锂离子动力电池
锂离子动力电池的优势与劣势分析

锂离子动力电池的优势与劣势分析锂离子动力电池作为目前应用最广泛的电池之一,其作用在各个领域的电力储存中扮演着重要的角色。
本文将从锂离子动力电池的优势和劣势两个方面进行分析,并探讨其在未来的应用前景。
优势分析:1. 高能量密度:锂离子动力电池具有较高的能量密度,能够储存和释放更多的电能,相对于传统的铅酸电池和镍氢电池来说,其能量密度更高,储存更多的能量,因此在同样体积的情况下,锂离子电池可以提供更长的续航里程。
2. 长循环寿命:与其他电池相比,锂离子电池具有较长的循环寿命。
经过数千次的充放电循环后,锂离子电池的性能仍能保持相对稳定。
这意味着锂离子电池可以在长期使用中保持更好的性能,延长了电池的使用寿命。
3. 无记忆效应:锂离子电池没有记忆效应,即使电池没有完全放空,也可以进行充电而不会对电池的性能产生负面影响。
这使得锂离子电池更加方便使用,可以根据实际需求进行充电,而无需担心记忆效应对电池寿命的影响。
4. 快速充电能力:相对于其他类型的电池,锂离子电池具有较快的充电速度。
现代锂离子电池技术的进步,使得电池能够在短时间内快速充电,从而提高了电池的可用性和便利性。
劣势分析:1. 安全性问题:锂离子电池在过热、过充、过放等情况下,存在安全隐患。
如果电池内部结构设计不当,或者电池过度使用时发生异常,可能会导致电池膨胀、起火甚至爆炸等安全事故。
因此,在设计和使用锂离子电池时需要特别注意安全问题,并采取相应的安全措施。
2. 有限的资源和环境影响:锂离子电池的生产需要消耗大量的锂资源,而目前全球锂资源的储量有限。
此外,电池的生产和废弃处理也会对环境造成一定的影响。
虽然一些回收技术正在发展,但对于大规模的电池废弃物处理仍然存在问题。
3. 电池容量衰退:锂离子电池的容量随着使用时间的增加而逐渐下降。
这是因为电池内部材料的物理和化学变化,导致电池容量减少。
尽管锂离子电池相对其他电池类型的容量衰减较慢,但随着使用寿命的延长,容量衰减仍然是影响锂离子电池性能的一个因素。
《2024年动力锂离子电池组寿命影响因素及测试方法研究》范文

《动力锂离子电池组寿命影响因素及测试方法研究》篇一一、引言随着科技的不断进步和电动汽车的兴起,动力锂离子电池组已成为移动设备和新能源汽车等众多领域的核心组成部分。
电池组的性能直接决定了其应用的效率和使用寿命。
因此,研究动力锂离子电池组的寿命影响因素及测试方法,对于提高电池性能、延长使用寿命、保障设备安全具有重要意义。
二、动力锂离子电池组寿命影响因素1. 内部因素(1)电池材料:电池的正负极材料、电解质和隔膜等材料对电池性能和寿命具有重要影响。
(2)电池结构:电池的内部结构如极片厚度、电极间距等也会影响电池的寿命。
(3)电池制造工艺:制造过程中的工艺控制、环境因素等也会对电池的寿命产生影响。
2. 外部因素(1)充放电条件:充放电电流、电压、充放电深度等都会影响电池的寿命。
(2)使用环境:温度、湿度、振动等环境因素也会对电池的寿命产生影响。
(3)滥用条件:过充、过放、短路等滥用条件会严重损害电池的寿命。
三、测试方法研究1. 容量测试容量测试是评估电池性能的重要指标之一。
通过充放电循环测试,测量电池在不同充放电条件下的容量变化,以评估电池的寿命。
2. 内阻测试内阻是反映电池内部电阻的重要参数,通过内阻测试可以评估电池的内阻变化,进而判断电池的性能和寿命。
3. 循环寿命测试循环寿命测试是评估电池在长期使用过程中性能衰减情况的重要方法。
通过模拟实际使用条件,对电池进行反复充放电循环测试,观察其容量、内阻等参数的变化,以评估其寿命。
4. 安全性能测试安全性能测试是评估电池在滥用条件下的安全性能的重要方法。
包括过充、过放、短路、针刺等测试,以检测电池的热失控、爆炸等安全隐患。
四、结论动力锂离子电池组的寿命受多种因素影响,包括内部因素和外部因素。
通过科学的测试方法,可以评估电池的性能和寿命。
在实际应用中,应根据具体需求选择合适的电池材料、结构和制造工艺,同时合理控制充放电条件和使用环境,以延长电池的使用寿命。
此外,安全性能测试也是必不可少的环节,应确保电池在滥用条件下的安全性。
锂离子动力电池简介

锂离子动力电池简介锂离子动力电池是一种先进的储能装置,具有高能量密度、长寿命、轻量化、无记忆效应等优点。
它在电动汽车、储能系统和便携式电子设备中得到了广泛应用。
本文将介绍锂离子动力电池的基本原理、优点和缺点,以及其在不同领域的应用。
一、基本原理锂离子动力电池是一种充电式电池,其工作原理是通过锂离子在正负极材料之间的迁移来完成电荷和放电过程。
其正极材料通常使用钴酸锂、镍酸锂等化合物,负极材料通常使用石墨等材料。
在充电时,锂离子从正极材料释放,并通过电解质溶液迁移到负极材料中嵌入或吸附;在放电时,锂离子从负极材料释放,并通过电解质溶液迁移到正极材料中嵌入或吸附。
这种迁移过程是可逆的,可以进行多次充放电循环。
二、优点1.高能量密度:锂离子动力电池具有较高的能量密度,可以存储更多的能量,提供更长的使用时间。
2.长寿命:相比于其他类型的电池,锂离子动力电池具有更长的使用寿命。
这是由于其迁移过程是可逆的,不会引起结构损伤。
3.轻量化:锂离子动力电池具有较高的能量密度和较低的重量,使其在移动设备和电动汽车等领域应用广泛。
4.无记忆效应:锂离子动力电池没有记忆效应,使用者可以根据需要进行充电,而无需等待完全放电。
三、缺点1.安全性问题:锂离子动力电池在充电和放电过程中可能会产生热量,进而导致电池过热,甚至起火或爆炸。
因此,安全性一直是锂离子动力电池的一个关键问题。
2.有限的循环寿命:锂离子动力电池的循环寿命是有限的,随着使用次数的增加,其容量会逐渐减少。
四、应用领域1.电动汽车:锂离子动力电池在电动汽车中得到了广泛应用,因为其具有较高的能量密度、长寿命和较低的重量。
它可以提供足够的动力和续航里程。
2.便携式电子设备:如手机、平板电脑和笔记本电脑等便携式电子设备使用锂离子动力电池,因为它具有较高的能量密度和长寿命,可以提供长时间的使用时间。
3.储能系统:锂离子动力电池在储能系统中也得到了广泛应用。
它可以储存太阳能和风能等可再生能源,提供稳定的能量供应。
锂离子动力电池的发展历程

锂离子动力电池的发展历程锂离子动力电池是目前最为先进和广泛应用的电池类型之一。
它由原始的充电电化学反应发展到现在的充电-放电循环反应,具有不同重量和体积、能量效率高、循环寿命长、环境友好等优点。
以下是锂离子动力电池的发展历程。
20世纪70年代初,锂离子电池只处于起步阶段,研发人员们尚未取得显著进展。
直到1980年代中期,日本的造纸生产厂商日本电气公司(日立公司的前身)利用钴酸锂作为正极材料开发出了第一款市场化的锂离子电池。
1991年,索尼株式会社生产出了中型的可充电锂离子电池,提高了电池的能量密度和寿命。
这种电池具有了一种更高的能量密度、更快的充电时间和更低的自放电率。
同年,瑞典的化学家阿贝林成功将锂离子电池应用于便携式电话上,让这种新型电池开始在通信领域得到广泛应用。
在随后的20多年里,锂离子电池得到了广泛应用,笔记本电脑、智能手机等电子产品的广泛普及使得锂离子电池的市场不断扩大。
为了节省成本,很多厂家先后出现在全球各地,同时也会出现安全问题。
2006年,索尼公司宣布召回其生产的180万颗锂离子电池,这是由于电池在过热情况下容易产生过热点和自燃。
随着锂离子电池技术的不断改进,其能量密度、安全性、循环寿命等方面都得到了极大的提高。
现在,大型电动汽车也开始采用锂离子电池,可以更好地解决绿色环保问题。
此外,固体电解质技术的发展可能会完全改变锂离子电池的产品结构和生产技术,更加环保而且性能更高的电池即将进入市场。
总之,锂离子动力电池是人类电力需求和环保要求不断提高的动力电池之一,其发展历程也是人类对新技术源追求的历程。
相信在未来,锂离子动力电池的性能和应用还会有更多的进展和发展。
锂离子动力电池的工作原理

锂离子动力电池的工作原理
锂离子动力电池是一种常见的二次电池,其工作原理基于锂离子在正负极材料之间的迁移和嵌入/脱嵌过程。
锂离子动力电池通常由正极、负极、电解质和隔膜组成。
1. 正极:通常使用锂化合物(如LiCoO2、LiFePO4等)作为正极材料。
在充电过程中,锂离子从负极通过电解质迁移到正极,嵌入到正极材料的晶格中。
这导致了正极材料的氧化反应。
2. 负极:通常使用石墨材料作为负极。
在充电过程中,锂离子从正极迁移到负极,并脱嵌出负极材料的晶格。
这导致了负极材料的还原反应。
3. 电解质:电解质通常是由锂盐(如LiPF6)溶解在有机溶剂中形成的电解质溶液。
它充当了锂离子的传输介质,使得锂离子能够在正负极之间移动。
4. 隔膜:隔膜用于分隔正负极,防止直接电子短路。
它允许锂离子通过,但阻止电解质中的离子或电子的直接传递。
在充电过程中,外部电源将电流通过电池,使得正极材料氧化并嵌入
锂离子,同时负极材料还原并脱嵌锂离子。
这样,电池会存储电能。
在放电过程中,当外部电路连接到电池上时,锂离子开始从正极迁移到负极,从而完成了电流的流动。
这导致正极材料的还原反应和负极材料的氧化反应,释放出储存的电能。
锂离子动力电池具有高能量密度、较长的循环寿命和较低的自放电率等优点,因此被广泛应用于电动汽车、移动设备等领域。
车用锂离子动力电池的工作原理

车用锂离子动力电池的工作原理随着电动车领域的快速发展,锂离子动力电池作为其主要能源储存装置,备受关注。
锂离子动力电池以其高能量密度、长寿命和高安全性等优势,逐渐替代了传统的铅酸蓄电池和镍氢电池,成为电动车的主要动力来源。
那么,锂离子动力电池是如何工作的呢?本文将深入探讨车用锂离子动力电池的工作原理。
一、锂离子动力电池的基本组成让我们了解一下锂离子动力电池的基本组成。
锂离子动力电池由正极、负极、电解质和隔膜组成。
正极通常由锂离子化合物(如LiCoO2、LiMn2O4)构成,负极则由碳石墨等材料构成。
电解质一般采用有机溶液或固态电解质,用于传递锂离子。
隔膜用于防止正负极直接接触,避免短路。
二、充放电的基本原理接下来,我们来了解锂离子动力电池的充放电原理。
当电池充电时,正极材料中的锂离子会从正极向负极迁移,同时在负极被嵌入碳石墨层中。
负极材料中的碳原子结构会将锂离子吸附,并储存在其中。
这样,电池就处于充电状态。
而在放电时,储存在负极中的锂离子会向正极迁移,通过电路提供电力。
三、锂离子动力电池的工作原理锂离子动力电池的工作原理主要包括充电和放电两个过程。
我们来看看充电过程。
当电池接入充电器时,外部电源会提供电力,使得正极材料中的锂离子被氧化,并向负极迁移,同时负极材料中的碳原子结构将锂离子吸附储存。
这时,电解质中的阴离子(如PF6-)会向正极迁移,以维持电荷平衡。
充电过程中,电池内部会产生热量,需要通过散热系统进行散热。
接着,我们来看看放电过程。
当电池连接到电动车系统时,正极材料中的锂离子会向负极迁移,通过外部电路提供电力。
电解质中的阴离子会向正极迁移,以维持电荷平衡。
这时,储存在负极的锂离子会向正极迁移,并在正极材料中被氧化。
电池通过放电释放能量,从而驱动电动车的运行。
四、锂离子动力电池的安全性锂离子动力电池在工作过程中可能存在过充电、过放电以及温度过高等安全隐患。
过充电可能导致电池过热、气体释放,甚至爆炸。
锂离子动力电池基本知识
锂离子动力电池基本知识大纲●电池分类●电池术语与及使用基本常识●磷酸铁锂动力电池之结构●磷酸铁锂动力电池之应用领域●磷酸铁锂动力电池之工艺流程●磷酸铁锂动力电池之生产设备●锂离子电池之性能指标电池种类划分●一次电池●小型二次电池:镍镉、镍氢、锂离子●铅酸电池●动力电池●燃料电池●太阳能电池-地面光伏发电●其他新型电池电池术语与及使用基本常识容量●电池在一定放电条件下所能给出的电量称为电池的容量,以符号C表示。
常用的单位为安培小时,简称安时(Ah)或毫安时(mAh)。
●电池的容量可以分为理论容量、额定容量、实际容量。
●理论容量是把活性物质的质量按法拉第定律计算而得的最高理论值。
为了比较不同系列的电池,常用比容量的概念,即单位体积或单位质量电池所能给出的理论电量,单位为Ah/kg(mAh/g)或Ah/L(mAh/cm3)。
●实际容量是指电池在一定条件下所能输出的电量。
它等于放电电流与放电时间的乘积,单位为 Ah,其值小于理论容量。
●额定容量也叫保证容量,是按国家或有关部门颁布的标准,保证电池在一定的放电条件下应该放出的最低限度的容量。
内阻●电流通过电池内部时受到阻力,使电池的电压降低,此阻力称为电池的内阻。
●电池的内阻不是常数,在放电过程中随时间不断变化,因为活性物质的组成、电解液浓度和温度都在不断地改变。
●电池内阻包括欧姆内阻和极化内阻,极化内阻又包括电化学极化与浓差极化。
内阻的存在,使电池放电时的端电压低于电池电动势和开路电压,充电时端电压高于电动势和开路电压。
●欧姆电阻遵守欧姆定律;极化电阻随电流密度增加而增大,但不是线性关系,常随电流密度的对数增大而线性增大。
负载能力●当电池的正负极两端连接在用电器上时,带动用电器工作时的输出功率,即为电池的负载能力。
内压●指电池的内部气压,是密封电池在充放电过程中产生的气体所致,主要受电池材料、制造工艺、电池结构等因素影响。
其产生原因主要是由于电池内部水分及有机溶液分解产生的气体于电池内聚集所致。
锂离子电池的优势与不足及其在动力电池中的应用分析
锂离子电池的优势与不足及其在动力电池中的应用分析锂离子电池作为一种先进的蓄电技术,在现代社会中得到了广泛的应用,尤其在动力电池领域具有重要的地位。
本文将对锂离子电池的优势和不足进行分析,并探讨其在动力电池中的具体应用。
一、锂离子电池的优势1. 高能量密度:锂离子电池相比传统的镍氢电池和铅酸电池,具有更高的能量密度,可以存储更多的电能,从而实现更长的使用时间。
这使得锂离子电池在移动设备、电动车辆等领域具有较大的市场优势。
2. 长循环寿命:锂离子电池具有较长的循环寿命,可以进行多次充放电循环,而且在循环过程中容量衰减较小。
这使得锂离子电池可以经受较为严苛的使用条件,比如电动汽车的长时间驾驶需求。
3. 快速充电能力:锂离子电池充电速度较快,可以在短时间内完成大部分充电工作。
这对于用户来说十分便利,在短暂的时间内即可获得足够的电能储备。
4. 环保节能:锂离子电池无污染物排放,无柴油发动机噪音,具有较高的环保与节能特性。
随着环保意识的提升,锂离子电池被广泛应用于电动汽车、太阳能储能等领域。
二、锂离子电池的不足1. 安全性风险:锂离子电池在充电、放电过程中可能会因短路、过充、过放等原因引发热失控,甚至发生爆炸、火灾等安全事故。
因此,锂离子电池的使用需要高度重视安全措施,以确保用户和设备的安全。
2. 成本较高:与其他电池相比,锂离子电池的制造成本较高,虽然随着技术的进步和规模效应的发挥,其成本有所下降,但仍然对大规模商业应用产生一定影响。
3. 有限的充电次数:锂离子电池虽然具有较长的循环寿命,但终究无法避免容量衰减和寿命的限制。
当充电次数到达一定次数后,锂离子电池的性能将会逐渐下降,需要更换新电池。
三、锂离子电池在动力电池中的应用锂离子电池在动力电池领域有广泛的应用,尤其在电动汽车和混合动力汽车中表现出较大的优势。
1. 电动汽车中的应用:锂离子电池具有高能量密度和快速充电能力,可以为电动汽车提供强大的动力支持,同时充电速度快可以有效缩短充电时间,提高使用效率。
多元复合锂离子动力电池-概念解析以及定义
多元复合锂离子动力电池-概述说明以及解释1.引言1.1 概述概述:多元复合锂离子动力电池是一种利用多种正极材料和电解液配方组成的先进动力电池。
它具有高能量密度、高功率和长循环寿命等特点,逐渐成为新一代动力电池技术的研究热点。
本文将对多元复合锂离子动力电池的特点、制备工艺和材料选择,以及应用前景和发展趋势进行详细的探讨,并对未来的发展做出展望。
1.2 文章结构本文将从多元复合锂离子动力电池的特点、制备工艺和材料选择、以及应用前景和发展趋势三个方面进行论述。
首先,将介绍多元复合锂离子动力电池相较于传统电池的特点和优势,包括其高能量密度、长循环寿命、安全性等方面的特点。
其次,将详细探讨制备工艺和材料选择对多元复合锂离子动力电池性能的影响,包括正极材料、负极材料、电解质等方面的选择和制备技术。
最后,将对多元复合锂离子动力电池在各个领域的应用前景和发展趋势进行展望,包括新能源汽车、储能设备等领域的发展潜力和市场前景。
通过对以上内容的深入探讨,旨在全面了解多元复合锂离子动力电池的特性、制备技术和应用前景,为未来研究和应用提供理论基础和实践指导。
1.3 目的本文旨在探讨多元复合锂离子动力电池的特点、制备工艺和材料选择以及应用前景和发展趋势。
通过对多元复合锂离子动力电池的深入研究和分析,旨在为电池行业的发展提供新的思路和方法,推动锂电池技术的进步与创新。
同时,通过对未来展望和结束语的陈述,希望能够为相关领域的研究者和从业者提供参考和启发,促进多元复合锂离子动力电池技术的广泛应用和发展。
2.正文2.1 多元复合锂离子动力电池的特点多元复合锂离子动力电池是一种结合多种不同材料进行复合的锂离子电池,具有以下特点:1. 高能量密度:多元复合锂离子动力电池采用多种不同材料进行复合,可以有效提高电池的能量密度,提高电池的续航能力,使其在特定体积或重量下具有更高的能量存储能力。
2. 高安全性:由于多元复合锂离子动力电池采用了多种不同材料的复合结构,可以有效减少电池在充放电过程中的热量积累,提高了电池的安全性,减少了爆炸和火灾的风险。
锂离子动力电池温度范围
锂离子动力电池温度范围
常规的锂离子电池工作温度在-20℃~60℃之间,但是一般来说,锂离子电池性能完全的工作温度常见为0℃~40℃。
具体温度范围可以根据应用场景来选择:
●一些特殊环境要求的锂离子电池温度各异。
比如一些低温锂电池,其工作
温度可以低于-20℃的,最低工作温度为-40℃的普通低温聚合物电池,以及最低工作温度为-55℃的超低温聚合物电池。
●还有一些宽温型的低温电池,可以在零下40℃到零上70℃工作,这种电池
重要用于车载电子设备等特殊要求的产品上。
然而,在低温条件下,锂电池的充电会变得困难,而且充电之后,其0℃时的容量保持率约60~70%,-10℃时为40~55%,-20℃时为20~40%。
而电池在环境温度超过60℃时,随着电池工作的升温,锂离子电池有过热燃烧、爆炸的风险。
此外,大部分的汽车企业采用的锂离子动力电池工作温度范围在15℃~35℃左右,当环境温度较高时则需要进行强制散热。
电动汽车配有风冷或液冷的强制扇热系统,环境温度达到45℃时也可以正常工作。
总的来说,不同的锂离子电池具有不同的温度适应范围,请根据实际需求选择适合的电池。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子动力电池锂离子动力电池是20世纪开发成功的新型高能电池。
这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n 等。
70年代进入实用化。
因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。
大容量锂离子电池已在电动汽车中试用,将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。
(1)单体电池工作电压高达3.7V,是镍镉电池, 镍氢电池的3倍,铅酸电池的近2倍,这也是锂离子动力电池比能量高的一个重要原因。
因此组成相同电压的动力电池组时,锂离子动力电池使用的串联数目会大大少于铅酸电池和镍氢电池。
如果动力电池中单体电池数量越多,电池组中单体电池的一致性要求就越高,寿命就越不好做,在实际使用过程中电池组有问题分析后,一般是其中一、两个单体电池出问题然后导致整组电池出现问题,因此不难理解为什么48V的铅酸电池比36V的铅酸电池反馈要高,从这个角度上讲锂电更适合动力电池的使用。
例如36V的锂电只需要10个单体,而36V铅酸电池需要18个单体电池,即3只12V的电池组,而每只12V的铅酸电池有六个单格即六个单体电池组成。
(2)重量轻,比能量大,高达150Wh/Kg,是镍氢电池的2倍,铅酸电池的4倍,铅酸电池的三分之一到四分之一,消耗的资源就少,储量比较多,因此相对铅酸、涨价,锂离子动力电池成本反而是进一步降低的。
动自行车用锂离子电池重量为2.2-4公斤,的重量为12-20公斤,之一到三分之一,比铅酸电池轻约10公斤(36V,电池),电池重量减轻了70%,了20%。
加上一般锂电车都是简易款的电动自行车,由于电池和整车轻,相同电压、里程更长,普通的电动车重量在40公斤以上,子动力电池电动自行车重量在7到26士和老年人都可以轻易搬动,运动休闲兼得。
(3)体积小,高达到400Wh/L,体积是铅酸电池的二分之一到三分之一。
提供了更合理的结构和更美观的外形的设计条件、设计空间和可能性。
现阶段由于铅酸电池体积、重量的限制,设计师们的设计思想受到极大约束,导致现阶段的电动自行车在结构和外观上“千车一面”、雷同相似、单调划一。
而锂离子电池的使用,给设计师们提供了展示设计思想和设计风格的更大空间及条件。
当然同时也导致电动自行车用锂离子动力电池尺寸多种多样,不利于锂动力电池行业的发展。
锂动力电池行业也需要尽快制定电动自行车用锂离子电池国家标准,加速在电动自行车领域锂电对铅酸电池的替代。
当然目前锂电池是在不断发展过程中的不同材料、不同工艺电池的体积有很大的差别,如何统一也是一个难点。
(4)循环寿命长,循环次数可达1000次。
以容量保持60%池组100%充放电循环次数可以达到600次以上,使用年限可达年,寿命约为铅酸电池的两到三倍。
随着技术的革新,设备的提高,电池的寿命会越来越长,性价比会越来越高。
(5) 自放电率低,每月不到5%。
(6)允许工作温度范围宽,低温性能好,锂离子动力电池可在-20℃~+55℃之间工作,尤其适合低温使用,而水溶液电池(比如铅酸电池、镍氢电池)在低温时,由于电解液流动性变差会导致性能大大降低。
(7样需要放电,可以随时随地的进行充电。
电池充放电深度,对电池的寿命影响不大,可以全充全放,我们循环测试就是全充全放的。
(8)特别适合用于动力电池,除了锂离子电池电压高之外,由于锂离子动力电池组的保护板能够对每一个单体电池进行高精度监测,低功耗智能管理,具有完善的过充电、过放电、温度、过流、短路保护、锁定自恢复功能以及可靠的均衡充电功能,大大的延长了电池的使用寿命。
而其他类型电池(比如铅酸电池)在使用过程中由于电池一致性、充电器等问题,易产生电池过充、过放等问题(由于成本等各方面的原因,铅酸电池组内不能对每一个单体电池进行监测和保护)。
(9电池”,国家重点扶持。
而铅酸电池和镉镍电池由于存在有害物质铅和镉,国家必然会加强监管和治理(铅酸电池出口退税的取消,铅资源税的增加,铅酸电动自行车出口的受限),相应企业的成本也会增加。
虽然锂电池没有污染,但从资源节约的角度考虑。
锂离子动力电池的回收,回收中的安全性,回收的成本也都需要考虑。
(10)存在安全隐患;由于锂离子动力电池能量高,材料稳定性差,锂电容易出现安全问题,目前世界上知名的手机和笔记本电脑电池极材料为钴酸锂和三元材料)生产企业,日本三洋、索尼等公司要求电池的爆喷率控制在40个ppb(十亿分之一)以下,国内公司能达到ppm(百万分之一)量的上百倍以上,因此对锂电的安全性要求极高。
虽然钴酸锂电池和三元材料的电池具有重量更轻,体积更小等优点,但它们是不适合作动力电池应用于电动车的。
(11)价格高;相同电压和相同容量的锂离子动力电池价格是铅酸的3-4倍。
随着锂离子动力电池市场的扩大,成本的降低,性能的提高,以及铅酸电池价格的提高,锂离子动力电池的性价比是有可能超过铅酸电池的。
锂离子动力电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
收集极和铜薄膜组成的电流收集极组成。
机电解质溶液。
另外还装有安全阀和PTC元件,池在不正常状态及输出短路时保护电池不受损坏。
单节锂电池的电压为3.6V ,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,场合的要求。
应用编辑本段回目录提出了很高的要求。
锂离子动力电池随之进入了大规模的实用阶段。
低,放电电压平缓。
使得起搏器植入人体长期使用成为可能。
锂离子动力电池一般有高于3.0中。
体。
举例:1、作电池组维修代换品有许多电池组:如笔记本电脑上用的那种,经维修发现,此电池组损坏时仅是个别电池有问题。
可以选用合适的单节锂电池进行更换。
2、制作高亮微型电筒笔者曾用单节3.6V1.6AH锂电池配合一个白色超高亮度发光管做成一只微型电筒,使用方便,小巧美观。
而且由于电池容量大,平均每晚使用半小时,至今已用两个多月仍无需充电。
3、代替3V电源。
由于单节锂电池电压为3.6V。
因此仅需一节锂电池便可代替两节普通电池,给收音机、随身听、照相机等小家电产品供电,不仅重量轻,而且连续使用时间长。
科学研究编辑本段回目录为了开发出性能更优异的品种,人们对各种材料进行了研究。
从而制造出前所未有的产品。
比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。
它们的正极活性物质同时也是电解液的溶剂。
这种结构只有在非水溶液的电化学体系才会出现。
所以,锂电池的研究,也促进了非水体系电化学理论的发展。
除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。
21世纪,科学家研发了一种新型的盐酸铁锂离子动力电池。
酸铁锂离子动力电池可归纳下述特点。
1高效率输出:标准放电为2~5C 、连续高电流放电可达10C ,瞬间脉冲放电(10S )可达20C ;2 65℃时内部温度则高达95℃,电池放电结束时温度可达160℃,电池的结构安全、完好;3 池不燃烧、不爆炸、安全性最好;4 极好的循环寿命,经次循环,其放电容量仍大于95%;5 过放电到零伏也无损坏;6可快速充电;7 低成本;8 对环境无污染。
由于磷酸铁锂动力电池具有上述特点,量的电池,很快得到广泛地应用。
它主要应用领域有:1 大型电动车辆:公交车、电动汽车、景点游览车及混合动力车等;2 轻型电动车:电动自行车、高尔夫球车、小型平板电瓶车、铲车、清洁车、电动轮椅等;3 电动工具:电钻、电锯、割草机等;4 遥控汽车、船、飞机等玩具;5 太阳能及风力发电的储能设备;6 UPS 及应急灯、警示灯及矿灯(安全性最好);7 替代照相机中3V 的一次性锂电池及9V 的镍镉或镍氢可充电电池(尺寸完全相同);8 小型医疗仪器设备及便携式仪器等。
构件性能编辑本段回目录(1)电池的开路电压(2)电池的内阻(3)电池的工作电压(4)充电电压 充电电压是指二次电池在充电时,一般采用恒电流充电,小,电机的极化逐渐增高。
(5)电池容量 电池容量是指从电池获得电量的量,常用C 单位常用Ah 或mAh 表示。
容量是电池电性能的重要指标。
电池的容量通常分为理论容量、实际容量和额定容量。
电池容量由电极的容量决定,若电极的容量不等,电池的容量取决于容量小的那个电极,但决不是正负极容量之和。
(6)电池的贮存性能和寿命 化学电源的主要特点之一是在使用时能够放出电能,不用时能贮存电能。
所谓贮存性能对于二次电池来说为充电保持能力。
对于二次电池,使用寿命时衡量电池性能好坏的一个重要参数。
二次电池经过一次充电和放电,称为一个周期(或已此循环)。
在一定的充放电制度下,电池容量达到某一规定值之前电池能经受的充放电次数称为二次电池的使用周期。
锂离子动力电池具有优良的贮存性能和长的循环寿命。
(7)保护电路由两个场效应管和专用保护集成块S--8232成,过充电控制管FET2和过放电控制管FET1保护IC监视电池电压并进行控制,当电池电压上升至4.2V时,过充电保护管FET1截止,停止充电。
为防止误动作,一般在2.55V时,过放电控制管FET1截止,停止向负载供电。
保护是在当负载上有较大电流流过时,控制FET1使其截止,测是利用场效应管的导通电阻作为检测电阻,监视它的电压易仿制。
因为锂离子动力电池过充或过放可能会导致爆炸并造成人员伤害,所以使用这类电池时,安全是主要关心的问题。
因此,商用锂离子电池组通常包括象DS2720这样的保护电路(图7)。
DS2720提供了可充电锂离子动力电池所需的所有保护功能,如:在充电时保护电池、防止电路过流、通过限制电池的放电电压延长电池寿命。
保存方法编辑本段回目录锂离子动力电池需充足电后保存。
在20℃下可储存半年以上,可见锂离子动力电池适宜在低温下保存。
池放入冰箱冷藏室内保存,的确是个好主意。
锂离子动力电池存在自放电现象,子动力电池应当每3~6个月补电一次,即充电到电压为3.8~3.9V(锂电池最佳储存电压为3.85V左右)为宜。
1、如何为新电池充电?在使用锂离子动力电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。
但锂离子动力电池很容易激活,只要经过3—5次正常的充放电循环就可激活电池,恢复正常容量。
由于锂电池本身的特性,决定了它几乎没有记忆效应。
因此用户新锂电池在激活过程中,是不需要特别的方法和设备的。
不仅理论上是如此,从实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。
间一定要超过12小时,反复做三次,以便激活电池。
这种三次充电要充12小时以上”的说法,明显是从镍电池(如镍是误传。