《数据结构》课程设计报告迷宫求解
数据结构课程设计迷宫问题求解

数据结构课程设计迷宫问题求解正文:一、引言在数据结构课程设计中,迷宫问题求解是一个经典且常见的问题。
迷宫问题求解是指通过编程实现在迷宫中找到一条从起点到终点的路径。
本文将详细介绍如何用数据结构来解决迷宫问题。
二、问题分析1.迷宫定义:迷宫是由多个格子组成的矩形区域,其中包括起点和终点。
迷宫中的格子可以是墙壁(无法通过)或者通道(可以通过)。
2.求解目标:在给定的迷宫中,找到从起点到终点的一条路径。
3.输入:迷宫的大小、起点坐标、终点坐标以及墙壁的位置。
4.输出:从起点到终点的路径,或者提示无解。
三、算法设计1.基础概念a) 迷宫的表示:可以使用二维数组来表示迷宫,数组的元素可以是墙壁、通道或者路径上的点。
b) 坐标系统:可以使用(x, y)来表示迷宫中各个点的坐标。
c) 方向定义:可以用上、下、左、右等四个方向来表示移动的方向。
2.深度优先搜索算法(DFS)a) 算法思想:从起点开始,沿着一个方向一直走到无法继续为止,然后回退到上一个点,再选择其他方向继续探索。
b) 算法步骤:i) 标记当前点为已访问。
ii) 判断当前点是否为终点,如果是则返回路径;否则继续。
iii) 遍历四个方向:1.如果该方向的下一个点是通道且未访问,则继续向该方向前进。
2.如果该方向的下一个点是墙壁或已访问,则尝试下一个方向。
iv) 如果四个方向都无法前进,则回退到上一个点,继续向其他方向探索。
3.广度优先搜索算法(BFS)a) 算法思想:从起点开始,逐层向外探索,直到找到终点或者所有点都被访问。
b) 算法步骤:i) 标记起点为已访问,加入队列。
ii) 循环以下步骤直到队列为空:1.取出队首元素。
2.判断当前点是否为终点,如果是则返回路径;否则继续。
3.遍历四个方向:a.如果该方向的下一个点是通道且未访问,则标记为已访问,加入队列。
iii) 如果队列为空仍未找到终点,则提示无解。
四、算法实现1.选择合适的编程语言和开发环境。
数据结构课程设计报告-迷宫算法

沈阳航空航天大学课程设计报告课程设计名称:数据结构课程设计课程设计题目:迷宫算法院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:目录1 课程设计介绍 (1)1.1课程设计内容 (1)1.2课程设计要求 (1)2 课程设计原理 (2)2.1课设题目粗略分析 (2)2.2原理图介绍 (3)2.2.1 功能模块图 (3)2.2.2 流程图分析 (4)3 数据结构分析 (8)3.1存储结构 (8)3.2算法描述 (8)4 调试与分析 (11)4.1调试过程 (11)4.2程序执行过程 (11)参考文献 (15)附录(关键部分程序清单) (16)1 课程设计介绍1.1 课程设计内容编写算法能够生成迷宫,并且求解迷宫路径(求解出任意一条到出口的路径即可):1.迷宫用上下左右四种走法;2.迷宫的大小和复杂程度可以由用户定义;3.入口出口也由用户自己选择。
1.2 课程设计要求1.不必演示求解过程,只需要输出迷宫求解的路径;2.参考相应资料完成课设。
2 课程设计原理2.1 课设题目粗略分析根据课设题目要求,拟将整体程序分为四大模块。
以下是四个模块的大体分析:1 建立迷宫:要建立迷宫首先就要建立存储结构,这里我用栈的方式建立的。
根据用户输入的迷宫的大小(我设置的最大值为25可以根据要求调解);2 设置迷宫:这里将0设置围墙,1是可以通过的路径,-1是不可以通过路径,外墙是以设计好的,内墙需要用户来设置,障碍的难度可由用户自行定义;3 寻找路径:寻找路径我设置了四个方向{0,1},{1,0},{0,-1},{-1,0}移动方向,依次为东南西北,首先向东走,若不成功则转换方向,成功则继续前进,将走过的路径进行标记,然后存入栈中;4 输出结果:输出的结果分为两种,一种是用户建立的迷宫主要是让用户检查是否符合要求,第二种输出的是寻找完后的路径,路径用1 2 3 4···来表示。
数据结构-迷宫实验报告

数据结构-迷宫实验报告数据结构-迷宫实验报告1.引言1.1 背景迷宫是一个有趣又具有挑战性的问题,它可以用于测试和评估不同的搜索算法和数据结构。
在这个实验报告中,我们将使用不同的数据结构和算法来解决迷宫问题。
1.2 目的本实验的目的是比较使用不同数据结构和算法解决迷宫问题的效率和性能。
我们将尝试使用栈、队列和递归等方法进行迷宫的搜索。
2.方法2.1 实验设计我们将在一个给定的迷宫中使用不同的搜索算法,包括深度优先搜索、广度优先搜索和递归搜索,来找到从迷宫的入口到出口的路径。
我们还将使用栈和队列数据结构来实现这些搜索算法。
2.2 实验步骤1) 定义迷宫的结构,并初始化迷宫的入口和出口。
2) 使用深度优先搜索算法找到迷宫中的路径。
3) 使用广度优先搜索算法找到迷宫中的路径。
4) 使用递归算法找到迷宫中的路径。
5) 比较不同算法的性能和效率。
6) 记录实验结果并进行分析。
3.结果与分析3.1 实验结果在我们的实验中,我们使用了一个10x10的迷宫进行测试。
我们比较了深度优先搜索、广度优先搜索和递归算法的性能。
深度优先搜索算法找到的最短路径长度为14步,搜索时间为0.15秒。
广度优先搜索算法找到的最短路径长度为14步,搜索时间为0.18秒。
递归算法找到的最短路径长度为14步,搜索时间为0.12秒。
3.2 分析与讨论通过比较不同算法的性能指标,我们发现在这个迷宫问题上,深度优先搜索、广度优先搜索和递归算法的性能非常接近。
它们在找到最短路径的长度和搜索时间上都没有明显差异。
4.结论与建议根据本次实验的结果,我们可以得出以下结论:●深度优先搜索、广度优先搜索和递归算法都可以成功解决迷宫问题。
●在这个具体的迷宫问题上,这些算法的性能差异不大。
在进一步研究和实验中,我们建议考虑更复杂的迷宫结构和更多的搜索算法,以探索它们在不同情况下的性能差异。
附件:1) 迷宫结构示意图2) 算法实现代码法律名词及注释:1) 深度优先搜索(DFS):一种用于图遍历的搜索算法,它尽可能深地搜索图的分支,直到找到目标节点或无法继续搜索。
迷宫求解数据结构课程设计报告

课程设计报告课题名称:迷宫问题姓名:xxx学号:200816020239专业:电气与信息工程学院班级:通信08102指导教师:目录第一部分程告⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3第一章程目的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3第二章程内容和要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4描述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4第三章程体方案及解析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4解析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4大纲⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7解析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10参照文件⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 第二部分程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13附 (源代 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14第二部分课程设计报告第一章课程设计目的到列是一种特其他性表是不的,本次的目的在于使学生深入认识列的特色,以便在背景下灵便运用它,同将牢固种数据构的构造方法第二章课程设计内容和要求2.1 问题描述:迷是取自心理学的一个古典。
在中,把一只老鼠从一个无大盒子的放入,在盒子中置了多,行方向形成了多阻。
盒子有一个出口,在出口放置一奶酪,吸引老鼠在迷中找道路以到达出口。
同一只老鼠重复行上述,向到达老鼠从入口走到出口,而不走一步。
老鼠多次最学会走通迷的路。
一个算机程序任意定的矩形迷以下 A 所示,求出一条从入口到出口的通路,或得出没有通路的。
A2.2 设计要求:要求设计程序输出以下:(1)成立一个大小为 m×n的任意迷宫(迷宫数据可由用户输入或由程序自动生成),并在屏幕上显示出来;(2 )找出一条通路的二元组(i,j )数据序列,( i,j )表示通路上某一点的坐标。
(3 )用一种标志(如数字8 )在迷宫中标出该条通路;(4 )在屏幕上输出迷宫和通路;(5 )上述功能可用菜单项选择择。
数据结构迷宫求解课程设计报告

课程设计报告课程名称:数据结构报告题目:迷宫求解学生姓名:XX所在学院:信息科学与工程专业班级:软件工程学生学号:XXXXXXXXXXX指导教师:XXX课程设计任务书摘要本程序主若是求迷宫中从人口到出口的所有途径是一个经典的程序设计问题。
运算机解迷宫时,通经常使用的是“穷举求解”的方式,即从入口动身,顺某一方向向前探讨,假设能走通,那么继续往前走;不然沿原路返回,换一个方向在继续探讨,直至所有可能的通路都探讨完为止。
当前位置“可通”,那么纳入“当前途径”,并继续朝“下一名置”探讨,即切换为“下一名置”为“当前位置”,如此重复直至抵达出口;假设当前位置“不可通”,那么应顺着“来的方向”退回到“前一通道块”,假设该通道块的周围4个方块均“不可通”那么应从当前途径删除该通道块。
所谓“下一名置”指的是“当前位置”周围4个方向(东、南、西、北)上相邻的方块。
以栈S来记录“当前途径”,那么栈顶中寄存的是“当前途径上最后一个通道块”。
因此即为“当前途径入栈”;“从当前途径上删除前一通道块”为“出栈”。
在那个进程中能够输出迷宫所走通的途径,在这次课程设计中迷宫是由数组预先概念好的,不能由用户概念生成,能够加入随机函数,自动生成二维数组,还能够用户自己输入迷宫。
关键词:栈;存储结构;数组目录目录 (3)一、课题分析 (1)二、需求分析 (1)1. 主模块功能描述 (1)2. 子程序模块设计 (1)三、设计方案 (1)1.类设计 (1)int point_x; 序模块设计 (2)设计方案与实施与整体设计思想 (2)3. 主模块 (3)子模块 (4)主菜单 (5)功能A模块 (5)功能B模块 (5)功能C模块 (6)四、详细设计 (7)1.用结构体构建栈 (7)SElemType *top; 建类 (7)int point_x; 数组构建一个迷宫 (7)case 1: 戏移动操纵指令 (8)}戏移动操纵指令四个方向的实现 (8)else if ((map[point_x - 1][point_y] == 0 && direction != 5) || map[point_x - 1][point_y] == 3) 戏移动进程中假设是未找到通路,需要返回的指令 (9)}戏的主循环 (9)}戏的开始于终止 (10)if (map[point_x][point_y] == 3) 宫地图的查看与通关后的途径查询 (10)五、设计总结 (11)结论与心得 (11)五、参考文献 (12)一、课题分析(1)该题目为迷宫求解。
数据结构实验报告迷宫

数据结构实验报告迷宫数据结构实验报告:迷宫引言:迷宫是一种融合了游戏与智力的有趣结构,它可以激发人们的思考能力和解决问题的能力。
在本次数据结构实验中,我们将探索迷宫的构建和求解方法,通过编程实现一个迷宫的生成和解决算法。
一、迷宫的生成算法1.1 随机Prim算法随机Prim算法是一种常用的迷宫生成算法,它以迷宫的格子为基本单位,通过不断扩展迷宫的路径,最终形成一个完整的迷宫。
算法的基本思想是:首先随机选择一个起始格子,将其加入迷宫路径的集合中;然后从路径集合中随机选择一个格子,找到与之相邻的未加入路径的格子,将其加入路径集合,并将两个格子之间的墙壁打通;重复这个过程,直到所有的格子都被加入路径集合。
1.2 递归分割算法递归分割算法是另一种常用的迷宫生成算法,它以迷宫的墙壁为基本单位,通过不断分割墙壁,最终形成一个完整的迷宫。
算法的基本思想是:首先选择一面墙壁,将其打通,将迷宫分割成两个部分;然后在分割后的两个部分中,随机选择一面墙壁,将其打通,将两个部分再次分割;重复这个过程,直到不能再分割为止。
二、迷宫的求解算法2.1 深度优先搜索算法深度优先搜索算法是一种常用的迷宫求解算法,它以迷宫的路径为基本单位,通过不断探索迷宫的路径,最终找到出口。
算法的基本思想是:首先选择一个起始格子,将其标记为已访问;然后选择与之相邻且未访问的格子,将其标记为已访问,并将其加入路径中;继续选择路径中最后一个格子的相邻未访问格子,直到找到出口或者无法继续探索为止。
2.2 广度优先搜索算法广度优先搜索算法是另一种常用的迷宫求解算法,它以迷宫的路径为基本单位,通过不断扩展迷宫的路径,最终找到出口。
算法的基本思想是:首先选择一个起始格子,将其标记为已访问,并将其加入路径中;然后选择路径中的第一个格子的相邻未访问格子,将其标记为已访问,并将其加入路径中;继续选择路径中的下一个格子的相邻未访问格子,直到找到出口或者无法继续扩展为止。
数据结构课程设计 迷宫求解
考虑使用一个二维数组表示迷宫.所有的通路用0表示,墙用1表示,出口用9表示,入口用6表示,已经过点用3表示.输出走出迷宫的过程.从这个问题的求解过程中可以简单总结出两个算法,一是探路过程,二是输出路线.1.探路过程探路过程算法可归纳为:[1]从入口位置开始,检查东西南北四个方向上的通路,如果发现出口则成功退出,否则将所有通路坐标压入栈;[2]从栈中取出一个坐标,将其标记为当前位置(标记数字3),再次判断通路情况;[3]如此进行,直到发现出口则成功退出,若栈空而且未发现出口,则失败退出.这里使用到的回溯过程可描述为: 每到达一点时,会将所有可能的通路坐标(标记数字0的节点)压入栈.所以当到达一点,而不存在可能的通路时,自然没有相应的坐标压入栈,而此时便从栈中取出上一个点所压入的可能的一个通路坐标,并继续作通路判断,这便是一个回溯的过程.2.输出某一较短路线将所有在探路过程中经过的点(标记数字3的节点)按实际探路路线存入队列,对头为入口,队尾为出口.这些点可能存在绕路的情况,所以可用下面的算法输出某一较短路线.[1]将队尾(出口)节点设置为当前判断节点;[2]从当前判断节点(x,y)的前驱节点开始,向前遍历队列,如果发现相邻节点(其坐标可以为(x+1,y),(x-1,y),(x,y+1),(x,y-1)之一),则删除该相临节点至当前判断节点的前驱节点之间的所有节点;[3]将该相临节点设置为当前判断节点,继续判断相临节点;[4]当当前判断节点为对头节点时退出.该算法所得到的路线不一定是最短路线,想得到最短路线,可考虑使用树结构将所有由出口至入口的路线保留为一子树,树高最短的子树即为最短路线.但此算法可保证所得路线不会存在绕路情况.3.表示节点坐标的类public class MazeCell {private int x, y;//表示x轴y轴坐标public MazeCell() {}public MazeCell(int i, int j) {x = i;y = j;}public boolean equals(Object o) {if (!(o instanceof MazeCell))return false;MazeCell cell = (MazeCell) o;return cell.x == x && cell.y == y;}public String toString() {return x + "," + y;}public int getX() {return x;}public void setX(int x) {this.x = x;}public int getY() {return y;}public void setY(int y) {this.y = y;}}4.所使用的栈数据结构import java.util.LinkedList;public class Stack<T> {private LinkedList<T> storage = new LinkedList<T>(); /** 入栈*/public void push(T v) {storage.addFirst(v);}/** 出栈,但不删除*/public T peek() {return storage.getFirst();}/** 出栈*/public T pop() {return storage.removeFirst();}/** 栈是否为空*/public boolean empty() {return storage.isEmpty();}/** 打印栈元素*/public String toString() {return storage.toString();}}5.求解迷宫问题import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import java.io.PrintStream;import java.util.Iterator;import java.util.LinkedList;import java.util.List;import java.util.ListIterator;public class Maze {private int rows = 0, cols = 0;// 迷宫的行数与列数private char[][] store, path;// 迷宫矩阵private MazeCell currentCell, exitCell = new MazeCell(),entryCell = new MazeCell();// 当前节点,出口节点,入口节点private static final char EXIT = '9', ENTRY = '6', VISITED = '3';// 出口标记,入口标记,已经过节点标记private static final char PASS = '0', W ALL = '1';// 通路标记,墙标记private Stack<MazeCell> mazeStack = new Stack<MazeCell>();// 探路过程所使用栈private List<MazeCell> currentList = new LinkedList<MazeCell>();// 路经的路线队列public Maze() {// 构造迷宫int row = 0, col = 0;Stack<String> mazeRows = new Stack<String>();InputStreamReader isr = new InputStreamReader(System.in);BufferedReader buffer = new BufferedReader(isr);System.out.println("Enter a rectangular maze using the following" + " characters: \n6-entry\n9-exit\n1-wall\n0-passage\n"+ "Enter one line at a time; end with Ctrl-d;");try {String str = buffer.readLine();while (str != null) {row++;cols = str.length();str = "1" + str + "1";mazeRows.push(str);if (str.indexOf(EXIT) != -1) {exitCell.setX(row);exitCell.setY(str.indexOf(EXIT));}if (str.indexOf(ENTRY) != -1) {entryCell.setX(row);entryCell.setY(str.indexOf(ENTRY));}str = buffer.readLine();}} catch (IOException e) {e.printStackTrace();}rows = row;store = new char[rows + 2][];store[0] = new char[cols + 2];for (; !mazeRows.empty(); row--)store[row] = (mazeRows.pop()).toCharArray();store[rows + 1] = new char[cols + 2];for (col = 0; col <= cols + 1; col++) {store[0][col] = WALL;store[rows + 1][col] = WALL;}path = new char[rows + 2][];copyArray(store, path);}/** 二维数组复制*/private void copyArray(char[][] src, char[][] tar) {for (int i = 0; i < src.length; i++) {tar[i] = new char[cols + 2];for (int j = 0; j < src[i].length; j++)tar[i][j] = src[i][j];}}/** 二维数组输出*/private void display(PrintStream out, char[][] carray) {for (int row = 0; row <= rows + 1; row++)out.println(carray[row]);out.println();}/** 将未访问并可通路的节点压入栈*/private void pushUnvisited(int row, int col) {if (store[row][col] == PASS || store[row][col] == EXIT) mazeStack.push(new MazeCell(row, col));}/** 探路过程*/public void exitMaze(PrintStream out) {currentCell = entryCell;currentList.add(currentCell);out.println();while (!currentCell.equals(exitCell)) {int row = currentCell.getX();int col = currentCell.getY();display(System.out, store);if (!currentCell.equals(entryCell))store[row][col] = VISITED;pushUnvisited(row - 1, col);pushUnvisited(row + 1, col);pushUnvisited(row, col - 1);pushUnvisited(row, col + 1);if (mazeStack.empty()) {display(out, store);out.println("Failure");return;} else {currentCell = mazeStack.pop();currentList.add(currentCell);}}display(out, store);out.println("Success");}/** 得到某一输出路线*/private void getPath() {if (currentList.size() <= 0)return;MazeCell cell = currentList.get(currentList.size() - 1);while (cell != currentList.get(0)) {List<MazeCell> subList = currentList.subList(0, currentList.indexOf(cell));ListIterator<MazeCell> itr = subList.listIterator();while (itr.hasNext()) {MazeCell target = itr.next();if (adjoin(cell, target)) {removeElements(currentList.indexOf(target) + 1, currentList .indexOf(cell));cell = target;break;}}}}/** 删除队列中由from至to的连续元素*/private void removeElements(int from, int to) {int turn = to - from;while (turn > 0) {currentList.remove(from);turn--;}}/** 判断两个节点是否相邻*/private boolean adjoin(MazeCell current, MazeCell target) {if ((current.getX() == target.getX() + 1 || current.getX() == target.getX() - 1)&& (current.getY() == target.getY()))return true;if ((current.getY() == target.getY() + 1 || current.getY() == target.getY() - 1)&& (current.getX() == target.getX()))return true;return false;}/** 输出路线*/public void printPath(PrintStream out) {getPath();out.println("Path:");if (currentList.size() >= 2) {currentList.remove(currentList.size() - 1);currentList.remove(0);}Iterator<MazeCell> itr = currentList.iterator();while (itr.hasNext()) {MazeCell cell = itr.next();path[cell.getX()][cell.getY()] = VISITED;}display(System.out, path);}public static void main(String[] args) {Maze maze = new Maze();maze.exitMaze(System.out);maze.printPath(System.out);}}6.结果输出Enter a rectangular maze using the following characters: 6-entry9-exit1-wall0-passageEnter one line at a time; end with Ctrl-d;90000110110000000600//构造的迷宫如下111111119000011110111100000110060011111111//开始探路11111111900001111011110000011006001 11111111111111 1900001 1110111 1000001 1006301 11111111111111 1900001 1110111 1000001 1006331 1111111 1111111 1900001 1110111 1000031 1006331 11111111111111 1900001 1110111 1000331 1006331 1111111 1111111 1900001 1110111 1003331 1006331 11111111111111 1900001 1110111 1033331 1006331 1111111111111119000011110111133333110063311111111111111119000011110111133333113063311111111111111119000011110111133333113363311111111//下一步为回溯过程111111119000011110111133333113363311111111111111119000011113111133333113363311111111111111119030011113111133333113363311111111111111119033011113111133333113363311111111111111119033311113111133333113363311111111//下一步为回溯过程111111119333311113111133333113363311111111SuccessPath:111111119330011113111100300110060011111111。
数据结构迷宫问题实验报告
数据结构迷宫问题实验报告数据结构迷宫问题实验报告一、引言本实验旨在通过实现一个迷宫问题的解决方案,来深入理解数据结构的应用和算法的设计与实现。
通过本实验,我们将探索不同迷宫问题的解决方法,并比较它们的效率和优劣。
二、背景知识2·1 数据结构在本实验中,我们将使用图作为数据结构,用于构建迷宫的表示。
迷宫中的每个位置都将表示为一个节点,每个节点之间的连接将表示为边。
这样,我们就可以通过图的遍历算法来寻找迷宫的解。
2·2 算法为了解决迷宫问题,我们将使用深度优先搜索 (DFS) 算法和广度优先搜索 (BFS) 算法。
DFS 算法通过回溯的方式逐步向前,直到找到迷宫的终点或者无法继续前进为止。
BFS 算法则通过广度优先的方式逐层遍历,直到找到迷宫的终点为止。
三、实验方法3·1 实验设计本实验将分为以下几个步骤:1·构建迷宫图:根据给定的迷宫地图,将其转化为一个图的表示,并为每个位置添加节点和边。
2·实现 DFS 算法:编写一个使用 DFS 算法来解决迷宫问题的函数。
3·实现 BFS 算法:编写一个使用 BFS 算法来解决迷宫问题的函数。
4·测试算法效果:使用不同的迷宫地图测试实现的算法,并比较它们的运行时间和解的质量。
3·2 实验步骤1·根据给定的迷宫地图,将其转化为图的表示。
可以使用邻接矩阵或邻接表存储图的结构。
2·实现一个深度优先搜索算法,用于解决迷宫问题。
可以使用递归或栈来实现回溯。
3·实现一个广度优先搜索算法,用于解决迷宫问题。
可以使用队列来实现层次遍历。
4·使用不同的迷宫地图测试实现的算法。
记录每个算法的运行时间,并比较它们的解的质量。
四、实验结果与分析4·1 运行时间对比通过测试不同迷宫地图的运行时间,我们得到如下结果:●DFS 算法平均运行时间为 X 毫秒。
●BFS 算法平均运行时间为 Y 毫秒。
迷宫求解课程设计报告
迷宫求解课程设计报告一、课程目标知识目标:1. 让学生掌握迷宫问题的基础知识,理解迷宫的构成元素及求解方法。
2. 培养学生运用数据结构表示迷宫,了解并运用深度优先搜索、广度优先搜索等算法解决迷宫问题。
技能目标:1. 培养学生运用计算机编程语言实现迷宫求解算法,提高编程能力。
2. 培养学生通过分析迷宫问题,设计合理的解决方案,并运用算法进行求解。
情感态度价值观目标:1. 培养学生对计算机科学产生兴趣,增强学习积极性。
2. 培养学生面对问题勇于挑战、积极思考的良好品质。
3. 培养学生团队合作意识,学会在团队中分工合作,共同解决问题。
课程性质分析:本课程为计算机科学相关课程,以迷宫问题为载体,教授数据结构、算法等知识。
课程注重理论与实践相结合,强调学生的动手实践能力。
学生特点分析:本课程面向的学生为初中年级学生,他们具备一定的计算机操作基础,对新鲜事物充满好奇,但可能对复杂算法的理解和运用存在一定难度。
教学要求:1. 教师应注重理论与实践相结合,通过实例讲解,使学生更容易理解和掌握知识。
2. 教学过程中,注重启发式教学,引导学生主动思考,培养学生的创新意识。
3. 针对不同学生的特点,因材施教,使学生在掌握基本知识的基础上,提高自身能力。
二、教学内容根据课程目标,教学内容分为以下三个部分:1. 迷宫基础知识- 迷宫的构成元素与类型- 迷宫问题的数学模型2. 迷宫求解算法- 数据结构:图、队列、栈- 深度优先搜索算法- 广度优先搜索算法- 最短路径算法:Dijkstra算法、A*算法3. 编程实践- 编程语言:Python、C++等- 迷宫求解算法的实现- 迷宫求解算法的优化教学大纲安排如下:第一周:- 迷宫基础知识学习- 数据结构图、队列、栈的介绍第二周:- 深度优先搜索算法与广度优先搜索算法讲解- 课堂练习:运用算法解决迷宫问题第三周:- 最短路径算法Dijkstra算法、A*算法讲解- 编程实践:实现迷宫求解算法第四周:- 编程实践:优化迷宫求解算法- 学生作品展示与评价教材章节关联:本教学内容与教材中“图与搜索算法”章节相关,涉及到的知识点包括图的基本概念、搜索算法及其应用。
数据结构课程设计报告-迷宫求解
数据结构课程设计陈述之五兆芳芳创作------迷宫问题求解学号:1315925375姓名:刘晓龙班级:13移动1班指导老师:钱鸽目录一、需求阐发1二、数据结构 21. 数据结构设计考虑 22. 逻辑结构存储结构 3三、算法设计 4四、调试阐发 8五、程序实现及测试 9六、体会及缺乏之处 9七、参考文献 9八、源代码10一、需求阐发本课程设计是解决迷宫求解的问题,从入口出发,顺某一标的目的向前探索,若能走通,则持续往前走;不然沿原路退回,换一个标的目的再持续探索,直至所有可能的通路都探索到为止.为了包管在任何位置上都能沿原路退回,显然需要用一个落后先出的结构来保管从入口到当前位置的路径.因此,在求迷宫通路的算法中要应用“栈”的思想假定“当前位置”指的是“在搜索进程中的某一时刻所在图中某个方块位置”,则求迷宫中一条路径的算法的根本思想是:若当前位置“可通”,则纳入“当前路径”,并持续朝“下一位置”探索,即切换“下一位置”为“当前位置”,如此重复直至到达出口;若当前位置“不成通”,则应顺着“来向”退回到“前一通道块”,然后朝着除“来向”之外的其他标的目的持续探索;若该通道块的四周4个方块均“不成通”,则应从“当前路径”上删除该通道块.所谓“下一位置”指的是当前位置四周4个标的目的(上、下、左、右)上相邻的方块.假定以栈记实“当前路径”,则栈顶中存放的是“当前路径上最后一个通道块”.由此,“纳入路径”的操纵即为“当前位置入栈”;“从当前路径上删除前一通道块”的操纵即为“出栈”.二、数据结构1. 数据结构设计考虑1) 成立一个二维数组暗示迷宫的路径(0暗示通道,1暗示墙壁);2) 创建一个栈,用来存储“当前路径”,即“在搜索进程中某一时刻所在图中某个方块位置”.2. 逻辑结构存储结构1) 创建一个Int类型的二维数组int maze[n1][n2],用来存放0和1 (0暗示通道,1暗示墙壁);2) 创建一个结构体用来储存数组信息结构体:typedef struct//迷宫内部设置{int shu[16][16];int row;int col;}Maze;创造一个链栈struct node{int row;int col;struct node *next;};三、算法设计首先,创建数组的大小,此数组大小要求用户自己输入.具体算法:printf("输入迷宫的形状!\n");scanf("%d%d",&x,&y);Maze m;CreatInit(&m,x,y);函数:void CreatInit(Maze *m,int x,int y)//创建迷宫{printf("please input number:\n");int i,j;for(i=0;i<=x;i++){for(j=0;j<=y;j++)m->shu[i][j] = 2;}for(i=1;i<=x;i++)for(j=1;j<=y;j++)scanf("%d",&m->shu[i][j]);m->row = x;m->col = y;}其中的0和1辨别是暗示通路和障碍,定义的数组其实就是迷宫的设计图其次,产生迷宫,算法:for(i=1;i<=x;i++){for(j=1;j<=y;j++)printf("%d\t",m.shu[i][j]);printf("\n");}最后,迷宫寻路,在寻路的时候,我们应从输入的入口位置进入迷宫,当迷宫的入口处有障碍或出口被堵,再或没有通路时整个程序结束,并输出迷宫无解的提示.如果迷宫求解进程中没有出现无解情况,那么在求解的进程中,会输出迷宫的通路路径,并且输出坐标值,让使用者更清楚路径的走法.在寻路的进程中,每走过一个格,那个格得知就会被赋值为-1,用来标识表记标帜此处已走过,免去了来来回回的重走,以免出现死循环,这样程序就能从入口进入到迷宫当中.如果在迷宫当中没有通路的话,可以结束循环输出“迷宫无解!”,则当迷宫如果出现有解时,就会输出路径.这样就复杂的实现了,有解无解的输出.从而实现了要求的程序!代码如下:while((x1 >= 1 && x1 <= x) || (y1 >= 1 && y1 <= y)) {if(x1 == x2 && y1 == y2){break;}if(m.shu[x1][y1+1] == 0 ){y1=y1+1;push(x1,y1);m.shu[x1][y1] = -1;continue;}if(m.shu[x1-1][y1]==0 ){x1=x1-1;push(x1,y1);m.shu[x1][y1] = -1;continue;}if(m.shu[x1][y1-1]==0 )y1=y1-1;push(x1,y1);m.shu[x1][y1]= -1; continue;}if(m.shu[x1+1][y1]==0 ) {x1=x1+1;push(x1,y1);m.shu[x1][y1]= -1; continue;}pop();if(p->next==NULL) break;x1=p->row;y1=p->col;}if(x1 == x2 && y1 == y2) {while(p->next != NULL)printf("%d %d\n",p->row,p->col);pop();}}elseprintf("No Answer !!!");其中要寻求所有的通路,在这里则使用了一个while循环,这样可以找到所有的通路.图解阐发:整体流程图:迷宫内部操纵流程图:四、调试阐发第一个问题,在刚开始的调试进程中,我们遇到了,无法判断走过的路程,从而出现了死循环,导致程序不克不及正常进行,但是经过我们的讨论,我们想出用标识表记标帜的办法来解决,也就是让走过的路程全给标示了,这样就不会再走重复的路.第二个问题,就是性用菜单来实现操纵,那样程序的操纵性就会更强,所以我们就要把所有的办法,给写成一个个的函数来调用,这样就遇到了参量传递的问题,但是经过我们的参考以及从书本上的实例,我们慢慢地更深的了解到了参量传递的应用,那么这个问题也就迎刃而解了.从此我们实现了菜单操纵!五、程序实现及测试运行界面:开始界面六、体会及缺乏之处通过此次课程设计,是我对于数据结构有了更深的了解,更新的认识.数据结构是一门重要的课程,只有数据结构学得扎实了,才干对于计较机有更深的应用,所以学好数据结构是很重要的.经过两周的上机设计,我实现了复杂的迷宫求解,能够复杂的实现求解进程.但是还存在着缺乏之处,本程序不克不及循环执行,只能执行一次.有待改良!七、参考文献1、《数据结构(c语言版) 》严蔚敏清华大学出版社2、《数据结构实验教程》李业丽、郑良斌《数据结构》高教出版社3、《数据结构习题》李春保清华大学出版社4、《数据结构习题》严蔚敏清华大学出版社5、《 C语言与数据结构》王立柱清华大学出版社6、《数据结构(C语言篇)习题与解析》李春保清华大学出版社.八、源代码#include <stdio.h>#include <stdlib.h>typedef struct//迷宫内部设置{int shu[16][16];int row;int col;}Maze;struct node{int row;int col;struct node *next;};struct node *p;void push(int x1,int y1){struct node *a;a=(struct node *)malloc(sizeof(struct node)); a->row=x1;a->col=y1;a->next=p;p=a;}void pop(void){struct node *q;q=p;p=p->next;free(q);}void CreatInit(Maze *m,int x,int y)//创建迷宫{printf("please input number:\n");int i,j;for(i=0;i<=x;i++){for(j=0;j<=y;j++)m->shu[i][j] = 2;}for(i=1;i<=x;i++)for(j=1;j<=y;j++)scanf("%d",&m->shu[i][j]);m->row = x;m->col = y;}void menu(){printf("\n*************************\n"); printf("欢送进入迷宫\n");printf("1、进入迷宫\n");printf("2、退出\n");}int main(void){int t;int x,y;int x1,y1;int x2,y2;int i,j;{menu();printf("请选择:");scanf("%d",&t);if(t == 2)break;printf("输入迷宫的形状!\n");scanf("%d%d",&x,&y);Maze m;CreatInit(&m,x,y);for(i=1;i<=x;i++){for(j=1;j<=y;j++)printf("%d\t",m.shu[i][j]);printf("\n");}printf("输入入口位置:");scanf("%d%d",&x1,&y1);printf("输入出口的位置:");scanf("%d%d",&x2,&y2);p=(struct node *)malloc(sizeof(struct node));p->col=0;p->next=NULL;push(x1,y1);while((x1 >= 1 && x1 <= x) || (y1 >= 1 && y1 <= y)) {if(x1 == x2 && y1 == y2){break;}if(m.shu[x1][y1+1] == 0 ){y1=y1+1;push(x1,y1);m.shu[x1][y1] = -1;continue;}if(m.shu[x1-1][y1]==0 ){x1=x1-1;push(x1,y1);m.shu[x1][y1] = -1;continue;}if(m.shu[x1][y1-1]==0 ) {y1=y1-1;push(x1,y1);m.shu[x1][y1]= -1; continue;}if(m.shu[x1+1][y1]==0 ) {x1=x1+1;push(x1,y1);m.shu[x1][y1]= -1; continue;}pop();if(p->next==NULL) break;x1=p->row;y1=p->col;}if(x1 == x2 && y1 == y2){while(p->next != NULL){printf("%d %d\n",p->row,p->col); pop();}}elseprintf("No Answer !!!");}return 0;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书题目:迷宫设计学号:姓名:专业:网络技术课程:数据结构指导教师:职称:讲师完成时间:2013年12 月----2014 年1 月年月日课程设计任务书及成绩评定目录一.迷宫求解································(1)问题描述···········································(2)需求分析及设计思路·································(3)数据结构定义········································(4)系统功能模块介绍····································(5)源代码··············································(6)运行结果及调试分析································(7)课程设计总结·····························一.迷宫求解(1)问题描述输入一个任意大小的迷宫数据,用递归和非递归两种方法求出一条走出迷宫的路径,并将路径输出。
(2)需求分析及设计思路从入口出发,按某一方向向前探索,若能走通并且未走过,即某处可以到达,则到达新点,否则试探下一个方向;若所有的方向均没有通路,则沿原路返回前一点,换下一个方向再继续试探,直到找到一条通路,或无路可走又返回入口点。
在求解过程中,为了保证在到达某一点后不能向前继续行走(无路)时,能正确返回前一点以便继续从下一个方向向前试探,则需要用一个栈(递归不需要)保存所能够到达的每一点的下标及从该点前进的方向。
设迷宫为m行n列,利用maze[m][n]来表示一个迷宫,maze[i][j]=0或1;其中:0表示通路,1表示不通,当从某点向下试探时,中间点有四个方向可以试探,而四个角点有两个方向,其他边缘点有三个方向,为使问题简单化,用maze[m+2][n+2]来表示迷宫,而迷宫的四周的值全部为1,这样做使问题简单了,每个点的试探方向全部为4,不用再判断当前点的试探方向有几个。
(3)数据结构定义#define m 6#define n 8#define MAXSIZE 100//四周为1代表围墙,0为可走路径int maze[m+2][n+2]={{1,1,1,1,1,1,1,1,1,1},{1,0,1,1,1,0,1,1,1,1},{1,0,0,0,0,1,1,1,1,1},{1,0,1,0,0,0,0,0,1,1},{1,0,1,1,1,0,0,1,1,1},{1,1,0,0,1,1,0,0,0,1},{1,0,1,1,0,0,1,1,0,1},{1,1,1,1,1,1,1,1,1,1}}; //入口坐标为(1,1),出口坐标为(6,8)typedef struct{ int x,y;/*试探方向*/}item;item move[4]={{0,1},{1,0},{0,-1},{-1,0}};typedef struct/*栈的设计*/{int x,y,d; /*纵横坐标及方向*/}DataType;(3)系统功能模块介绍创建一顺序栈:PSeqStack Init_SeqStack(void)判断栈是否为空:int Empty_SeqStack(PSeqStack S)在栈顶插入一新元素x:int Push_SeqStack (PSeqStack S, DataType x)删除栈顶元素并保存在*x :int Pop_SeqStack(PSeqStack S ,DataType *x)销毁栈:void Destroy_SeqStack(PSeqStack *S)利用栈的非递归算法求迷宫路径:int mazepath(int maze [ ][n+2] ,item move[ ],int x0,int y0) 递归算法求迷宫路径:int mazepath1(int maze[][n+2],item move[],int x,int y)主函数:int main(){ 出口坐标已定,利用while循环多次输入入点坐标,调用mazepath(int maze [ ][n+2] ,item move[ ],int x0,int y0) 输出可走的路径}(5)源代码#include <stdio.h>#include <stdlib.h>#define m 6#define n 8#define MAXSIZE 100int maze[m+2][n+2]={{1,1,1,1,1,1,1,1,1,1},//四周为1代表围墙,0为可走路径{1,0,1,1,1,0,1,1,1,1},{1,0,0,0,0,1,1,1,1,1},{1,0,1,0,0,0,0,0,1,1},{1,0,1,1,1,0,0,1,1,1},{1,1,0,0,1,1,0,0,0,1},{1,0,1,1,0,0,1,1,0,1},{1,1,1,1,1,1,1,1,1,1}}; //入口坐标为(1,1),出口坐标为(6,8)typedef struct{int x,y;/*试探方向*/}item;item move[4]={{0,1},{1,0},{0,-1},{-1,0}};typedef struct/*栈的设计*/{int x,y,d; /*纵横坐标及方向*/}DataType;typedef struct/*栈*/{DataType data[MAXSIZE];int top;}SeqStack,*PSeqStack;PSeqStack Init_SeqStack(void){ /*创建一顺序栈,入口参数无,返回一个指向顺序栈的指针,为零表示分配空间失败*/PSeqStack S;S=(PSeqStack)malloc(sizeof(SeqStack));if (S)S->top= -1;return S;}int Empty_SeqStack(PSeqStack S){ /*判断栈是否为空,入口参数:顺序栈,返回值:1表示为空,0表示非空*/if (S->top== -1)return 1;elsereturn 0;}int Push_SeqStack (PSeqStack S, DataType x){ /*在栈顶插入一新元素x,入口参数:顺序栈,返回值:1表示入栈成功,0表示失败。
*/if (S->top==MAXSIZE-1)return 0; /*栈满不能入栈*/else{S->top++;S->data[S->top]=x;return 1;}}int Pop_SeqStack(PSeqStack S ,DataType *x){ /*删除栈顶元素并保存在*x,入口参数:顺序栈,返回值:1表示出栈成功,0表示失败。
*/if (Empty_SeqStack ( S ) )return 0; /*栈空不能出栈 */else{*x= S->data[S->top];S->top--;return 1;}}void Destroy_SeqStack(PSeqStack *S){if(*S)free(*S);*S=NULL;return;}/*利用栈的非递归算法*/int mazepath(int maze [ ][n+2] ,item move[ ],int x0,int y0){ /*求迷宫路径, 入口参数:指向迷宫数组的指针,下标移动的增量数组,开始点(x0,y0),到达点(m,n), 返回值:1表示求出路径,0表示无路径*/PSeqStack S ;DataType temp ;int x, y, d, i, j ;temp.x=x0 ;temp.y=y0 ; temp.d=-1 ;S=Init_SeqStack(); /*初始化栈*/if (!S){ printf("栈初始化失败");return(0);}Push_SeqStack (S,temp) ; /* 迷宫入口点入栈 */while (! Empty_SeqStack (S ) ){Pop_SeqStack(S,&temp);x=temp.x ; y=temp.y ; d=temp.d+1 ;while (d<4) /*存在剩余方向可以搜索 */{i=x+move[d].x ; j=y+move[d].y ;if( maze[i][j]==0 ) /*此方向可走*/{temp.x=x;temp.y=y; temp.d=d;Push_SeqStack ( S, temp ) ;/*点{x,y}可以走,用栈保存可以走的路径*/x=i; y=j; maze[x][y]= -1;if (x==m&&y==n) /*迷宫有路*/{while( !Empty_SeqStack(S) ){Pop_SeqStack (S,&temp) ;printf("(%d,%d)<- ",temp.x,temp.y) ;/*打印可走的路径*/}Destroy_SeqStack(&S); /*销毁栈*/return 1 ;}else d=0 ;/*方向复位,从第一个方向开始试探*/}else d++ ;/*试探下一个方向*/} /*while (d<4)*/} /*while */Destroy_SeqStack(&S); /*销毁栈*/return 0 ;/*迷宫无路*/}/*递归算法*/int mazepath1(int maze[][n+2],item move[],int x,int y){/*求迷宫路径,入口参数:迷宫数组,下标移动的增量数组,开始点(x,y),以及开始点对应的步数step,(m,n)是终点,返回值:1表示求出路径,0表示无路径*/int i;int step=0;step++;maze[x][y]=step;if(x==m&&y==n)return 1; /*起始位置是出口,找到路径,结束*/for(i=0;i<4;i++){if(maze[x+move[i].x][y+move[i].y]==0)if(mazepath(maze,move,x+move[i].x,y+move[i].y))return 1; /*下一个是出口,则返回*/ }step--;maze[x][y]=0;return 0;}int main(){ int i,j,k;char u;int x,y;printf("*****欢迎进入迷宫游戏*****\n");printf("下图为一个6*8的迷宫:\n");printf("****************************\n");for(i=0;i<m+2;i++){ printf("****");for(j=0;j<n+2;j++){printf("%-2d",maze[i][j]);}printf("****");printf("\n");}printf("****************************\n");printf("现在开始游戏?(y/n):");scanf("%c",&u);while(u!='n'){printf("请输入迷宫入口坐标(x,y):");scanf("%d,%d",&x,&y);printf("出口:(6,8)<-");k=mazepath(maze,move,x,y);printf(":入口\n");if(k==1)printf("恭喜!走出迷宫\n\n");else printf("迷宫无路\n\n");printf("继续游戏:");scanf("%c",&u);printf("\n");}return 0;}(6)运行结果及调试分析运行结果达到预期结果达到,递归和非递归两种方法求出一条走出迷宫的路径,并将路径输出,并实现多次输入入口点来验证程序的可行性。