自适应控制与自校正控制

合集下载

自适应控制--极点配置自校正

自适应控制--极点配置自校正

A F 1zdBGA m A 0
degF1 degB1 d 1
(14)
degGdegA1
并且右边的阶次小于等于左边阶次,即
d egA 0„d egA F 1d egA m
(15)
现将以上叙述归纳一下:
已知:过程多项式A、z-d和B;
性能要求:期望传递函数分母多项式Am;
1) 对多项式B进行因式分解,BBB,求
(3-2)
其中 F(z1)、R(z1) 和 G ( z 1 ) 为待定多项式,且 F ( z 1 ) 为首一多项式, y r ( k ) 为参考 输入。
这样构成的控制系统方框图见图2,表达式如下。
24
yr (k)
R( z 1 ) F (z1)
(k)
1 A( z 1 )
u(k)
y(k)
zd B(z1)
然后在式(10)中,假定它的左右两边各项有相同阶次,进而确 定和G的阶次,再根据左右两边相同阶次的系数应相等列代数方
程,并解之。
例1 极点配置设计1
设有被控对象:
( 1 1 .3 z 1 0 .3 z 2 ) y ( k ) ( z 2 1 .5 z 3 ) u ( k ) ( k )
两种自校正控制方法 间接自校正控制:按“模型参数-控制器参数-控制量算法”过程获得
的控制量,由于控制器参数是通过模型参数估计间接得到的故取名间接自校正 控制,又由于模型参数有明确的表达式,故又称为显式自校正控制。特点:直 观清晰,便于模块化设计,但计算量大。
直接自校正控制:不用估计模型参数,而是通过输入输出信息直接估计
则反馈系统的系统矩阵为:
0
1
0
L
0
0
1
L

先进控制技术综述

先进控制技术综述

先进控制技术综述1 引言在实际的工业控制过程中,很多系统具有高度的非线性、多变量耦合性、不确定性、信息不完全性和大滞后等特性。

对于这种系统很难获得精确的数学模型,并且常规的控制无法获得满意的控制效果。

面对这些复杂的工业控制产生了新的控制策略,即先进控制技术。

先进控制技术包括:自适应控制,预测控制,推理控制,鲁棒控制以及包括模糊控制与神经网络在内的智能控制方法。

本文详细介绍了自适应控制、预测控制以及这两种先进控制的应用领域和优缺点[1]。

2 自适应控制自适应控制的思想是对于系统中的不确定性,以及控制任务的艰巨性,对于部分未建模的动态特性、变化的被控对象和干扰信号,及时地测得它们的信息,并根据此信息按一定的设计方法,自动地做出控制决策、修改控制器结构和参数,使其控制信号能够适应对象和扰动的动态变化,在某种意义上达到控制效果最优或次优。

2.1 自适应控制介绍目前自适应控制的种类很多,从总体上可以分为三大类:自校正控制、模型参考自适应控制和其他类型的自适应控制。

自校正控制的主要问题是用递推辨识算法辨识系统参数,根据系统运行指标来确定调节器或控制器的参数。

其原理简单、容易实现,现已广泛地用在参数变化、有迟滞和时变过程特性,以及具有随机扰动的复杂系统。

自校正控制系统的一般结构图如图1所示。

自校正控制适用于离散随机控制系统[2]。

图1 自校正控制结构图模型参考自适应控制,利用可调系统的各种信息,度量或测出各种性能指标,把模型参考自适应控制与参考模型期望的性能指标相比较;用性能指标偏差通过非线性反馈的自适应机构产生自适应律来调节可调系统,以抵消可调系统因“不确定性”所造成的性能指标的偏差,最后达到使被控的可调系统获得较好的性能指标的目的。

模型参考自适应控制可以处理缓慢变化的不确定性对象的控制问题。

由于模型参考自适应控制可以不必经过系统辨识而度量性能指标,因而有可能获得快速跟踪控制。

模型参考自适应控制结构框图如图2所示,模型参考自适应控制一般用于确定性连续控制系统。

自校正控制.ppt

自校正控制.ppt
V (t) 1 t e(k)2 2 k0
e(t 1) y(t) yˆ(t)
0 y(t 1) ˆy(t 1)
y(t) u(t 1) ˆy(t 1)
t 1
y(k)(y(k 1) u(k))

V (t)
ˆ(t)

0, 得:ˆ(t )
自适应控制
卢新彪 2019年10月21日星期一
1 概述
自校正控制系统由常规控制系统和自适应机构组成。
参数/状态估计器:根据系统输入输出数据在线辨识被控系统的结构或参数。 控制器参数设计计算:计算出控制器的参数,然后调整控制回路中可调控制器
的参数 。
自校正控制系统目的:根 据一定的自适应规律,调 整可调控制器参数,使其 适应被控系统不确定性, 且使其运行良好。

k 0
t 1
y 2 (k )
k 0
5.2广义最小方差自校正控制
3.自校正控制算法
最优输出预测反 馈
被控对象的输出反 馈
最优输出预测反馈
被控对象的输出反馈

规 控
v


制 w(t) + 系
e
控制器
u
y(t)
被控对象统自适 Nhomakorabea控制器参数
参数/状态

设计计算
估计器

性能指标

自校正控制系统结构图
1 概述
模型参考自适应控制和自校正控制系统结构的区别
模型参考自适应控制系统: 常规控制系统 自适应机构 参考模型
自校正控制系统: 常规控制系统 自适应机构
参考模型
xm

v

ex

u+

自适应控制_新版_1

自适应控制_新版_1
授课教师: 授课教师: 王印松 授课学时:32学时 授课学时:32学时
教学要求:
1、了解自适应控制的基本概念,自适应控制系统的构 成原理,实际工程系统中应用自适应控制的现状及 国内外研究动态; 2、掌握两类比较基本和成熟的自适应控制系统:模 型参考自适应控制(基于确定性、连续时间系统的 辨识和控制问题)和自校正控制(基于确定性、离 散时间系统的参数估计和控制问题); 3、应用MATLAB控制系统工具箱作为计算机仿真实 验工具,进行简单自适应控制系统的设计与分析。
非线性系统 采样系统 稳定性理论
控制设计 自适应控制
随机系统
计算机控制 线性系统 最优化
参数估计
第三节 自适应控制的发展概况
对于自适应控制的兴趣,最早是由航空问题引起的。 50年代末,由于飞行的需要,美国麻省理工学院 (MIT)怀 特克(Whiteaker)教授首次提出飞机自动驾驶仪的模型参考自 适应控制方案,称为MIT方案(局部优化理论,但没有得到应 用),需检验稳定性。 1957,1961:Bellman引入了动态规则。 1960,1961,1965:Feldbaum 引入了对偶控制。 1966,(德)帕克斯(P.C. Panks)提出采用A.M.Lyapunov 第二法来推导自适应算法,以保证自适应系统全局渐近稳定。 (在用被控对象的输入输出构成自适应律时,其中包含了
1979,威尔斯特德(P.E.Wellstead)和Astrom提出极点 配置自校正调节器。 80年代,主要增进了人们对于自适应控制的理解,同时, 计算机、微处理器的广泛普及,为自适应后来的实际应用创 造了条件。 目前,自适应已应用到很多领域(提高稳态和跟踪精 度)。 发展到现阶段,无论是从理论研究还是从实际应用的角 度来看,比较成熟的自适应控制系统有下述两大类。

自控系统校正中传统控制与自适应控制方法的对比分析

自控系统校正中传统控制与自适应控制方法的对比分析

自控系统校正中传统控制与自适应控制方法的对比分析自控系统校正是确保系统能够根据预定的目标值实现稳定和准确控制的关键过程。

在自控系统中,传统控制和自适应控制是两种不同的方法。

本文将对传统控制和自适应控制进行对比分析,以了解它们各自的特点和适用范围。

传统控制方法是在系统建模和参数设定阶段,根据已知的模型和参数来设计控制器。

传统控制的核心思想是通过传感器测量实际输出与期望输出之间的差异,并根据这些差异调整控制器的参数。

传统控制方法具有以下特点:首先,传统控制方法的设计相对简单,容易实施。

掌握传统控制方法的基本原理和技术并进行系统设置并不需要过多的专业知识。

此外,传统控制方法的控制器参数在系统设定之后通常不会再发生变化,并不需要动态调整。

其次,传统控制方法适用于已知模型和参数的系统。

当系统的数学模型和参数已知,并且系统的工作状态和工作环境基本稳定时,传统控制方法能够提供良好的性能。

传统控制方法通常在简单的工业过程控制中得到广泛应用。

然而,传统控制方法也存在一些局限性。

首先,如果系统的模型或参数存在不确定性或变化,传统控制方法的性能可能受到影响。

此外,传统控制方法对噪声和干扰比较敏感,容易导致控制器的输出失真。

因此,在一些复杂的系统中,传统控制方法的应用受到限制。

与传统控制方法相比,自适应控制方法采用了不同的设计和调整策略。

自适应控制方法通过根据实时测量的数据动态调整控制器的参数,以适应系统的变化和不确定性。

自适应控制方法具有以下特点:首先,自适应控制方法具有自动调整参数的能力。

通过实时监测系统的输出和状态,自适应控制器能够根据当前的系统状况对参数进行调整,从而达到更好的控制性能。

自适应控制方法可以应对系统参数变化和外部干扰等情况,提供更加鲁棒的控制。

其次,自适应控制方法适用于多变系统和具有不确定性的系统。

自适应控制方法通过不断更新模型和参数估计来适应系统的变化,能够较好地处理模型和参数不确定性。

自适应控制方法在工程控制领域中得到广泛应用,尤其是对于需要对系统进行实时监测和调整的复杂系统。

模型参考自适应控制

模型参考自适应控制

10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。

如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。

如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。

所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。

因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。

目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。

10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。

实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。

在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。

在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。

自适应控制、自校正控制、常规反馈控制、最优控制

自适应控制、自校正控制、常规反馈控制、最优控制

常规的反馈控制系统对于系统内部特性的变化和外部扰动的影响都具有一定的抑制能力,但是由于控制器参数是固定的,所以当系统内部特性变化或者外部扰动的变化幅度很大时,系统的性能常常会大幅度下降,甚至是不稳定。所以对那些对象特性或扰动特性变化范围很大,同时又要求经常保持高性能指标的一类系统,采取自适应控制是合适的。但是同时也应当指出,自适应控制比常规反馈控制要复杂的多,成本也高的多,因此只是在用常规反馈达不到所期望的性能时,才会考虑采用。
ቤተ መጻሕፍቲ ባይዱ
任何一个实际系统都具有不同程度的不确定性,这些不确定性有时表现在系统内部,有时表现在系统的外部。从系统内部来讲,描述被控对象的数学模型的结构和参数,设计者事先并不一定能准确知道。作为外部环境对系统的影响,可以等效地用许多扰动来表示。这些扰动通常是不可预测的。此外,还有一些测量时产生的不确定因素进入系统。面对这些客观存在的各式各样的不确定性,如何设计适当的控制作用,使得某一指定的性能指标达到并保持最优或者近似最优,这就是自适应控制所要研究解决的问题。
自校正控制是自适应控制的一部分,自适应控制理论包括自校正控制、模型参考自适应控制、非线性自适应控制、神经网络自适应控制和模糊自适应控制。
自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。既然模型在不断的改进,显然,基于这种模型综合出来的控制作用也将随之不断的改进。

智能控制

智能控制

第一章复杂系统的特点在传统的控制系统中,控制的任务要求输出为定值,或者要求输出量跟随期望的值变化,因此控制任务比较单一。

而对于复杂的控制任务:如:智能机器人系统、复杂工业过程控制系统、计算机集成制造系统、航天航空控制系统、社会经济管理系统、环境及能源系统等,传统的控制理论都无能为力。

传统控制理论的局限性1.传统的控制理论建立在精确的数学模型基础上——用微分或差分方程来描述。

不能反映人工智能过程:推理、分析、学习。

丢失许多有用的信息2.不能适应大的系统参数和结构的变化自适应控制和自校正控制——通过对系统某些重要参数的估计以克服小的、变化较慢的参数不确定性和干扰。

鲁棒控制——在参数或频率响应处于允许集合内,保证被控系统的稳定。

注:自适应控制鲁棒控制不能克服数学模型严重的不确定性和工作点剧烈的变化。

3.传统的控制系统输入信息模式单一通常处理较简单的物理量:电量(电压、电流、阻抗);机械量(位移、速度、加速度)复杂系统要考虑:视觉、听觉、触觉信号,包括图形、文字、语言、声音等。

智能定义(Albus):按系统的一般行为特性,指在不确定环境中作出合适动作的能力是自动控制(Au tomati c Control)和人工智能(A rtifi cial Intelligen ce)的交集和运筹学(OR)模糊控制与传统控制的区别:传统控制是从被控制对象的数学模型上考虑进行控制;模糊控制是从人类智能活动的角度和基础上去考虑实施控制。

模仿人的控制经验而不是依赖控制对象的模型智能控制的几个重要分支:一、专家系统和专家控制二、模糊控制三、神经网络控制四、学习控制智能控制系统的结构1. 定义a. 实现某种控制任务的智能系统。

智能系统是具备一定智能行为的系统。

若对于一个问题的激励输入,系统具备一定的智能行为,能够产生合适的求解问题的响应。

举例:智能洗衣机b.(Saridis的定义)通过驱动自主智能机来实现其目标而无需操作人员参与的系统举例:智能机器人智能控制系统的特点一混合控制过程,数学模型和非数学广义模型表示;适用于含有复杂性、不完全性、模糊性、不确定性和不存在已知算法的生产过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自适应控制与自校正控制
自适应控制和自校正控制是自动控制领域中两个重要的概念。

它们
都旨在通过反馈机制来实现对系统的调节和优化。

在本文中,将对这
两种控制方法进行详细的介绍和比较,并探讨其在实际应用中的优势
和局限性。

一、自适应控制
自适应控制是一种根据被控对象的动态特性和外部环境变化来实现
系统参数的自动调节的控制方法。

其核心思想是在控制系统中引入自
适应算法,通过实时地观测和分析被控对象的输出信号,并对系统参
数进行在线修正,以达到控制系统对不确定性和变异性的适应。

自适应控制通常包括以下几个关键步骤:
1. 在线参数估计:通过对被控对象的输出信号进行实时采集和处理,估计出控制系统的参数,并不断地更新这些参数。

2. 自适应算法设计:根据所需的控制性能和被控对象的特性,设计
合适的自适应算法。

常见的自适应算法包括最小均方误差算法(LMS)、最小二乘法(OLS)等。

3. 参数调节和修正:根据自适应算法的计算结果,对控制系统的参
数进行调节和修正。

这个过程通常与反馈环节相结合,实现控制系统
的自动调节。

自适应控制的优势在于其能够在系统参数发生变化或者外部环境变化时及时做出调整,从而保持控制系统的稳定性和鲁棒性。

它适用于那些被控对象参数难以准确获取或者易受外界干扰的情况下。

然而,自适应控制也存在一些局限性。

首先,自适应算法的设计和实现较为复杂,需要充分考虑系统的稳定性和性能要求。

其次,自适应控制对于被控对象的动态特性要求较高,不适用于那些动态特性变化较快的系统。

二、自校正控制
自校正控制是一种能够通过比较反馈信号与期望信号之间的差异来实现系统调整和修正的控制方法。

其核心思想是在控制系统中引入误差信号,并通过对误差信号进行分析和处理,实现对系统的自动校正和调节。

自校正控制的关键步骤如下:
1. 误差检测:通过将期望信号与反馈信号进行比较,计算得到误差信号。

2. 误差分析和处理:对误差信号进行分析和处理,得出对于系统调整和校正的策略。

3. 系统修正:根据误差分析的结果,对控制系统的参数进行相应的修正,以实现对系统的自动校正和调节。

与自适应控制相比,自校正控制更加简单和直接。

它适用于那些被控对象的动态特性相对稳定,并且误差信号与系统参数之间存在简单
的关系的情况。

自校正控制的优势在于其易于实现和调试,对系统动态特性的要求相对较低。

然而,自校正控制也存在一些限制。

首先,自校正控制通常需要提前确定误差信号与系统参数之间的关系,这对于某些复杂的系统来说可能是困难的。

其次,自校正控制难以处理那些动态特性变化较快的系统。

综上所述,自适应控制和自校正控制是两种常见的自动控制方法。

它们在实际应用中各有优势和局限性,应根据系统的需求和特性选择合适的控制方法。

努力发展和应用这些控制方法,将有助于提高控制系统的性能和鲁棒性,推动自动控制技术的发展。

相关文档
最新文档