的图像。
2.2.2 基于边缘的分割基于边缘的分割算法利用图像中的边缘信息进行分割,其原理是检测图像中的边缘并将其作为分割的依据。
在本实验中,我们使用了Canny边缘检测算法来提取图像中的边缘信息,然后根据边缘的位置进行分割。
2.3 实验流程本实验的流程如下:1. 加载图像数据集;2. 对每张图像分别应用基于阈值的分割算法和基于边缘的分割算法;3. 计算分割结果和原始图像之间的相似度,使用结构相似性指标(SSIM)进行评估;4. 分析并比较两种算法在不同场景下的分割效果和性能。
3. 实验结果3.1 分割效果实验结果表明,基于阈值的分割算法在处理简单场景的图像时效果较好,可以比较准确地将图像分割为目标区域和背景。
然而,当图像的复杂度增加时,基于阈值的分割算法的效果明显下降,往往会产生较多的误分割。
相比之下,基于边缘的分割算法在处理复杂场景的图像时表现良好。
通过提取图像的边缘信息,该算法能够较准确地分割出图像中的目标区域,相比于基于阈值的分割算法,其产生的误分割较少。
3.2 性能评估通过计算分割结果和原始图像之间的SSIM指标,我们可以得到两种算法在不同场景下的性能评估。
图像处理中的图像分割算法改进方法

图像处理中的图像分割算法改进方法图像分割是图像处理领域中的重要任务,它旨在将一幅图像划分为一组具有相似特征的区域。
对图像进行有效的分割可以提取出感兴趣的目标,并为后续的图像分析和理解提供基础。
然而,由于图像中存在复杂的噪声、背景干扰以及目标形状和大小的差异,图像分割任务一直面临着挑战。
为了进一步提高图像分割的性能,研究人员提出了许多改进方法。
本文将介绍几种常见的图像分割算法改进方法,并讨论它们的原理和优缺点。
一、区域生长算法区域生长算法是一种基于类似区域像素特征的图像分割方法。
该算法从一组种子点出发,逐步生长和合并具有相似特征的像素。
该方法的主要优点是对不同大小、形状和纹理的目标具有较好的适应性。
然而,传统的区域生长算法容易受到噪声和纹理差异的影响,导致分割结果不准确。
为了改进该方法,研究人员提出了以下几种改进方法:1.多特征融合:将像素的多个特征(如颜色、纹理、梯度等)融合起来进行区域生长。
通过融合不同特征,可以减轻单一特征带来的误差,提高分割的准确性。
2.自适应阈值选择:传统的区域生长算法中,阈值通常是手动设置的,无法适应不同图像的特点。
采用自适应的阈值选择方法,可以根据图像的特征动态地选择合适的阈值,从而提高分割的鲁棒性。
3.分层分割策略:将图像分割任务分为多个层次,通过逐层分割和合并来获取更精确的结果。
这种策略可以提高分割的效率和准确性,并适用于大规模图像的处理。
二、基于深度学习的图像分割算法随着深度学习的快速发展,基于深度学习的图像分割算法在近年来取得了巨大的成功。
深度学习模型能够学习到图像的高级特征表示,从而提高分割的准确性和鲁棒性。
以下是几种常见的基于深度学习的图像分割算法:1.卷积神经网络(CNN):CNN是一种常用于图像分割的深度学习模型。
通过多层卷积和池化操作,CNN可以学习到图像的局部和全局特征,从而实现像素级别的分割。
然而,传统的CNN在处理细节和形状复杂的目标时存在一定的困难,因此研究人员提出了一些改进的网络结构。
地面分割算法

地面分割算法
地面分割算法是计算机视觉领域中的一个重要研究方向,它的目标是将图像中的地面部分与非地面部分进行分割。
下面介绍几种常见的地面分割算法:
1. 基于阈值的分割算法:这种算法通过设定一个阈值,将图像中像素值大于阈值的部分认为是地面,小于阈值的部分认为是非地面。
这种算法简单快速,但对于复杂的地面场景效果不佳。
2. 基于区域生长的分割算法:这种算法通过选择一个种子点,然后根据像素的相似性将周围的像素合并到种子点所在的区域中,直到整个地面区域被分割出来。
这种算法对于复杂的地面场景效果较好,但计算量较大。
3. 基于分类器的分割算法:这种算法通过训练一个分类器,将图像中的像素分为地面像素和非地面像素。
常见的分类器包括支持向量机、随机森林等。
这种算法需要大量的训练数据和计算资源,但对于复杂的地面场景效果较好。
4. 基于深度学习的分割算法:这种算法通过训练一个深度神经网络,将图像中的像素分为地面像素和非地面像素。
常见的深度学习模型包括卷积神经网络、循环神经网络等。
这种算法需要大量的训练数据和计算资源,但对于复杂的地面场景效果较好。
地面分割算法的选择需要根据具体的应用场景和需求进行选择。
在实际应用中,通常需要结合多种算法进行融合,以提高分割的准确性和鲁棒性。
图像处理中的图像分割算法比较分析

图像处理中的图像分割算法比较分析图像分割是图像处理中的一项重要任务,它旨在将图像划分为具有一定语义的区域。
图像分割在图像分析、计算机视觉和模式识别等领域有着广泛的应用。
随着技术的发展,越来越多的图像分割算法被提出,为了选择合适的算法进行应用,本文将对目前常用的图像分割算法进行比较分析,包括基于阈值、基于区域生长、基于边缘检测和基于深度学习的算法。
1. 基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的方法之一。
该方法根据像素点的灰度值与设定的阈值进行比较,将图像分割成两个或多个区域。
对于灰度较为均匀的图像,基于阈值的方法能够得到较好的分割效果。
然而,对于灰度不均匀或存在噪声的图像,这种方法的效果较差。
2. 基于区域生长的图像分割算法基于区域生长的图像分割算法是一种基于连通性的方法。
该方法从一组种子像素出发,根据一定的生长准则逐步增长区域,直到达到停止条件为止。
区域生长方法能够处理一些复杂的图像,但对于具有相似颜色或纹理特征的区域容易产生错误的连续性。
3. 基于边缘检测的图像分割算法基于边缘检测的图像分割算法把图像中的边缘看作是区域之间的分界线。
常用的边缘检测算法包括Sobel、Canny和Laplacian等。
这些算法通过检测图像中的灰度值变化或梯度变化,找到边缘的位置,并将图像分割成相应的区域。
基于边缘的方法对于边缘清晰的图像分割效果较好,但对于复杂的图像容易产生断裂或错误的边缘。
4. 基于深度学习的图像分割算法近年来,随着深度学习的兴起,基于深度学习的图像分割算法成为研究热点之一。
深度学习方法利用卷积神经网络(CNN)或全卷积网络(FCN)等模型进行端到端的图像分割。
这些方法能够学习图像中的语义信息,并输出像素级别的分割结果。
深度学习方法在许多图像分割任务上取得了显著的效果,但需要大量的标注数据和计算资源。
综上所述,不同的图像分割算法适用于不同的场景和任务需求。
基于阈值的图像分割算法简单易用,适用于灰度较均匀的图像;基于区域生长的算法能够处理复杂的图像,但容易产生错误的连续性;基于边缘检测的算法对于边缘清晰的图像效果较好;基于深度学习的算法具有较强的泛化能力,可应用于多种场景。
基于阈值的分割算法

基于阈值的分割算法
阈值分割算法是一种将图像分割成两个或多个区域的方法,其中区域的选择基于像素的灰度值与预先定义的阈值之间的关系。
基本的阈值分割算法包括简单阈值分割、自适应阈值分割和多阈值分割等。
- 简单阈值分割是指通过比较每个像素的灰度值与一个预先定
义的固定阈值来进行划分。
如果像素的灰度值大于阈值,则被分配到一个区域;如果小于阈值,则分配到另一个区域。
- 自适应阈值分割是指根据图像的局部特征来确定每个像素的
阈值。
这种方法通常用于处理具有不均匀光照条件下的图像。
常见的自适应阈值分割方法包括基于局部平均值、基于局部中值和基于统计分布的方法。
- 多阈值分割是指将图像划分为多个区域,每个区域都有一个
不同的阈值。
这种方法常用于处理具有多个目标或具有复杂纹理的图像。
阈值分割算法在图像处理中广泛应用,可以用于边缘检测、目标提取、图像分割等任务。
但是,阈值的选择对算法的性能至关重要,不同的图像和任务可能需要不同的阈值选择方法。
因此,在应用阈值分割算法时需要进行参数调整和优化才能得到最佳的分割结果。
基于阈值的分割原理
基于阈值的分割原理基于阈值的分割原理是数字图像处理中常用的一种分割方法,其基本思想是将图像中的像素根据其灰度值与预设的阈值进行比较,将灰度值高于阈值的像素归为一类,低于阈值的像素归为另一类。
该方法简单易懂,计算量小,因此被广泛应用于图像处理领域。
一、阈值分割基本原理1.1 阈值阈值是指在进行二值化处理时所设定的一个灰度级别,用来区分图像中不同灰度级别的像素点。
通常情况下,我们将图像中所有灰度大于该阈值的点视为目标物体区域内部点,将灰度小于该阈值的点视为背景区域内部点。
1.2 阈值分割过程在进行阈值分割时,我们需要先确定一个合适的初始阈值。
通常情况下,我们可以选择图像中所有像素点灰度平均数作为初始阈值。
然后将所有灰度大于该初始阈值的点视为目标物体区域内部点,将小于该初始阈值的点视为背景区域内部点,并计算出两个区域内像素灰度值的平均数。
将两个平均数再求平均,得到新的阈值,重复上述过程直到新的阈值与上一次计算的阈值相等或者差异小于一个预设的容差范围。
1.3 阈值分割应用阈值分割可以应用于很多领域中,如图像增强、目标检测、字符识别等。
在图像增强中,我们可以通过调整阈值来实现图像亮度和对比度的调整;在目标检测中,我们可以通过设置不同的阈值来实现对不同大小、形状、颜色等特征的物体进行区分;在字符识别中,我们可以通过设置合适的阈值来实现对字符轮廓进行提取和识别。
二、基于全局阈值分割原理2.1 基本思想基于全局阈值分割原理是指在整幅图像中确定一个全局唯一的阈值进行分割。
该方法简单易行且计算量小,适用于灰度变化明显且背景比较简单的图像。
2.2 全局阈值分割方法(1)最大类间方差法:该方法是求使两类间方差最大化时所对应的灰度值作为阈值。
具体而言,我们可以先将图像中所有像素点按照灰度值从小到大排序,然后分别计算每个灰度值下的前景和背景像素点数量、均值和方差。
最后计算出每个灰度下两类之间的类间方差,并选取使类间方差最大的灰度值作为阈值。
阈值分割公式
阈值分割公式阈值分割公式阈值分割是一种常用的图像处理技术,它可以将图像根据给定的阈值进行二值化处理,使得图像中的目标物体与背景色彩有所区分,便于后续的处理。
随着图像处理技术的不断发展,阈值分割也不断完善,其中最常用的就是基于阈值的分割公式。
一、常见阈值分割算法1. Otsu阈值法Otsu是一种基于直方图的阈值分割方法,它的基本思想是寻找一个最佳阈值,使得图像中目标物体与背景的差异最大化。
这种方法适用于灰度图像,具有较好的分割效果。
Otsu算法的计算公式如下:$$\sigma^2(w_0,w_1) =w_0(t)\sigma^2_0(t)+w_1(t)\sigma^2_1(t)$$2. 最大熵阈值法最大熵阈值法是一种基于信息熵的阈值分割方法,它通过最大化图像的熵值,来确定最佳阈值。
这种方法适用于处理具有复杂背景的图像,它的计算公式如下:$$\max H(T)= - \sum_{i=1}^{k}p_i\log_2(p_i)$$3. 基于聚类的阈值分割法基于聚类的阈值分割法是一种就是把原始图像分成若干个子集,使得每个子集都包含一部分图像的像素值,从而将图像进行分割。
它计算每个子集的灰度均值和方差来确定分割阈值,公式如下:$$\max \varepsilon(i)=\frac{(T*\mu_i-\mu)^2}{T*\sigma_i^2+(1-T)*\sigma_{i+1}^2}$$二、阈值分割的应用阈值分割在实际应用中广泛,例如人脸识别、车牌号识别等。
通过对图像二值化处理可以提高算法的精度,使得对目标物体的检测更加准确。
例如,在车牌号识别中,阈值分割可以先进行图像二值化处理,再进行腐蚀、膨胀等操作,从而将车牌号与背景进行分离,然后再进行字符识别等操作,提高了算法的效率和准确性。
三、总结阈值分割是图像处理中最为常见和实用的方法之一,其应用范围广泛,通过选择不同的阈值分割算法和参数,可以实现不同的图像处理任务。
图像分割算法的原理与效果评估方法
图像分割算法的原理与效果评估方法图像分割是图像处理中非常重要的一个领域,它指的是将一幅图像分割成多个不同的区域或对象。
图像分割在计算机视觉、目标识别、医学图像处理等领域都有广泛的应用。
本文将介绍图像分割算法的原理以及评估方法。
一、图像分割算法原理图像分割算法可以分为基于阈值、基于边缘、基于区域和基于图论等方法。
以下为其中几种常用的图像分割算法原理:1. 基于阈值的图像分割算法基于阈值的图像分割算法是一种简单而高效的分割方法。
它将图像的像素值进行阈值化处理,将像素值低于阈值的部分归为一个区域,高于阈值的部分归为另一个区域。
该算法的优势在于计算速度快,但对于复杂的图像分割任务效果可能不理想。
2. 基于边缘的图像分割算法基于边缘的图像分割算法通过检测图像中的边缘来实现分割。
常用的边缘检测算法包括Sobel算子、Canny算子等。
该算法对边缘进行检测并连接,然后根据连接后的边缘进行分割。
优点是对于边缘信息敏感,适用于复杂场景的分割任务。
3. 基于区域的图像分割算法基于区域的图像分割算法将图像分割成多个区域,使得每个区域内的像素具有相似的属性。
常用的方法包括区域生长、分裂合并等。
该算法将相邻的像素进行聚类,根据像素之间的相似度和差异度进行分割。
优点是在复杂背景下有较好的分割效果。
4. 基于图论的图像分割算法基于图论的图像分割算法将图像看作是一个图结构,通过图的最小割分割图像。
常用的方法包括图割算法和分割树算法等。
该算法通过将图像的像素连接成边,将图像分割成多个不相交的区域。
该算法在保持区域内部一致性和区域间差异度的同时能够有效地分割图像。
二、图像分割算法的效果评估方法在进行图像分割算法比较和评估时,需要采用合适的评估指标。
以下为常用的图像分割算法的效果评估方法:1. 兰德指数(Rand Index)兰德指数是一种常用的用于评估图像分割算法效果的指标。
它通过比较分割结果和真实分割结果之间的一致性来评估算法的性能。
基于阈值的图像分割算法研究综述
第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06052604基于阈值的图像分割算法研究综述:原理㊁分类及典型算法杨林蛟(沈阳师范大学化学化工学院,沈阳110034)摘要:随着计算机技术的飞速发展,图像处理技术在各个领域都得到了广泛应用,如产品质量检测㊁医学图像处理㊁军事目标的定位与跟踪等㊂作为图像处理技术和计算机视觉技术的研究基础,图像分割技术目前已出现了大量不同类型的算法,并在各个领域的应用中发挥着重要的作用㊂其中,基于阈值的图像分割算法因具有简单有效㊁计算量小㊁性能稳定等优点而受到了人们的普遍青睐㊂首先,对图像分割技术按照不同的划分方式进行了简单的分类;其次,对阈值分割算法的基本原理㊁分类及最典型的O t s u算法的基本思想进行了详尽的介绍;最后,对阈值分割算法目前存在的问题进行了阐述,并对算法未来的发展趋势进行了展望㊂研究工作可为图像处理技术的进一步发展提供理论借鉴㊂关键词:图像处理;阈值分割;阈值选取;算法中图分类号:T P391文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.007A r e v i e w o ft h r e s h o l d-b a s e di m a g es e g m e n t a t i o n a l g o r i t h m s:P r i n c i p l e s,c l a s s i f i c a t i o na n d t y p i c a l a l g o r i t h m sY A N GL i n j i a o(C o l l e g e o fC h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:W i t h t h e r a p i dd e v e l o p m e n t o f c o m p u t e r t e c h n o l o g y,i m a g e p r o c e s s i n g t e c h n o l o g y h a sb e e n w i d e l y u s e di nv a r i o u s f i e l d s,s uc ha s p r od u c t q u a l i t y de t e c t i o n,m e d i c a l i m a g e p r o c e s s i n g,m i l i t a r y t a r g e t p o s i t i o n i n g a n d t r a c k i n g.A s t h e b a s i s o f i m a g e p r o c e s s i n g t e c h n o l o g y a n d c o m p u t e rv i s i o nt e c h n o l o g y,al a r g e n u m b e r o f d i f f e r e n tt y p e s o fa l g o r i t h m s h a s e m e r g e d,a n d t h e s ea l g o r i t h m s p l a y a ni m p o r t a n t r o l e i nv a r i o u s f i e l d so fa p p l i c a t i o n.A m o n g t h e m,t h r e s h o l db a s e di m a g e s e g m e n t a t i o na l g o r i t h m h a sb e e n w e l c o m e db e c a u s eo f i t sa d v a n t a g e so fs i m p l e,e f f e c t i v e,l i t t l e c o m p u t a t i o na n ds t a b l e p e r f o r m a n c e.F i r s t l y,t h e i m a g es e g m e n t a t i o nt e c h n o l o g y i ss i m p l yc l a s s i f i e da c c o rd i n g t o t he d if f e r e n t p a r t i t i o n i ng w a y s.S e c o n d l y,th eb a si c p r i n c i p l e,c l a s s i f i c a t i o n,a n d t h eb a s i ci d e ao ft h e m o s tt y p ic a lO t s ua l g o r i t h m o ft h r e s h o l ds e g m e n t a t i o na l g o r i t h m a r ei n t r o d u c e di n d e t a i l.A tl a s t,t h ee x i s t i n g p r o b l e m s o ft h r e s h o l d s e g m e n t a t i o n a l g o r i t h m a r ed e s c r i b e d,a n dt h ef u t u r ed e v e l o p m e n tt r e n d o ft h i sa l g o r i t h m a r ef o r e c a s t e d.T h i s w o r kc a np r o v i d e t h e o r e t i c a l r e f e r e n c e f o r t h e f u r t h e r d e v e l o p m e n t o f i m a g e p r o c e s s i n g t e c h n o l o g y.K e y w o r d s:i m a g e p r o c e s s i n g;t h r e s h o l d s e g m e n t a t i o n;t h r e s h o l d s e l e c t i o n;a l g o r i t h m 图像处理技术一般是指利用计算机对图像进行分析,以达到所需结果的技术,又可称为影像处理㊂收稿日期:20230929基金项目:辽宁省教育厅科学研究经费项目(L J C202004,L J C202005)㊂作者简介:杨林蛟(1976 ),男,青海西宁人,沈阳师范大学高级实验师,硕士㊂图像处理技术主要包括图像的数字化㊁图像的增强和复原㊁图像的分割和识别㊁图像的数据编码等㊂其中,图像分割在计算机视觉中起着至关重要的作用,是图像处理技术的基础㊂图像分割的目的是使图像得到简化或改变图像的表示形式,图像经过分割后会形成一些特定的㊁具有独特性质的区域,这里的独特性质一般指像素的灰度㊁颜色和纹理等㊂其过程就好比把图像中的每一个像素打上一个特定的标签,使得具有相同标签的像素具有相同的视觉特性,从而用来定位图像的物体和边界㊂图像分割技术一直是计算机视觉研究的热点之一,历经数十年的发展,大量的分割算法被人们相继提出并得到广泛应用[1]㊂其中,基于阈值的图像分割算法因具有实时㊁有效㊁自动㊁应用广泛等优点而受到人们的广泛关注㊂本文首先对现有的图像分割技术进行了简单的划分,接着对基于阈值的分割算法的原理㊁分类及最典型的O t s u 算法进行了系统的介绍,以期为图像处理技术的进一步发展提供理论借鉴㊂1 图像分割技术的分类目前,人们对图像分割技术进行了大量的研究,并取得了卓有成效的研究成果,开发出了很多算法㊂如图1所示,如果按照图像类型划分,图像分割技术可分为灰度图像分割和彩色图像分割,灰度图像分图1 图像分割技术的7种不同划分方式F i g .1 S e v e nd i f f e r e n tw a y s o f i m a g es e g m e n t a t i o n t e c h n o l o g y割主要用于处理非自然图像,彩色图像分割则主要用于处理自然图像;按照是否存在用户交互,可将图像分割技术分为监督式分割和非监督式分割,监督式分割主要用于对图像和视频进行编辑,非监督式分割则主要用于处理图像背景较为单一的文本图像㊁工业图像等;按照表示方式的不同,图像分割技术又可分为基于像素级的分割和超像素级的分割,目前大多数的分割算法属于基于像素级的分割技术,其通常具有较高的处理精度;按照图像的另一种表示方式,图像分割技术则分为单一尺度的分割和多尺度分割,单一尺度的分割是在原始尺度空间上构建相关的分割模型,而多尺度分割则可充分挖掘图像的基本信息;从属性来划分,图像分割技术可分为单一属性的分割和多属性分割,前者只对灰度㊁颜色㊁纹理等特征中的一种属性进行分割,后者则能综合运用图像的多种属性;从操作空间来划分,图像分割技术可分为利用图像特征信息的分割和利用空间位置信息的分割,其中前者主要包括阈值分割算法和聚类算法等,后者主要包括水平集分割算法㊁活动轮廓算法等;从驱动方式划分,图像分割技术可分为基于边缘的分割和基于区域的分割㊂2 阈值分割算法阈值分割算法主要利用图像的特征信息对图像进行分割,目前已有上百种算法被陆续提出㊂其主要思想是不同的目标具有不同的诸如颜色㊁灰度㊁轮廓等特征,根据特征间的细小差别,通过选取特定的阈值将目标物与背景划分开来,进而实现快速的图像分割㊂2.1 阈值分割算法的基本原理阈值法的基本原理是先确定一个阈值[2],然后将所有像素按照其特征值与阈值的大小关系划分为2个类别㊂当特征值大于阈值时,该像素被归为目标类;反之,被归为背景类㊂通过选择合适的阈值,可以实现对图像目标与背景的有效分离㊂设原始图像为f (x ,y ),在f (x ,y )中找出特征值T ,将原始图像分割为2个部分,得到分割后的图像为g (x ,y )=b 0,f (x ,y )<t b 1,f (x ,y )ȡ{t725 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法若取b 0=0(黑),b 1=1(白),即为图像的二值化㊂2.2 阈值分割算法的分类根据利用信息种类的不同,可将阈值分割算法分为以下几类:1)基于直方图形状的方法㊂该类方法主要根据直方图的形状属性来划分像素,其又可分为 凸壳 法㊁ 峰谷 法和形状建模法3类㊂1997年,C a r l o t t o [3]对图像的概率密度进行了多尺度分析,并以此估计最佳阈值;1998年,C a i 和L i u [4]利用P r o n y 谱分析法得到了图像多重指数信号能量谱的近似值;之后,G u o 和P a n d i t [5]提出了一个全极模型㊂2)基于熵的方法㊂该类方法利用灰度分布的熵信息来划分像素㊂J o h a n n s e n 和B i l l e [6]最早对熵算法进行了研究㊂之后,很多学者对这一算法进行了改进,如P a l [7]在交叉熵的基础上建立了一种对前景和背景后验概率密度的模型;S u n [8]依靠 模糊事件熵 的最大化,采用了Z a d e h 的S 隶属度函数㊂3)基于聚类的阈值分割方法㊂该类方法又可分为迭代法㊁聚类法㊁最小误差法和模糊聚类4类,其主要通过对灰度数据进行聚类分析来获取阈值㊂其中,聚类法是通过将前景和背景的加权方差最小化来获得最佳阈值,是阈值分割算法中较为经典的算法之一㊂L i u 和L i [9]将聚类法扩展到了二维,景晓军等[10]将聚类法扩展到了三维㊂4)基于对象属性的方法㊂该类方法通过度量原始图像与二值图像间的诸如灰度片段㊁形状紧密性㊁纹理等的属性特性来选取阈值㊂基于对象属性的方法可分为片段保存法㊁边缘匹配法㊁模糊相似法㊁拓扑固定态法㊁最大信息法和模糊紧密性增强法6类㊂5)基于空间的方法㊂该类方法又可分为同现方法㊁高次熵法㊁基于随机集合的方法和二维模糊划分法4类,其选取阈值的方式是度量灰度分布和邻域内像素的相关性㊂C h a n g 等[11]在确保源图像与二值图像的同现概率以最低程度发散的条件下建立了阈值;B r i n k [12]认为空间熵可由二元熵在所有可能间隔的总和来计算㊂6)局部自适应方法㊂局部自适应方法可以克服其他阈值算法的许多缺陷,受到了人们的普遍关注,其主要的2种形式分别为邻域法和分块法㊂邻域法一般会受到邻域范围的制约,因而对文字等狭长目标比较敏感,但对平坦的大块前景或背景容易造成误分;分块法的适用范围会更广,但分块之间结果的不连续是该方法的缺陷之一㊂2.3 典型阈值分割算法介绍O t s u 阈值分割算法,也可称为最大类间方差算法,是最常用的一类阈值分割算法,也是阈值分割领域各类文献中被引用数量最多的算法之一㊂该算法选取使得类间方差最大的灰度值作为划分背景和前景的最佳阈值,其基本思想如下:在一幅灰度图像中,假设其灰度级为L ,用n i 表示灰度级为i 的像素个数,N 表示总像素的个数,则N =n 0+n 1+ +n L -1㊂用p i 表示灰度图像中灰度值i 的像素点出现的概率,则有p i =n i N ㊂设有阈值t 将图像分为前景和背景2个部分,分别用C 0={0,1, ,t }和C 1={t +1,t +2, ,L -1}表示㊂设ω0为C 0出现的概率,ω1为C 1出现的概率,则有ω0=ðt i =0p i ,ω1=ðL -1i =t +1p i ,且ω0+ω1=1㊂则C 0和C 1的平均灰度μ0和μ1为μ0=ðt i =0i ㊃p i ω0=μ(t )ω0,μ1=ðL -1i =t +1i ㊃p i ω1=μ-μ(t )1-ω0用σ2B 表示类间方差,其表达式为σ2B =ω0(μ0-μ)2+ω1(μ1-m )2=ω0㊃ω1(μ0-μ1)2最佳分割阈值t *即为使得类间方差σ2B 最大的阈值t :t *=a r g m a x t ɪ{0,1, L -1}σ2B 上述O t s u 算法又称一维O t s u 算法,它在不对概率密度函数做出假设的情况下,以均值和方差的概率密度为基础对图像的分割状态进行描述,可以在很大程度上提高算法的运算速度㊂后来,人们又发展了二维O t s u 阈值分割方法,它是在原来一维算法灰度值的基础上加入了像素邻域平均灰度作为第825沈阳师范大学学报(自然科学版) 第41卷二维,因而提高了一维算法的抗噪声能力㊂O t s u 阈值分割算法的分割效果如图2所示㊂(a )原始图像(b )O t u s 法阈值选择图2 O t s u 阈值分割算法的分割效果F i g .2 S e g m e n t a t i o ne f f e c t o f O t s u t h r e s h o l d s e g m e n t a t i o na l g o r i t h m 2.4 阈值分割算法目前存在的问题虽然阈值分割算法在国内外研究者们数十年的努力下已经取得了长足的进步,但目前仍然存在着如不均匀光照㊁噪声干扰㊁文本图像 劣化 等问题亟待解决㊂其中,不均匀光照会使直方图中的目标波峰与背景波峰混杂在一起,从而降低直方图阈值法的效果;噪声对图像处理的整个过程都有影响,去噪已成为图像分割领域的一个研究重点;长时间保存的纸质文档会出现背面字迹浸透㊁字迹污染等现象,从而造成分割时产生大量的误分㊂3 结论与展望图像分割是计算机视觉的基础技术,分割效果将直接影响如目标定位㊁目标识别㊁目标跟踪㊁场景分析等的后续处理㊂在众多的图像分割算法中,阈值分割算法一直以其实时㊁高效等特点受到人们的普遍关注㊂但从目前来看,阈值分割算法仍面临着许多难以解决的困难,可行的解决方法是从更高的图像语义出发,对图像内容进行抽象分析,然后指导低层次的图像分割,重复这样的操作若干次,可以逐步提高分割的精度㊂目前,对该种分割方式的研究仍处于探索阶段㊂参考文献:[1]S E Z G I N M ,S A N K U RB .S u r v e y o v e r i m a g e t h r e s h o l d i n g t e c h n i qu e s a n d q u a n t i t a t i v e p e r f o r m a n c e e v a l u a t i o n [J ].J E l e c t r o n I m a g i n g ,2004,13(1):146168.[2]阴国富.基于阈值法的图像分割技术[J ].现代电子技术,2007(23):107108.[3]C A R L O T T O M J .H i s t o g r a m a n a l y s i su s i n g as c a l e -s p a c ea p p r o a c h [J ].I E E E T r a n sP a t t e r n A n a l M a c hI n t e l l ,1997,9(1):121129.[4]C A I J ,L I UZQ.An e wt h r e s h o l d i n g a l g o r i t h m b a s e do na l l -p o l em o d e l [C ]ʊP r o c e e d i n g so f t h e14t hI n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n i t i o n .B r i b a n e :I E E E ,1998:3436.[5]G U O R ,P A N D I TS M.A u t o m a t i c t h r e s h o l ds e l e c t i o nb a s e do nh i s t o gr a m m o d e sa n dad i s c r i m i n a n t c r i t e r i o n [J ].M a c hV i s i o nA p p l ,1998,10:331338.[6]J OHA N N S E N G ,B I L L EJ .At h r e s h o l ds e l e c t i o n m e t h o du s i n g i n f o r m a t i o n m e a s u r e s [C ]ʊP r o c e e d i n gso f t h e6t h I n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n .M u n i c h :G e r m a n y ,1982:140143.[7]P A L N R.O nm i n i m u mc r o s s -e n t r o p y t h r e s h o l d i n g [J ].P a t t e r nR e c o g n ,1996,29(4):575580.[8]S U NCY.An o v e lf u z z y e n t r o p y a p p r o a c h t o i m ag e e nh a n c e m e n t a n d t h r e s h o l di n g [J ].S i gn a l P r o c e s s ,1999,75:277301.[9]L I UJZ ,L I W Q.T h ea u t o m a t i ct h r e s h o l d i n g o f g r a y -l e v e l p i c t u r e sv i at w o -d i m a n s i o n a lO t s u me t h o d [J ].A c t a A u t o m a t i c aS i n ,1993,19:101105.[10]景晓军,李剑峰,刘郁林.一种基于三维最大类间方差的图像分割算法[J ].电子学报,2003,31(9):12811285.[11]C HA N GC ,C H E N K ,WA N GJ ,e t a l .Ar e l a t i v e e n t r o p y b a s e d a p p r o a c h i n i m a g e t h r e s h o l d i n g [J ].P a t t e r nR e c o gn ,1994,27(9):12751289.[12]B R I N K A D.M i n i m u ms p a t i a l e n t r o p y t h r e s h o l d s e l e c t i o n [J ].I E E EP r o c e e d i n g s ,1995,142(3):128132.925 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键 词
谱 聚类 , 图论 , 最 小最 大割算 法, 图像 阈值分割 T P 3 9 1 文献标识码 A
中图法分类号
Th r e s h ol d I ma g e S e g me n t a t i o n Ba s e d o n M i n- ma x Cu t Al g o r i t h m
z a t i o n c r i t e r i a i n t o e i g e n s y s t e m s o l v e s t h e p r o b l e m. Th e i mp l e me n t a t i o n i s c o mp u t a t i o n a l l y c o mp l e x, a n d t h e r e q u i r e d s t o r a g e s p a c e a n d c o mp u t i n g t i me c o mp l e x i t y a r e i n c r e a s e d a s t h e i ma g e s i z e i n c r e a s e s . I n t h e p a g e , wh e n Mi n - ma x c u t a l g o r i t h m i s a c h i e v e d , t h e we i g h t ma t ic r e s u s e d i n e v a l u a t i n g t h e g r a p h c u t s a r e b a s e d o n t h e g r a y l e v e l s o f a n i ma g e , r a t h e r t h a n t h e c o mmo n l y u s e d i ma g e p i x e l s t o d e t e r mi n e t he s e g me n t a t i o n t h r e s h o l d . Ex p e r i me n t a l r e s u l t s s h o w t h a t t h e Mi n - ma x c u t s e g me nt a t i o n a l g o r i t h m t h a t t h i s me t h o d a c h i e v e s i s s i mp l e , r e a l - t i me , a n d h a s a u t o ma t i c s e m e g n t a t i o n
摘 要 近年来 , 建立在 图论基 础上的谱 聚类算 法作 为一种 新型 的工具被 应用 于图像 分割 。其 本质是将 图像 分割 转
化为最优化 问题 , 其 中的最小最大割算法( Mi n - ma x c u t ) 能充分 满足聚 类算 法的准 则。算法 实现 过程 中, 把 最优化 准 则转化为特征 系统进行 求解 。该 实现 方法计算 复杂 , 随 着 图像 尺寸 的增加 , 所 需存 储 空间和计 算 时间复杂度 都会 增 加 。在 实现最小最大割算 法时, 用基 于灰度级的权值矩 阵代 替通 常所用的基 于 图像像 素的权值 矩阵来描述 图像各像 素的关 系, 确 定分割 的阈值 。实验表 明 , 此方法实现 的最小最大割算 法实现 简单、 实时性 高, 具有 自动分割等优越 的分
第4 1 卷 第1 期 2 0 1 4年 1 月
计
算
机. 1
Co mp u t e r S c i e n c e
J a n 2 0 1 4
基 于 最 小 最 大 割算 法 的 阈 值 分 割算 法
刘雅坤 于双 元 罗 四维
( 北京交通大学计算机 与信息技术学院 北京 1 0 0 0 4 4 )
g o it r h r n( Mi n - ma x c u t )c a n f u l l y me e t t h e c it r e r i a o f t h e c l u s t e r i n g a l g o r i t h m.I n t h e p r o c e s s o f i mp l e me n t a t i o n, o p t i mi —
LI U Ya - k u n YU S h u a n g - y u a n LUO S i  ̄ we i
( D e p a r t me n t o f C o mp u t e r a n d I n f o r ma t i o n Te c h n o l o g y , B e i j i n g J i a o t o n g Un i v e r s i t y, B e i j i n g 1 0 0 0 4 4 , C h i n a )
Ab s t r a c t I n r e c e n t y e a r s , t h e s p e c t r a l c l u s t e r i n g a l g o r i t h m b a s e d 0 n g r a p h t h e o r y i s a n e w t o o l t o b e a p p l i e d t o i ma g e s e g me n t a t i o n . Es s e n t i a l l y , i ma g e s e g me n t a d o n i s t O b e c o n v e r t e d i n o t t h e o p t i mi z a io t n p r o b l e m, a n d t h e mi n i mu m c u t a l —
sarea260mcut原始算法本文提出基于最小最大割算法的阈值分割算camera还是没有明确目标mcut和其他基于图论的阈值分割算法的分割结果mcut阈值分割算法与其他基于图论的阈值分割算法相比对于有明确目标和背景的图有充分体现mcut阈值分割算法的但是对于没有明确目标和背景即灰度分布比较均匀的图像typhoonmonkey实验结果有很大差别mcut阈值分割算以对有明确背景和目标图像实现目标提取也可以对没有明确背景或目标均匀分布图像实现比较好的阈值分割