1.1.1空间几何体的结构特征

合集下载

第1课时 棱柱、棱锥、棱台的结构特征

第1课时  棱柱、棱锥、棱台的结构特征

第一章空间几何体1.1 空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征举世闻名的天坛和古老的金字塔是由哪些几何体组成的呢?现代城市的建筑都是由各种各样的漂亮的几何体组成的.我们的生活中离不开各种美妙的几何体1.理解空间几何体、多面体和旋转体的概念.2.理解棱柱、棱锥、棱台的相关概念.(难点)3.掌握棱柱、棱锥、棱台的结构特征.(重点)观察下面的图片,这些图片中的物体具有怎样的形状?日常生活中,我们把这些物体的形状叫做什么?我们如何描述它们的形状?探究点1多面体和旋转体其中(2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱.棱与棱的公共点叫做多面体的顶点.面顶点棱多面体(1),(3),(4),(6),(8),(10),(11),(12)具有同样的特点;组成它们的面不全是平面图形.旋转体:我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.轴旋转体练一练:C下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫做棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫做棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫做棱锥D.棱台各侧棱的延长线交于一点[解析]正确理解棱柱、棱锥、棱台的概念。

棱柱:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.如图:底面底面侧面侧棱顶点探究点2 棱柱的结构特征棱柱棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……我们用表示底面各顶点的字母表示棱柱,如六棱柱ABCDEF-A′B′C′D′E′F′.特殊的棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱;侧棱垂直于底面的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的四棱柱叫做平行六面体;侧棱垂直于底面的平行六面体叫做直平行六面体;底面是矩形的直平行六面体叫做长方体;棱长都相等的长方体叫做正方体.种类较多,可要记清.【提升总结】思考:长方体被截去一部分,剩下的部分是棱柱吗?E CAF解答:是棱柱。

2019届高中数学第一章空间几何体的结构(第1课时)棱柱、棱锥、棱台的结构特征课件新人教A版

2019届高中数学第一章空间几何体的结构(第1课时)棱柱、棱锥、棱台的结构特征课件新人教A版

探究一
探究二
探究三
思维辨析
解:作出三棱锥的侧面展开图,如图.A,B两点之间的最短绳长就是 线段AB的长度.因为OA=4,OB=3,∠AOB=90°,所以AB=5,即此绳在 A,B之间最短的绳长为5.
探究一
探究二
探究三
思维辨析
一题多变——几何体的计算问题
典例正三棱锥的底面边长为3,侧棱长为2 3 ,求正三棱锥的高.
图1
2.正棱台中的直角梯形的应用
已知正棱台如图2(以正四棱台为例),O1,O分别为上、下底面中心, 作O1E1⊥B1C1于E1,OE⊥BC于E,则E1E为斜高,
(1)斜高、侧棱构成直角梯形,如图2中梯形E1ECC1. (2)斜高、高构成直角梯形,如图2中梯形O1E1EO. (3)高、侧棱构成直角梯形,如图2中梯形O1OCC1.
第一章 空间几何体
1.1 空间几何体的结构
第1课时 棱柱、棱锥、棱台的结构特征
核心素养培养目标
核心素养形成脉络
1.了解空间几何体的分类及其相关 概念. 2.通过对实物模型的观察、归纳认识 棱柱、棱锥、棱台的结构特征. 3.能运用棱柱、棱锥、棱台的结构特 征描述现实生活中简单几何体的结
构和进行有关计算,培养直观想象与 数学运算的核心素养.
一二三四
三、棱锥的结构特征 1.观察下列多面体,有什么共同特点?
提示:(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的 三角形.
一二三四
2.关于棱锥的定义、分类、图形及表示,请填写下表:
棱锥
图形及表示
定 义
有一个面是多边形,其余各面都是有一 个公共顶点的三角形,由这些面所围成 的多面体叫做棱锥
∴AA1=4 2, ∴△AEF 周长的最小值为 4 2.

1-1-1棱柱、棱锥、棱台的结构特征

1-1-1棱柱、棱锥、棱台的结构特征

第一章
1.1
1.1.1
成才之路 ·数学 ·人教A版 · 必修2
命题方向
[例2]
对多面体形状的认识
如图所示,已知长方体ABCD-A1B1C1D1.
第一章
1.1
1.1.1
成才之路 ·数学 ·人教A版 · 必修2
(1)这个长方体是棱柱吗?如果是,是几棱柱?为什 么? (2)用平面BCFE把这个长方体分成两部分后,各部分形 成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说 明理由.
第一章
1.1
1.1.1
成才之路 ·数学 ·人教A版 · 必修2
下面四个几何体中,是棱台的为(
)
[答案] C
第一章
1.1
1.1.1
成才之路 ·数学 ·人教A版 · 必修2
[解析]
A项中的几何体是棱柱;B项中的几何体是棱
锥;D项中的几何体的棱AA′,BB′,CC′,DD′没有交 于一点,则D项中的几何体不是棱台;很明显C项中的几何体 是棱台.
第一章
1.1
1.1.1
成才之路 ·数学 ·人教A版 · 必修2
新课引入 中国人认为:没有规矩不成方圆,按照制定出来的规矩做 事,就可以获得整体的和谐统一.在中国传统文化中,“天圆 地方”的设计思想催生了“水立方”,它与圆形的“鸟 巢”——国家体育场相互呼应,相得益彰,可以说“水立方” 就是现代时尚和中国传统文化的智慧结晶,它的建成是我的中 华民族的骄傲, 它给我们带来了美的享受和美的向往. “鸟巢” 和“水立方”也都是由一些简单几何体组成的,本节我们学习 棱柱、棱锥、棱台等这些简单几何体的结构特征.
[解析]
(1)由棱柱的定义可知,(1)正确;(一个n棱柱的
底面是一个n边形,因此每个底面都有n个顶点,两个底面的 顶点数之和即为棱柱的顶点数,即2n个.(3)因为棱柱同一个 侧面内的两条底边平行且相等,所以棱柱的两个底面的对应 边平行且相等,故棱柱的两个底面全等.(4)如果棱柱有一个 侧面是矩形,只能保证侧棱垂直于该侧面的底边,但其余侧 面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩 形. 故(1)(2)(3)正确,(4)不正确.

柱锥台球的结构特征(1)

柱锥台球的结构特征(1)

第一章空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(1)教材分析几何学是研究现实世界中物体的形状、大小和位置关系的学科.空间几何体是几何学的重要组成部分,是第二章研究空间点、线、面位置关系的载体,对于培养和发展学生的空间想象能力,推理论证能力、运用图形语言进行交流的能力有着十分重要的作用.第一章空间几何体的第一节空间几何体的结构包括两节内容.本节课是第一节的第一课时,介绍了棱柱、棱锥、棱台等多面体的结构特征,是学习第二节简单组合体的结构特征的基础,同时体会和旋转体的区别.教学目标重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台的结构特征.难点:棱柱、棱锥、棱台的结构特征的概括.知识点:让学生观察、讨论、归纳、概括所学的知识.能力点:培养学生的空间想象能力和抽象概括能力.自主探究点:通过实物操作,增强学生的直观感知.拓展点:会用语言概述棱柱、棱锥、棱台的结构特征.一、引入新课借助多媒体动态演示不同的建筑,引导学生观察这些建筑物的几何特征;学生积极思考并回答教师提出的问题;最后教师总结所举的建筑物基本上都是由这些几何体组合而成的(展示具有棱柱、棱锥、棱台结构特征的空间物体),引出本节课的课题。

提问在我们生活中有不少有特色的建筑物,你能举一些例子吗?这些建筑的几何结构特征如何?二、探究新知1.分析空间几何体的结构特征、分类归纳按小组分给学生实物,引导学生从空间几何体的名称,结构特征,与平面图形的联系以及组成几何体的每个面的特点,面与面的关系等方面进行观察、思考,学生讨论并尝试回答,教师引导学生观察(2)(5)(7)(9)(13)(14)(15)(16)与(1)(3)(4)(6)(8)(10)(11)(12)的不同,然后给出多面体的定义和旋转体的定义,教师要在引导学生感知其形成过程的基础上加以理解.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.通过具体的实物及实物图象,引导学生主动地对图形及实物进行观察、分析、比较,并由图形的特点进行分类,根据不同类别图形的特点,抽象概括出多面体的定义,培养学生的观察、分类、概括能力.2.棱柱的结构特征通过观察图中的(2)(5)(7)(9),你能根据其结构特点概括出棱柱的定义吗? 学生分成小组对这两种模型进行观察、讨论,概括出这两种几何体的结构特点,并由此得出棱柱的定义.一般地,有两个面互相平行;其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱 柱.两个相互平行的面叫底面;其余各面叫棱柱的侧面;相邻侧面的 公共边叫棱柱的侧棱;侧面与底面的公共顶点叫棱柱的顶点.棱柱的分类:底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……. 棱柱的表示:底面各顶点的字母表示棱柱,如图1.1 -2可表示为 六棱柱ABCDEF A B C D E F ''''''-图13.棱锥的结构特征引导学生通过观察(14)、(15),指出其结构特点与棱柱的区别与联系,由学生通过合作学习,自己归纳出棱锥的结构特点,学生分组讨论,通过比较分析,得到(14)、(15)与棱柱的共同点是,其各个面均由平面图形围成,不同点是只有一个面是多边形,其余各面都是三角形,并且这些三角形都有一个公共顶点.一般地,有一个面是多边形;其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.这个多边形 面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥 的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共 边叫做棱锥的侧棱. 棱锥的分类:底面是三角形、四边形、五边形……的棱锥 分别叫做三棱锥、四棱锥、五棱锥……. 棱锥的表示:用表示顶点和底面各顶点的字母来表示,如图可表示为四棱锥S-ABCD .4.棱台的结构特征C′ 底面 棱椎的顶点侧面 S D CA B′ E′ A′ D′ F′ 侧面 D E 侧棱 F C 顶点B A 底面 B侧棱出示投影片图中(13)、(16),通过与棱柱、棱锥的结构特点相比较,你能得到棱台的概念、结构名称及分类标准吗?学生自主发言,教师及时点评得出棱台的定义、结构名称、分类标准以及表示方法,可以借助投影片图1. 1-4,让学生对棱台的结构名称进一步地认识,另外注意结合棱柱及棱锥的结构名称、分类标准及表示方法理解认识棱台的结构名称、分类标准以及表示方法.在学习时一定要注意比较方法的运用,尤其要注意棱台与棱锥结构特点的区别与联系.用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面.棱台的分类:底面是三角形、四边形、五边形……的棱台分别叫做三棱台、四棱台、五棱台…….棱台的表示:用各底面顶点字母表示,如图可表示为四棱台ABCD A B C D ''''-.三、理解新知深化棱柱、棱锥、棱台的概念,掌握各自的结构特点.1、观察螺杆头部模型,有多少对平行的平面?能作为棱柱底面的有几对?五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法?学生作答:棱柱、棱锥、棱台结构特征和有关概念.教师总结: 1、注意观察分析立体图形的特征,培养空间想象能力;2、归纳、类比和数形结合的思想方法.六、布置作业教科书第8~9页,习题1. 1A 组第1、2题并观察身边的物体,举出一些具有棱锥、棱台、圆台、球体特征的物体,说明它们各自具有的特征七、教后反思本节课先展示大量几何体的实物、模型、图片等,让学生直观感受空间几何体的整体结构,然后再引导学生抽象出空间几何体的结构特征,之所以这样安排,是因为先从总体上认识空间几何体,再深入细节(点、直线、平面之间的位置关系)的认识,更符合学生的认识规律.本节不足之处是学生可能对棱柱与棱台定义中两面平行产生疑惑,面面平行是第二章的内容,学生还没有学习,可能对具体什么是面面平行,两面平行又会有什么性质结论不清楚,比较含糊,而在课堂上没有及时利用实物举例帮助学生解惑.比如:教室的屋顶与地面,学生课桌与地面等,让学生对它们进行描述,这样帮助学生形成“面面平行”的直观认识的话,教学效果更好.课下还需要对备课细节多琢磨,多从学生角度考虑教学设计,以提高教学质量.八、板书设计1.1.1空间几何体(1)一、多面体1、棱柱2、棱锥3、棱台例1、例2、。

人教版高中数学必修二全册课件ppt

人教版高中数学必修二全册课件ppt

探究点1 多面体和旋转体 观察下面的图片,这些图片中的物体具有怎
样的形状?日常生活中,我们把这些物体的形状 叫做什么?我们如何描述它们的形状?
其中(2),(5),(7),(9),(13),(14), (15),(16)具有相同的特点:组成几何体的每个 面都是平面图形,并且都是平面多边形.
多面体:一般地,我们把由若干个平面多边形围成 的几何体叫做多面体. 围成多面体的各个多边形叫做多面体的面. 相邻两个面的公共边叫做多面体的棱. 棱与棱的公共点叫做多面体的顶点.
半径是指什么?如何用字母表示球?
本 答 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋
课 时
转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径
栏 叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字

开 母 O 表示,如球 O.

研一研·问题探究、课堂更高效
例 2 判断下列各命题是否正确:
柱是怎样形成的呢?与圆柱有关的几个概念是
如何定义的?
答 圆柱的定义:以矩形的一边所在直线为旋转轴,其余三边旋转
本 课
形成的面所围成的旋转体叫做圆柱,旋转轴叫做圆柱的轴;垂直于
时 轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的

目 曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫

课 时
垂直于轴的边旋转而成的圆面叫做圆柱的 底面 ;平行于
栏 目
轴的边旋转而成的曲面叫做圆柱的 侧面 ;无论旋转到
开 关
什么位置,不垂直于轴的边叫做圆柱侧面的 母线 .
2.以直角三角形的一条直角边所在直线为旋转轴,其余两
边旋转形成的面所围成的旋转体叫做 圆锥 .

棱柱、棱锥、棱台的几何特征 简明版

棱柱、棱锥、棱台的几何特征 简明版
1.1 空间几何体的结构
柱、锥、台、球体的结构特征
一、柱体
1 棱柱 2 圆柱
1、棱柱
判断方法特征:两头一样平,中间一样粗
直四棱柱
斜四棱柱
直六棱柱
斜六棱柱
C1
B
1
A1
C
B
A
正三棱柱
正四棱柱
正六棱柱
练习1
一个长方体,能作为棱柱底面的有几对?
练习1
一个长方体,能作为棱柱底面的有几对?
练习1
一个长方体,能作为棱柱底面的有几对?
练习1
一个长方体,能作为棱柱底面的有几对?
练习2
长方体按如图截去一角后所得的两部分还是棱柱吗?
D’ A’ B’ C’
D C A B
练习2
长方体按如图截去一角后所得的两部分还是棱柱吗?
D’ A’ F G F’ B’ G’
C’
H
D E A B C H’
E’
练习3:有两个面互相平行,其余各面都 是平行四边形的多面体一定是棱柱吗?
二、锥体
1 棱锥 2 圆锥
1、棱锥
三棱锥(四面体)
四棱锥
五棱锥
判断方法:有一个面是多边形,其余各面都 是有一个公共顶点的三角形
练习1、一个棱锥至少有几个面?一个N 棱锥分别有多少个底面和侧面?有多少 条侧棱?有多少个顶点?
至少有4个面;1个底面,N个侧 面,N条侧棱,1个顶点.
练习2、一个三棱柱可以分割成几个三 棱锥?
A1 B1
C1
A1 B1
C1
A
C
A
C
B
B
1、棱台
用一个平行于棱锥底面的平面去截棱锥
判断方法 上下底面是互相平行的相似多边形,

空间几何体的结构1.1第1课时 棱柱、棱锥、棱台的结构特征

空间几何体的结构1.1第1课时 棱柱、棱锥、棱台的结构特征

1.空间几何体的定义
空间中的物体都占据着空间的一部分, 若只考虑这些物体的_形__状___和_大__小___,
而不考虑其他因素,那么由这些物体抽 象出来的空间图形就叫做空间几何体.
[问题1] 图片(1)(2)(3)中的物体的形状有何特点? [提示] 由若干个平面多边形围成. [问题2] 图片(4)(5)(6)(7)的物体的形状与(1)(2)(3) 中有何不同?图片(4)(5)(6)(7)中的几何体可否看作 平面图形绕某定直线旋转而成? [提示] 表面是由平面与曲面围成.可以。
DCFD′. 其中四边形ABEA′和四边形DCFD′是底面, A′D′,EF,BC,AD为侧棱.
8.如 图 , 已 知 长 方 体 ABCD- A1B1C1D1,过 BC 和 AD 分别作 一 个 平 面 交 底 面 A1B1C1D1 于 EF、PQ,则长方体被分成的三 个几何体中,棱柱的个数是________.
答案: D
下列的几何体是多面体吗?
答:这些不但是多面体,他们还是多面体 当中的一种,叫做棱锥。
你们思考一下这些棱锥有什么共同特点?
2.棱锥的结构特征
什么是棱锥? 一般地,有一 个面是多边形,其余 各面都是有一个公共 点的三角形,由这些 面围成的多面体叫做 棱锥. 记为:棱锥S-ABCD
多边形 三角形
D'
E'
C'
D A'
B'
S A'B'C'D'E' S ABCDE
S' H '2 SH 2
E
O
C
AB
3. 棱台的结构特征
什么是棱台? 一般地,用一个平行于棱锥底面的平面去截 棱锥,底面和截面中间的部分的多面体叫做棱台.

柱、锥、台、球的结构特征

柱、锥、台、球的结构特征
第一章 空间几何体的 结构
生活中的立体图形
3 4
1
2
(1)(2)(3)(5)一类
6
7
(4)(6)(7)一类
多面体:把由若干
个平面多边形围成 的几何体叫做多面 体.
简单空间几何体的分类:
圆柱 柱体 锥体 棱柱 圆锥 棱锥 台体 球体 圆台 棱台
5
旋转体:把由一个平面
图形绕它所在平面内的 一条直线旋转所形成的 封闭几何体叫做旋转体, 这条定直线叫做旋转体 的轴.
③观察右边的棱柱,共有多少对 平行平面?能作为棱柱的底面的有几 对? 答:四对平行平面;只有一对可以作为棱柱的底 面. ④棱柱的任何两个平行平面都可以作为棱柱的底 面吗? 答:不是.
斜棱柱
思考:倾斜 后的几何体还是 棱柱吗?
D′ B′ C′
F′Leabharlann E′ A′ED
F
A B
C
直棱柱
底面为正多边形
正棱柱
棱柱 斜棱柱
图片回放
提出问题
上面提到的物体的几何结构特征大致有以 下几类:
提出问题
下图中的物体具有什么样的共同的结构特征? ①有两个面互相平行; ②其余各面都是平行四边形; ③其余每相邻的两个四边形的公共边都互相平行.
棱柱的结构特征
如何描述下图的几何结构特征?
棱柱
有两个面互相平行,其余各面 都是四边形,并且每相邻两个面的 公共边都平行,由这些面所围成的 几何体叫棱柱. (1)底面互相平行. (2)侧面都是平行四边形. (3)侧棱平行且相等.
A D’ D C’
B’
C
B 下底面
圆台的结构特征 如何描述它们具有的共同结构特征?
圆台 圆柱、圆锥可以看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档