(初中精品)解三角形 学案-2022届高三数学一轮复习(新高考)

合集下载

2022届高考数学一轮复习第三章三角函数解三角形3.6正弦定理和余弦定理及解三角形学案理新人教版20

2022届高考数学一轮复习第三章三角函数解三角形3.6正弦定理和余弦定理及解三角形学案理新人教版20

第六节 正弦定理和余弦定理及解三角形1.正弦定理a sin A =b sin B =c sin C =2R ,其中R 是△ABC 的外接圆半径. 正弦定理的常用变形:(1)a =2R sin A ,b =2R sin B ,c =2R sin C . (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R .(3)a ∶b ∶c =sin A ∶sin B ∶sin C . 2.余弦定理a 2=b 2+c 2-2bc _cos_A ,cos A =b 2+c 2-a 22bc ; b 2=a 2+c 2-2ac _cos_B ,cos B =a 2+c 2-b 22ac ; c 2=a 2+b 2-2ab _cos_C ,cos C =a 2+b 2-c 22ab. 3.勾股定理在△ABC 中,∠C =90°⇔a 2+b 2=c 2. 4.三角形的面积公式 S △ABC =12ah a =12bh b =12ch c=12ab _sin_C =12bc _sin__A =12ac _sin_B . 5.实际问题中的常用术语 术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的水平夹角叫做方位角.方位角α的X 围是0°≤α<360°续表 术语名称术语意义图形表示 方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度①北偏东m °②南偏西n °坡角坡面与水平面的夹角设坡角为α,坡度为i , 则i =hl=tan α坡度坡面的垂直高度h 和水平宽度l 的比1.射影定理 b cos C +c cos B =a , b cos A +a cos B =c , a cos C +c cos A =b .2.三个角A ,B ,C 与诱导公式的“消角”关系 sin (A +B )=sin C , cos (A +B )=-cos C , sin A +B 2=cos C 2,cos A +B 2=sin C 2.3.特殊的面积公式(1)S =12r (a +b +c )(r 为三角形内切圆半径).(2)S =P (P -a )(P -b )(P -c ),P =12(a +b +c ).(3)S =abc4R=2R 2sin A ·sin B ·sin C (R 为△ABC 外接圆半径).1.(基本方法:正弦定理)在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .4 3 B .23 C . 3 D .32答案:B2.(基础知识:正、余弦定理)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 答案:C3.(基础知识:三角形的面积公式)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为________.答案:2 34.(基本能力:正弦定理)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =________.答案:3π45.(基本应用:实际问题中的常用术语)两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的北偏西________,西偏北________.答案:10° 80°题型一 正、余弦定理的基本应用[典例剖析]类型 1 正弦定理及其应用[例1] 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若c =1,B =45°,cos A =35,则b 等于( )A .53B .107C .57D .5214解析:因为cos A =35,所以sin A =1-cos 2A =1-⎝⎛⎭⎫352=45,所以sin C =sin [π-(A+B )]=sin (A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin 45°=57.答案:C类型 2 余弦定理及其应用[例2] 已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b =( )A .2B .4+23C .4-2 3D .6- 2解析:在△ABC 中,易知B =30°,由余弦定理b 2=a 2+c 2-2ac cos 30°=4, ∴b =2. 答案:A类型 3 正、余弦定理混合应用[例3] 已知△ABC 满足sin 2A +sin A sin B +sin 2B =sin 2C ,则C 的大小是________. 解析:因为sin 2A +sin A sin B +sin 2B =sin 2C ,所以a 2+ab +b 2=c 2,即a 2+b 2-c 2=-ab ,故cos C =a 2+b 2-c 22ab =-12(0<C <π),所以C =2π3.答案:2π3方法总结1.求解三角形的一般方法: 方法 解读题型正弦定理法 直接利用正弦定理(变式)求边、角(1)已知两角及一边;(2)已知两边及一边对角 余弦定理法直接利用余弦定理(变式)求边、角(1)已知两边及夹角;(2)已知三边2.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式a =b sin Ab sin A<a <ba ≥ba >ba ≤b解的个数1211[题组突破]1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A .π6B .π3C .2π3D .5π6解析:∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin (A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.答案:A2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-3bc =a 2,bc =3a 2,则C 的大小是( )A .π6或2π3B .π3C .2π3D .π6解析:∵b 2+c 2-3bc =a 2,∴b 2+c 2-a 2=3bc ,∴cos A =b 2+c 2-a 22bc =3bc 2bc =32.又∵A ∈(0,π),∴A =π6.由b 2+c 2-a 2=3bc 及bc =3a 2得b 2+c 2-33bc =3bc ,即3b 2-4bc +3c 2=0.∴(3b -c )·(b -3c )=0,解得c =3b 或b =3c .①当c =3b 时,由bc =3a 2得a =b ,∴△ABC 为等腰三角形,且A =B =π6,∴C =2π3;②当b =3c 时,由bc =3a 2得a =c ,∴△ABC 是以B 为顶点的等腰三角形,A =C ,∴C =π6.综上,C 的大小为π6或2π3.答案:A3.(2021·某某模拟)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则ab等于( )A .32B .43C . 2D . 3解析:由正弦定理及b sin2A =a sin B ,得2sin B sin A ·cos A =sin A sin B ,又sin A ≠0,sin B ≠0,则cos A =12.又c =2b ,由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2·12=3b 2,得ab= 3.答案:D题型二 正、余弦定理的综合应用[典例剖析]类型 1 判断三角形的形状[例1] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A , 所以sin B cos C +sin C cos B =sin 2A , 即sin(B +C )=sin 2A ,所以sin A =sin 2A ,故sin A =1,即A =π2,因此△ABC 是直角三角形.法三:由射影定理可得b cos C +c cos B =a , 所以a =a sin A ,所以sin A =1,即A =π2,所以△ABC 为直角三角形.答案:B(2)在△ABC 中,若2sin A cos B =sin C ,那么△ABC 的形状为________. 解析:法一:由已知得2sin A cos B =sin C =sin (A +B )=sin A cos B +cos A sin B ,即sin (A -B )=0, 因为-π<A -B <π,所以A =B , 所以△ABC 为等腰三角形. 法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b ,所以△ABC 为等腰三角形. 答案:等腰三角形类型 2 有关三角形的周长与面积[例2] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A =a cos C . (1)求A ;(2)若a =13,△ABC 的面积为33,求△ABC 的周长.解析:(1)由(2b -c )cos A =a cos C 知2×2R sin B cos A -2R sin C cos A =2R cos C sin A , 由A +B +C =π,得2sin B cos A =sin B , 因为sin B ≠0,所以cos A =12.因为 0<A <π,所以A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A , 得13=b 2+c 2-2bc ·12,即(b +c )2-3bc =13,因为S △ABC =12bc ·sin A =34bc =33,所以bc =12,所以(b +c )2-36=13,即b +c =7, 所以△ABC 的周长为a +b +c =7+13. 类型 3 有关三角形的边长与角度[例3] 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin A +b sin B +2b sin A =c sin C .(1)求C ;(2)若a =2,b =22,线段BC 的垂直平分线交AB 于点D ,求CD 的长. 解析:(1)因为a sin A +b sin B +2b sin A =c sin C , 所以由正弦定理可得a 2+b 2+2ab =c 2. 由余弦定理得cos C =a 2+b 2-c 22ab =-22,又0<C <π,所以C =3π4.(2)由(1)知C =3π4,根据余弦定理可得c 2=a 2+b 2-2ab cos C =22+(22)2-2×2×22×⎝⎛⎭⎫-22=20, 所以c =2 5.由正弦定理c sin C =b sin B ,得2522=22sin B,解得sin B =55,从而cos B =255. 设BC 的垂直平分线交BC 于点E , 因为在Rt △BDE 中,cos B =BE BD ,所以BD =BE cos B =1255=52. 因为点D 在线段BC 的垂直平分线上,所以CD =BD =52. 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解.方法总结(2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.提醒 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.3.判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.边角互化法边化角:用角的三角函数表示边 等式两边是边的齐次形式角化边:将解析式中的角用边的形式表示等式两边是角的齐次形式或a 2+b 2-c 2=λab[题组突破]1.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 解析:因为BC sin A =AB sin C =AC sin B =3sin 60°,所以AB =2sin C ,BC =2sin A ,因此AB +2BC =2sin C +4sin A=2sin ⎝⎛⎭⎪⎫2π3-A +4sin A=5sin A +3cos A =27sin (A +φ).因为φ∈⎝ ⎛⎭⎪⎫0,π2,A ∈⎝⎛⎭⎪⎫0,2π3,所以AB +2BC 的最大值为27.答案:272.若△ABC 的面积为34(a 2+c 2-b 2),且C 为钝角,则B =________,ca的取值X 围是________.解析:由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B .又∵S =34(a 2+c 2-b 2), ∴12ac sin B =34×2ac cos B ,∴tan B =3,∴B =π3. 又∵C 为钝角,∴C =2π3-A >π2,∴0<A <π6.由正弦定理得ca=sin ⎝⎛⎭⎪⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1tan A .∵0<tan A <33,∴1tan A>3, ∴c a >12+32×3=2,即ca >2. 答案:π3(2,+∞)题型三 解三角形的应用举例[典例剖析]类型 1 解决测量问题[例1] (1)(可视两点)如图所示,为测一树的高度,在地面上选取A ,B 两点,在A ,B 两点分别测得树顶的仰角为30°,45°,且A ,B 两点之间的距离为10 m ,则树的高度h 为( )A .(5+53)mB .(30+153)mC .(15+303)mD .(15+33)m解析:在△P AB 中,由正弦定理,得10sin (45°-30°)=PBsin 30°,因为sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30°=6-24,所以PB =5(6+2)(m),所以该树的高度h =PB sin 45°=(5+53)(m).答案:A(2)(河对岸或不可视两点)如图所示,为了测量河对岸A ,B 两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A ,B ;找到一个点D ,从点D 可以观察到点A ,C ;找到一个点E ,从点E 可以观察到点B ,C .并测量得到一些数据:CD =2,CE =23,∠D =45°,∠ACD =105°,∠ACB °,∠BCE =75°,∠E =60°,则A ,B 两点之间的距离为________.(其中°取近似值23)解析:依题意知,在△ACD 中,∠A =30°,由正弦定理得AC =CD sin 45°sin 30°=2 2.在△BCE 中,∠CBE =45°,由正弦定理得BC =CE sin 60°sin 45°=3 2.连接AB (图略),在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB =10, ∴AB =10. 答案:10类型 2 三角形在平面几何中的应用[例2]如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB=1.(1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .解析:(1)在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC ,即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CD sin ∠CAD ,即AC sin π6=4sin θ,①在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝ ⎛⎭⎪⎫π2-θ=θ-π4,由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin3π4=1sin ⎝ ⎛⎭⎪⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin θ1sin ⎝ ⎛⎭⎪⎫θ-π4,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ.又sin 2θ+cos 2θ=1,故sin θ=255,即sin ∠CAD =255.方法总结1.测量距离问题的解法:选择合适的辅助测量点,构造三角形,将实际问题转化为求某个三角形的边长问题,再利用正、余弦定理求解.提醒 解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.2.测量角度问题的基本思路:测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.提醒 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.3.把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解.4.寻找各个三角形之间的联系,交叉使用公共条件,求出结果,求解时要灵活利用平面几何的性质,将几何性质与正弦、余弦定理有机结合起来.[题组突破]1.(2020·某某模拟)如图,一栋建筑物AB 的高为(30-103)米,在该建筑物的正东方向有一个通信塔CD ,在它们之间的点M (B ,M ,D 三点共线)处测得楼顶A ,塔顶C 的仰角分别是15°和60°,在楼顶A 处测得塔顶C 的仰角是30°,则通信塔CD 的高为________米.解析:在Rt △ABM 中,AM =ABsin 15°=30-103sin 15°=30-1036-24=206,过点A 作AN ⊥CD 于点N (图略),在Rt △A 中,因为∠CAN =30°,所以∠A =60°,又在Rt △CMD 中,∠CMD =60°,所以∠MCD =30°,所以∠ACM =30°,在△AMC 中,∠AMC =105°,所以AC sin 105°=AM sin ∠ACM =206sin 30°,所以AC =60+203,所以=30+103,所以CD =DN +=AB +=30-103+30+103=60. 答案:602.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解析:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2(负值舍去),故AC =28,BC =20.根据正弦定理得BC sin α=ACsin 120°,解得sin α=20sin 120°28=5314,所以红方侦察艇所需的时间为2小时,角α的正弦值为5314.再研高考创新思维(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值X 围. 解析:(1)由题设及正弦定理得sin A sin A +C 2=sin B ·sin A .因为sin A ≠0,所以sin A +C2=sin B .由A +B +C =180°,可得sin A +C 2=cos B2, 故cos B 2=2sin B 2cos B2.因为cos B 2≠0,所以sin B 2=12,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由(1)知A +C =120°,由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 结合A +C =120°,得30°<C <90°,所以12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值X 围是⎝⎛⎭⎫38,32. 素养升华边角互化(2021·某某某某模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求ba;(2)若c 2=b 2+3a 2,求B .解析:(1)由正弦定理得a sin B =b sin A ,因为a sin A sin B +b cos 2A =2a ,所以b sin 2A +b cos 2A =2a ,所以ba = 2.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为c 2=b 2+3a 2,所以cos B =(1+3)a2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2,所以cos 2B =12,易知cos B >0,所以cos B =22.又0<B <π,所以B =π4.。

2022届高考数学一轮复习第三章三角函数解三角形3.2同角三角函数的基本关系及诱导公式学案理含解析北

2022届高考数学一轮复习第三章三角函数解三角形3.2同角三角函数的基本关系及诱导公式学案理含解析北

第二节 同角三角函数的基本关系及诱导公式命题分析预测学科核心素养从近五年的考查情况来看,本节的命题重点是同角三角函数的基本关系和诱导公式的应用,单独命题的概率较低.本讲知识多作为工具考查三角恒等变形或研究三角函数的图像与性质,以选择题和填空题为主.本节通过同角三角函数基本关系及诱导公式考查考生的数学运算核心素养及分类讨论思想的应用.授课提示:对应学生用书第63页 知识点一 同角三角函数的基本关系式 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.•温馨提醒•同角三角函数关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; sin α=tan α·cos α.1.已知α为第二象限角,化简:cos α1-sin α1+sin α+sin α1-cos α1+cos α=( )A .sin α+cos αB .sin α-cos αC .1+sin αD .1-sin α解析:原式=cos α(1-sin α)2cos 2α+sin α(1-cos α)2sin 2α=cos α1-sin α|cos α|+sin α1-cos α|sin α|=cos α·1-sin α-cos α+sin α·1-cos αsin α=sin α-cos α. 答案:B 2.若sin α=55,π2<α<π,则tan α=_________.解析:因为π2<α<π,所以cos α=-1-sin 2α=-255,所以tan α=sin αcos α=-12.答案:-123.已知tan α=2,则sin α+cos αsin α-cos α的值为_________.解析:原式=tan α+1tan α-1=2+12-1=3.答案:3知识点二 诱导公式组数 一 二 三 四 五 六 角 2k π+α (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α 正切 tan αtan α-tan α-tan α口诀函数名不变 符号看象限函数名改变,符号看象限1.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫π3+α=( ) A .-79B .-13C .13D .79解析:∵⎝⎛⎭⎫α+π3+⎝⎛⎭⎫π6-α=π2, ∴cos ⎝⎛⎭⎫α+π3=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=sin ⎝⎛⎭⎫π6-α=13. 答案:C2.化简cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫52π+α·sin (α-π)·cos (2π-α)的结果为_________.解析:原式=sin αcos α·(-sin α)·cos α=-sin 2α.答案:-sin 2α3.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是_________.解析:当k =2n (n ∈Z )时, A =sin (2n π+α)sin α+cos (2n π+α)cos α=sin αsin α+cos αcos α=2. 当k =2n +1(n ∈Z )时, A =sin (π+α)sin α+cos (π+α)cos α=-sin αsin α+-cos αcos α=-1+(-1)=-2. 答案:{2,-2}授课提示:对应学生用书第64页题型一 三角函数的诱导公式1.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α的值为( ) A .33 B . 3 C .-33D .- 3解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-tan ⎝⎛⎭⎫π6-α=-33. 答案:C2.(2021·某某二检)在平面直角坐标系中,若角α的终边经过点P ⎝⎛⎭⎫sin 5π3,cos 5π3,则sin (π+α)等于( ) A .-32B .-12C .12D .32解析:由诱导公式可得sin 53π=sin ⎝⎛⎭⎫2π-π3=-sin π3=-32, cos 53π=cos ⎝⎛⎭⎫2π-π3=cos π3=12, 即P ⎝⎛⎭⎫-32,12. 由三角函数的定义可得sin α=12⎝⎛⎭⎫-322+⎝⎛⎭⎫122=12, 则sin (π+α)=-sin α=-12.答案:B3.(2021·黔东南模拟)已知直线y =-43x +1的倾斜角为α,则cos 2αcos ⎝⎛⎭⎫5π4+αsin (π+α)的值为( ) A .22 B .24C .28D .724解析:由已知有k =tan α=-43,cos 2αcos ⎝⎛⎭⎫5π4+αsin (π+α)=(cos α-sin α)(cos α+sin α)22(cos α-sin α)sin α=2·cos α+sin αsin α=2⎝⎛⎭⎫1tan α+1, 故cos 2αcos ⎝⎛⎭⎫5π4+αsin ()π+α=24. 答案:B4.已知a =tan ⎝⎛⎭⎫-7π6,b =cos 23π4,c =sin ⎝⎛⎭⎫-33π4,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .b >c >aD .a >c >b解析:由已知,a =tan ⎝⎛⎭⎫-π-π6=-tan π6=-33,b =cos ⎝⎛⎭⎫6π-π4=cos π4=22,c =sin ⎝⎛⎭⎫-8π-π4=-sin π4=-22,因而b >a >c .答案:B5.(2020·某某模拟)已知sin ⎝⎛⎭⎫5π2+α=35,那么tan α的值为( ) A .-43B .-34C .±43D .±34解析:sin ⎝⎛⎭⎫5π2+α=35化为cos α=35,那么sin α=±45,tan α=±43. 答案:C6.(2021·某某模拟)化简:sin (π-α)+sin αcos α⎣⎡⎦⎤1+sin ⎝⎛⎭⎫π2+αtan α=_________.解析:sin (π-α)+sin αcos α⎣⎡⎦⎤1+sin ⎝⎛⎭⎫π2+αtan α=sin α+sin αcos α(1+cos α)tan α =cos α. 答案:cos α应用诱导公式的思路与技巧(1)应用诱导公式的一般思路 ①化大角为小角;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍.(2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.题型二 同角三角函数基本关系式的应用考法(一) 知一求二问题[例1] 若α∈⎝⎛⎭⎫π2,π,sin (π-α)=35,则tan α=( ) A .-43B .43C .-34D .34[解析] 因为α∈⎝⎛⎭⎫π2,π,sin α=35, 所以cos α=-45,所以tan α=-34.[答案] C利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些问题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.考法(二) 弦切互化[例2] (1)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A .35B .-35C .-3D .3(2)已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=_________. [解析] (1)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.(2)由(sin θ+3cos θ)2=1=sin 2θ+cos 2θ,得6sin θcos θ=-8cos 2θ,又因为θ为第四象限角,所以cos θ≠0,所以6sin θ=-8cos θ,所以tan θ=-43.[答案] (1)A (2)-43若已知正切值,求一个关于正弦和余弦的齐次式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型. 考法(三) sin α±cos α、sin αcos α之间的关系[例3](2021·某某二诊)已知α为第二象限角,且sin α+cos α=15,则cos α-sin α=( )A .75B .-75C .±75D .-15[解析] 法一:(整体代入法)由sin α+cos α=15两边同时平方,得1+2sin αcos α=125,则2sinαcos α=-2425,所以(cos α-sin α)2=1-2sin αcos α=1+2425=4925.因为α为第二象限角,所以cos α-sin α=-75.故选B .法二:(换元法)sin α+cos α=15,①令cos α-sin α=t .②由①2+②2,得2sin 2α+2cos 2α=125+t 2,即2=125+t 2,整理得t 2=2-125=4925,解得t =±75.因为α为第二象限角,所以cos α-sin α<0, 故cos α-sin α=-75.法三:(列方程法)由sin α+cos α=15两边同时平方,1+2sin αcos α=125,则2sin αcos α=-2425,即sin αcos α=-1225.所以sin α,cos α是方程x 2-15x -1225=0的两根,解方程得x 1=-35,x 2=45.因为α是第二象限角,所以sin α=45,cos α=-35,所以cos α-sin α=-75.[答案] B对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,知一可求二,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的X 围选取正、负号),体现了方程思想的应用.[题组突破]1.(2021·某某模拟)已知α∈⎝⎛⎭⎫-π2,0,sin α=-35,则cos (π-α)的值为( ) A .-45B .45C .35D .-35解析:∵α∈⎝⎛⎭⎫-π2,0,sin α=-35,∴cos α=45, ∴cos (π-α)=-cos α=-45.答案:A2.若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形解析:由sin α+cos α=23,得(sin α+cos α)2=49,∴1+2sin αcos α=49,2sin αcos α=-59,∵α∈(0,π),∴α为钝角. 答案:D3.若tan α=34,则cos 2α+2sin 2α=( )A .6425B .4825C .1D .1625解析:tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.答案:A同角三角函数关系式中的核心素养(一)数学抽象——分类讨论思想在化简求值中的应用[例1] 在△ABC 中,若sin (2π-A )=-2sin (π-B ),3cos A =-2cos (π-B ),则C =_________.[解析] 由已知得⎩⎪⎨⎪⎧sin A =2sin B ①,3cos A =2cos B ②,①2+②2,得2cos 2A =1,即cos A =±22,当cos A =22时,cos B =32,又A ,B 是三角形的内角,所以A =π4,B =π6,所以C =π-(A +B )=712π;当cos A =-22时,cos B =-32,又A ,B 是三角形的内角,所以A =34π,B =56π,不符合题意,舍去. 综上,C =712π.[答案]712π三角形中的三角函数问题,要注意隐含条件的挖掘以及三角形内角和定理的应用. (二)创新应用——斜率公式与三角函数的交汇问题[例2] 已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A .15B .55C .255D .1[解析] 由cos 2α=23,得cos 2α-sin 2α=23,∴cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=23,∴tan α=±55,即b -a 2-1=±55,∴|a -b |=55. [答案] Bword- 11 - / 11 本题主要通过商数关系进行弦化切,结合斜率公式求解,着重考查了逻辑推理与数学运算核心素养.[题组突破]1.已知曲线f (x )=23x 3在点(1,f (1))处的切线的倾斜角为α,则sin 2α-cos 2α2sin αcos α+cos 2α=( ) A .12B .2C .35D .-38解析:由f ′(x )=2x 2,得tan α=f ′(1)=2,所以sin 2α-cos 2α2sin αcos α+cos 2α=tan 2α-12tan α+1=35. 答案:C2.已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=_________. 解析:由sin ⎝⎛⎭⎫θ+π4=35,知cos ⎝⎛⎭⎫π4-θ=35. 因为θ为第四象限角,所以-θ为第一象限角,π4-θ为第一象限角或第二象限角.又因为cos ⎝⎛⎭⎫π4-θ=35,所以π4-θ为第一象限角.所以tan ⎝⎛⎭⎫π4-θ=43,tan ⎝⎛⎭⎫θ-π4=-43. 答案:-43。

2022版高考数学一轮复习第5章第6讲正弦定理余弦定理及解三角形训练含解析

2022版高考数学一轮复习第5章第6讲正弦定理余弦定理及解三角形训练含解析

第五章第6讲[A 级 基础达标]1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若a =3b ,A =120°,则B 的大小为( )A .30°B .45°C .60°D .90°【答案】A2.(2019年某某模拟)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin B =2b sin A ,则a =( )A .2B .22 C .1 D .2 2【答案】B3.(2019年某某模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( )A .4πB .8πC .9πD .36π 【答案】C4.(2020年某某月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a sin A +C2=b sin A ,则角B =( )A .π6或5π6B .π3或2π3C .π6D .π3【答案】D5.a ,b ,c 是△ABC 的内角A ,B ,C 所对的边,若a 2+b 2=2 021c 2,则2tan A tan Btan C (tan A +tan B )=( )A .1 010B .2 019C .2 020D .2 021【答案】C 【解析】由a 2+b 2=2 021c 2,得a 2+b 2-c 2=2 020c 2,即2 020c 2=2ab cos C ,得cos C =1 010c 2ab .所以2tan A tan Btan C (tan A +tan B )=2sin A sin B cos A cos B sin C cos C ⎝⎛⎭⎫sin A cos A +sin B cos B =2sin A sin B cos A cos B sin C cos C ·sin (A +B )cos A cos B =2sin A sin B cos C sin 2C =2ab cos Cc 2=2ab ·1 010c 2ab c 2=2 020.6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =________.【答案】30° 【解析】将sin C =23sin B 利用正弦定理化简得c =23b ,代入a 2-b 2=3bc ,可得a 2=7b 2,所以由余弦定理得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 243b 2=32.因为A为三角形的内角,所以A =30°.7.(2019年某某期中)如图,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a cos C +c cos A =b sin B ,且∠CAB =π6.若点D 是△ABC 外一点,DC =2,DA =3,则当四边形ABCD面积取最大值时,sin D =________.【答案】277【解析】因为a cos C +c cos A =b sin B ,所以由正弦定理可得sin A cos C +cos A sin C =sin(A +C )=sin B =sin 2B ,sin B =1,B =π2.又因为∠CAB =π6,所以BC =12AC ,AB=32AC .由余弦定理可得cos D =22+32-AC 22×2×3,可得AC 2=13-12cos D ,S 四边形ABCD =S △ACD+S △ABC =12×2×3×sin D +12×12AC ×32AC =3sin D +38(13-12cos D )=1383+3sin D -332cos D =9+274sin(D +φ)+1383,其中tan φ=-32.当φ+D =π2时,S 四边形ABCD 最大,此时tan D =tan ⎝⎛⎭⎫π2-φ=1tan φ=-233,可得sin D =277. 8.(2019年新课标Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 【答案】63【解析】由余弦定理得b 2=a 2+c 2-2ac cosB .又因为b =6,a =2c ,B=π3,所以36=4c 2+c 2-2×2c 2×12,所以c =23,a =43,故S △ABC =12ac sin B =12×43×23×32=6 3. 9.已知△ABC 中,sin B =sin A cos C +22sin C . (1)求角A 的大小;(2)若AB =2AC ,点D 在边BC 上,且BD =2DC ,AD =2+2,求AB . 解:(1)由sin B =sin A cos C +22sin C , 得sin(A +C )=sin A cos C +22sin C , 即cos A sin C =22sin C . 因为0<C <π,所以cos A =22,解得A =π4. (2)如图,设AC =t ,则AB =2t .在AB 上取一点E ,使得BE =2EA ,连接DE ,则DE ∥AC . 在△ADE 中,∠AED =π-∠BAC =3π4,AE =13AB =2t 3,ED =23AC =2t 3.由余弦定理得AD 2=AE 2+DE 2-2·AE ·DE cos ∠AED , 即2+2=4t 29+4t 29-2×2t 3×2t 3×⎝⎛⎭⎫-22,解得t =32.所以AB =2t =3.10.(2020年某某模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足2c =a +2b cos A .(1)求角B ;(2)若a +c =5,b =3,求△ABC 的面积. 解:(1)由题知2sin C =sin A +2sin B cos A ,则2sin ()A +B =sin A +2sin B cos A , 则2sin A cos B =sin A .在△ABC 中,sin A ≠0,所以cos B =12,则B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 即9=a 2+c 2-ac =()a +c 2-3ac . 又a +c =5,所以ac =163.所以△ABC 的面积S =12ac sin B =433.[B 级 能力提升]11.(2020年某某月考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知b =6,A =π6,若该三角形有两解,则a 的取值X 围是( )A .(3,6)B .(0,3)C .(32,6)D .(32,+∞)【答案】A 【解析】因为在△ABC 中,b =6,A =π6,所以由正弦定理得sin B =b ·sin Aa =6×12a =3a .因为A =π6,所以0<B <5π6.要使三角形有两解,则π6<B <5π6,且B ≠π2,即12<sinB <1,所以12<3a<1,解得3<a <6.12.(2020年抚州模拟)平面内不共线的三点O ,A ,B 满足|OA →|=1,|OB →|=2,点C 为线段AB 的中点,若|OC →|=32,则∠AOB =( )A .π3B .π2C .2π3D .5π6【答案】C 【解析】延长OC 到D ,使得CD =OC =32,连接AD ,BD ,则四边形OADB 为平行四边形.所以OD = 3.所以cos ∠OBD =12+22-(3)22×1×2=12.所以∠OBD =π3.所以∠AOB =π-∠OBD =π-π3=2π3.13.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 【答案】27【解析】由正弦定理知AB sin C =3sin 60°=BC sin A ,所以AB =2sin C ,BC =2sin A .又A +C =120°, 所以AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角. 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.14.(一题两空)(2020年梅河口模拟)设a ,b ,c 分别为△ABC 内角A ,B ,C 的对边.已知2a -3b cos B =3c cos C ,则C =________,a 2+c 2-b 2ac的取值X 围是________.【答案】π6 (-3,0)∪(0,2) 【解析】因为2a -3b cos B =3c cos C ,所以(2a -3b )cos C =3c cos B (cos B cos C ≠0),所以(2sin A -3sin B )cos C =3sin C cos B ,即2sin A cos C =3sin(C +B )=3sin A .又sin A >0,所以cos C =32,则C =π6.因为cos B ≠0,所以B ∈⎝⎛⎭⎫0,π2∪⎝⎛⎭⎫π2,5π6.而a 2+c 2-b 2ac =2cos B ,故a 2+c 2-b 2ac∈(-3,0)∪(0,2).15.(2020年池州月考)设函数f (x )=cos 2x -2cos 2⎝⎛⎭⎫x +π6+1. (1)求f (x )的单调增区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝⎛⎭⎫A 2=1,a =1,求△ABC 面积的最大值.解:(1)f (x )=cos 2x -2cos 2⎝⎛⎭⎫x +π6+1 =cos 2x -cos 2⎝⎛⎭⎫x +π6=cos 2x -cos ⎝⎛⎭⎫2x +π3 =cos 2x -12cos 2x +32sin 2x=12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x +π6. 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (2)若f ⎝⎛⎭⎫A 2=1,则sin ⎝⎛⎭⎫2×A 2+π6=sin ⎝⎛⎭⎫A +π6=1. 因为A 是锐角,所以A +π6=π2,得A =π3.因为a =1,所以由余弦定理得a 2=b 2+c 2-2bc cos A ,即1=b 2+c 2-bc ≥2bc -bc =bc . 所以bc ≤1,当且仅当b =c 时取等号, 则S △ABC =12bc sin A ≤12×1×32=34,即△ABC 面积的最大值为34. [C 级 创新突破]16.已知a ,b ,c 分别是△ABC 中角A ,B ,C 的对边,且ac sin A +4sin C =4c sin A .圆O 为△ABC 的外接圆(O 在△ABC 内部),△OBC 的面积为33,b +c =4,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】B 【解析】由正弦定理可知sin A =a 2R ,sin C =c2R ,则ac sin A +4sin C =4c sinA ⇔a 2c +4c =4ac .因为c ≠0,所以a 2c +4c =4ac ⇔a 2+4=4a ⇔(a -2)2=0,得a =BC 的中点为D ,则OD ⊥BC ,所以S △OBC =12BC ·O D .又S △OBC =33,BC =2,所以OD =33.在Rt △BOD中,tan ∠BOD =BD OD =12BC OD =133= 3.又0°<∠BOD <180°,所以∠BOD =60°,所以∠BOC =2∠BOD =120°.因为O 在△ABC 内部,所以∠A =12∠BOC =60°.由余弦定理a 2=b 2+c 2-2bc cosA ,得4=b 2+c 2-bc =(b +c )2-3bc .又b +c =4,所以bc =4,所以b =c =2,所以△ABC 为等边三角形.17.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,其外接圆的半径是1,且满足2(sin 2A -sin 2C )=(2a -b )sinB .(1)求角C 的大小; (2)求△ABC 面积的最大值.解:(1)由正弦定理得a sin A =b sin B =c sin C =2R =2,所以sin A =a 2,sin B =b 2,sin C =c2.又2(sin 2A -sin 2C )=(2a -b )sin B ,所以2⎝⎛⎭⎫a 24-c 24=(2a -b )·b 2,即a 2+b 2-c 2=2ab .所以cos C =a 2+b 2-c 22ab =22.又C ∈(0,π),所以C =π4.(2)因为C =π4,所以A +B =3π4,即B =3π4-A .因为a sin A =bsin B =2,即a =2sin A ,b =2sin B ,所以S △ABC =12ab sin C =2sin A sin B sin π4=2sin A sin B =2sin A sin ⎝⎛⎭⎫3π4-A =2sin A ⎝⎛⎭⎫22cos A +22sin A=sin A cos A +sin 2A =12sin 2A +12 (1-cos 2A )=22⎝⎛⎭⎫22sin 2A -22cos 2A +12=22sin ⎝⎛⎭⎫2A -π4+12. 当2A -π4=π2,即A =3π8时,△ABC 的面积取得最大值22+12.。

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。

2022年全国新高考Ⅰ卷第18题解三角形说题-课件-2024届高三数学一轮复习

2022年全国新高考Ⅰ卷第18题解三角形说题-课件-2024届高三数学一轮复习

感悟
反思
2.加强教考衔接,注重通用方法,强调在深刻理解基础上的
融会贯通、灵活运用,让学生掌握原理、内化方法,主动进
行探究和深层次学习,帮助学生掌握探索的方法与解题的规
律,
3.在数学问题中,给出的条件有时会在量、形关系上显得较为杂
乱,要根据待解问题的表现形式,对所给的量、形关系做和谐统
一的化归,培养学生逻辑推理和数学运算的能力,注重学生核心
2

1 cos2 C
cos2 2 B 1 - cos2 B

1 sin 2 B
(2 cos2 B 1) 2 1 - cos2 B

cos2 B
2
4cos2 B
5
2
cos B
4 2 5
2
当且仅当cosB
2
时,等号成立.
2
反思感悟
原题呈现
命题立意
由第一问sinB -cosC 0,
2
cos x

设f ( x )
, x ( , )
1 sin x
2 2
1 sin x
得f ' ( x )
0
2
(1 sin x)
cos x

所以f ( x)
在( , )上单调递减
1 sin x
2 2

则f ( A) f ( 2 B )
2
所以A
内角之间的关系
学生的数学推理和运算能
力,以及转化和划归的数
学思想,分析,解决问题
的能力
本题设问由易到难,
重在培养学生的逻
辑推理,数学运算
这两大数学核心素

2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-6 Word版含答案

2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-6 Word版含答案

课时规范训练[A级基础演练]1.在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=3b,则角A等于()A.π12 B.π6C.π4D.π3解析:选D.在△ABC中,利用正弦定理得2sin A sin B =3sin B,∴sin A=3 2.又A为锐角,∴A=π3.2.(2022·高考天津卷)在△ABC中,若AB=13,BC=3,∠C=120°,则AC=() A.1 B.2C.3 D.4解析:选A.在△ABC中,角A,B,C的对边分别为a,b,c,则a=3,c=13,∠C=120°,由余弦定理得13=9+b2+3b,解得b=1,即AC=1.3.在△ABC,已知∠A=45°,AB=2,BC=2,则∠C等于()A.30°B.60°C.120°D.30°或150°解析:选A.在△ABC中,ABsin C=BCsin A,∴2sin C=2sin 45°,∴sin C=12,又AB<BC,∴∠C<∠A,故∠C=30°.4.一艘海轮从A处动身,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观看灯塔,其方向是南偏东70°,在B处观看灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.102海里B.103海里C.203海里D.202海里解析:选A.如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,依据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里).5.(2022·高考山东卷)△ABC中,角A,B,C的对边分别是a,b,c.已知b=c,a2=2b2(1-sin A),则A=()A.3π4B.π3C.π4D.π6解析:选C.由余弦定理得a2=b2+c2-2bc cos A=2b2-2b2cos A,所以2b2(1-sin A)=2b2(1-cos A),所以sin A=cos A,即tan A=1,又0<A<π,所以A=π4.6.(2022·高考北京卷)在△ABC中,∠A=2π3,a=3c,则bc=.解析:∵a=3c,∴sin A=3sin C,∵∠A=2π3,∴sin A=32,∴sin C=12,又∠C必为锐角,∴∠C=π6,∵∠A+∠B+∠C=π,∴∠B=π6,∴∠B=∠C,∴b=c,∴bc=1.答案:17.在△ABC中,已知AB=3,A=120°,且△ABC的面积为1534,则BC边的长为.解析:由S△ABC=1534得12×3×AC sin 120°=1534,所以AC=5,因此BC2=AB2+AC2-2AB·AC·cos 120°=9+25+2×3×5×12=49,解得BC=7.答案:78.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B=() A.π6B.π4C.π3 D .3π4解析:选C.依据正弦定理:a sin A =b sin B =csin C =2R ,得c -b c -a=sin Asin C +sin B =a c +b,即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.9.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值. 解:(1)证明:∵三角形的三边a ,b ,c 成等差数列, ∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin [π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)由题设有b 2=ac ,c =2a ,∴b =2a ,由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =22.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2,化简得-2cos A cos B +2sin A sin B 2,故cos(A +B )=-22,所以A +B =3π4,从而C =π4. (2)由于S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. [B 级 力量突破]1.(2021·辽宁五校联考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.2π3 B .π3 C.3π4D .5π6解析:选A.由3sin A =5sin B ,得3a =5b . 又由于b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b=-12.由于C ∈(0,π),所以C =2π3.2.(2021·北京东城一模)在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( ) A .5 B .13或37 C.37D .13解析:选D.由S △ABC =12AB ·AC ·sin ∠BAC =12×3×4×sin ∠BAC =33,得sin ∠BAC =32,由于△ABC 为锐角三角形,所以∠BAC ∈⎝ ⎛⎭⎪⎫0,π2,故∠BAC =π3,在△ABC 中,由余弦定理得,BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =42+32-2×4×3×cos π3=13.所以BC =13,故选D.3.(2021·厦门模拟)在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,假如sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,π2 B .⎝ ⎛⎭⎪⎫π4,π2C.⎝ ⎛⎭⎪⎫π6,π3 D .⎝ ⎛⎭⎪⎫π3,π2解析:选D.由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2, 即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0, ∵0<A <π,∴0<A <π2.又a 为最大边,∴A =A ,A >B ,A >C , 即3A >A +B +C =π,∴A >π3. 因此得角A 的取值范围是⎝ ⎛⎭⎪⎫π3,π2.4.(2021·云南第一次检测)已知a 、b 、c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A的值等于 . 解析:依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62,所以b +a sin A =b +bsin B =16 2.答案:16 25.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船即可到达商船.解析:如图,设开头时观测站、商船、海盗船分别位于A 、B 、C 处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(分钟). 答案:4036.(2021·成都外国语学校模拟)已知函数f (x )=23sin 2⎝ ⎛⎭⎪⎫π4+x +2sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫π4+x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 且角A 满足f (A )=3+1.若a =3,BC 边上的中线长为3,求△ABC 的面积S .解:(1)由题意知,f (x )=3⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x +sin ⎝ ⎛⎭⎪⎫π2+2x=3()1+sin 2x +cos 2x =3+3sin 2x +cos 2x =3+2sin ⎝ ⎛⎭⎪⎫2x +π6,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得 k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)由f (A )=3+1,得sin ⎝ ⎛⎭⎪⎫2A +π6=12,∴2A +π6=π6或5π6,即A =0或π3. 又A 为△ABC 的内角,∴A =π3. 由A =π3,a =3.得|BC→|=|AC →-AB →|=a =3,① 又BC 边上的中线长为3,知|AB →+AC →|=6.②联立①②,解得AB →·AC→=274,即|AB →|·|AC →|·cos π3=274, ∴|AB →|·|AC →|=272. ∴△ABC 的面积为S =12|AB →|·|AC →|·sin π3=2738.。

2022版高考数学大一轮复习第4章三角函数解三角形第2讲三角恒等变换1

2022版高考数学大一轮复习第4章三角函数解三角形第2讲三角恒等变换1

第四章 三角函数、解三角形第二讲 三角恒等变换练好题·考点自测1。

下列说法错误的是( )A.两角和与差的正弦、余弦公式中的角α,β是任意的 B 。

存在实数α,β,使等式sin (α+β)=sin α+sin β成立 C 。

公式tan (α+β)=tanα+tanβ1-tanαtanβ可以变形为tan α+tan β=tan (α+β)(1—tan αtan β),且对任意角α,β都成立 D.存在实数α,使tan 2α=2tan α2。

[2020全国卷Ⅲ,9,5分]已知2tan θ-tan(θ+π4)=7,则tan θ=( )A.-2 B 。

—1 C.1 D 。

23。

[2021大同市调研测试]已知tan α2=3,则sinα1-cosα=( )A 。

3B .13C .-3D 。

−134.[2019全国卷Ⅱ,11,5分][文]已知α∈(0,π2),2sin 2α=cos 2α+1,则sin α= ( )A.15B .√55C 。

√33D.2√555。

[2020全国卷Ⅱ,13,5分][文]若sin x =−23,则cos 2x = 。

6.tan 67。

5°-tan 22。

5°= 。

7。

[2019江苏,13,5分]已知tanαtan (α+π4)=−23,则sin(2α+π4)的值是 .拓展变式1.[2020全国卷Ⅲ,5,5分][文]已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=( )A .12B .√33C .23D .√222.1+cos20°2sin20°-sin 10°(1tan5°—tan 5°)= .3.已知α∈(0,π),化简:(1+sinα+cosα)·(cos α2-sin α2)√2+2cosα= 。

4。

[2021陕西省部分学校摸底检测]数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =√5-12的近似值,黄金分割比还可以表示成2sin 18°,则m√4-m 22cos 227°-1= ( )A 。

高三数学第一轮复习 解三角形教案

高三数学第一轮复习 解三角形教案

高三数学第一轮复习解三角形教案三角形是几何学中研究的一个重要的图形,它拥有许多特征和性质,因此在数学中被广泛地研究和应用。

在高三数学第一轮复习中,对于三角形的解题方法和相关知识的掌握是非常重要的。

本文将为大家介绍三角形的基本概念、常用定理和解题技巧。

一、三角形的基本概念1. 三角形的定义:三角形是由三条线段组成的图形,其中任意两条线段的长度之和大于第三条线段的长度。

2. 三角形的分类:(1) 根据边长分类:等边三角形、等腰三角形、一般三角形。

(2) 根据角度分类:锐角三角形、直角三角形、钝角三角形。

(3) 根据边角关系分类:外角、内角、对角、邻角等。

3. 三角形的元素:三角形的边、角和顶点。

二、三角形的常用定理1. 三角形内角和定理:一个三角形的三个内角的和为180°。

2. 直角三角形的性质:(1) 斜边平方等于两直角边平方和的定理(勾股定理)。

(2) 直角三角形内角的关系:直角对顶角为90°,直角三角形的其它两个内角为锐角。

三、三角形的解题技巧1. 判断三角形的类型:(1) 根据边长关系判断三角形的类型:边长相等的三角形为等边三角形,两边相等的三角形为等腰三角形,其余为一般三角形。

(2) 根据角度关系判断三角形的类型:有一个角大于90°的三角形为钝角三角形,有一个角等于90°的三角形为直角三角形,其余为锐角三角形。

2. 运用三角形的性质和定理解题:(1) 利用三角形内角和定理解决求角度的问题。

(2) 运用勾股定理解决用已知信息求三角形边长的问题。

(3) 利用等腰三角形的性质解决求角度或边长的问题。

四、三角形解题的思路1. 首先,根据问题中给出的已知条件判断三角形的类型,并利用已知信息列写方程。

2. 其次,根据三角形的性质和定理对三角形进行推导和运算,求解未知量。

3. 最后,验证解答的合理性,并作出结论。

通过掌握三角形的基本概念、常用定理和解题技巧,我们不仅可以更好地理解三角形的属性和性质,还能够灵活运用这些知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径). 正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =asin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.课前检测1.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.3.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长.考点一 利用正、余弦定理解三角形 考法(一) 正弦定理解三角形例题1 (1)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b=________.(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个 B.2个 C.0个 D.无法确定考法(二) 余弦定理解三角形例题2 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin A sin B +sin C,则角B =________.(3)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6过关练习1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24B .-24C.34D .-342.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.考点二 判定三角形形状例题3 (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形过关练习1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin A +b sin B <c sin C ,那么△ABC 的形状为________.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若c -a cos B =(2a -b )cos A ,那么△ABC 的形状为________.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若cos A cos B =ba =2”,那么△ABC 的形状为________.考点三 有关三角形面积的计算[典例] (1)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.(3)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a +2c )cos B +b cos A =0. (1)求B ;(2)若b =3,△ABC 的周长为3+23,求△ABC 的面积.过关练习1.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知c =4,sin C =2sin A ,sin B =154,则S △ABC =________.2.)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则C 为钝角时,ca的取值范围是________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.考点四 平面图形中的计算问题例4 如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1.(1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .过关练习1.如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=3BD,BC=2BD,则sin C的值为________.2.如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P为△ABC内一点,∠BPC=90°(Ⅰ)若PB =12,求P A ;(Ⅱ)若∠APB =150°,求tan ∠PBA .3.如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin ∠BCE 的值; (2)求CD 的长.考点五 三角形中的最值、范围问题例5 (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B-A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12过关练习1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.782.在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A3sin C.(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.4.如图,已知扇形的圆心角∠AOB =2π3,半径为42,若点C 是AB ︵上的一动点(不与点A ,B 重合).(1)若弦BC =4(3-1),求BC ︵的长; (2)求四边形OACB 面积的最大值.考点六 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换例题6.1 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.考法(二) 正、余弦定理与三角函数的性质例题6.2已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f(x)在[0,π]上的单调递减区间;(2)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知f(A)=-1,a=2,b sin C=a sin A,求△ABC的面积.过关练习在△ABC中,a,b,c分别是角A,B,C的对边,(2a-c)cos B-b cos C=0.(1)求角B的大小;(2)设函数f(x)=2sin x cos x cos B-32cos 2x,求函数f(x)的最大值及当f(x)取得最大值时x的值.课后作业补救练习1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形4.在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2 5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( ) A.π6 B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .47.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .238.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+29.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .12.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.13.如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.提高练习1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B=3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .62.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2b a的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)3.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.4.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .6.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值; (2)若∠BCD =2π3,求CD 的长.。

相关文档
最新文档