第一章距离空间与拓扑空间

合集下载

近代数学基础I总结

近代数学基础I总结
n →∞ n →∞
+∞ +∞ +∞
● Fubini 定理(积分次序可交换条件) :
赋范空间 定义: X 是线性空间,如果存在 X 上面的函数 (1) x ≥ 0且 x = 0 ⇔ x = 0 (2) αx = α x (3) x + y ≤ x + y
• 满足 (正定性) (齐次行) (三角不等式)
则 • 为 X 上的一个范数。X 是以d ( x , y ) = x − y 为距离的赋范空间,记作 X , • 。 相关:
(加法交换律) (加法结合律)
拓扑空间 定义: ①定义 1: P ( X )是集合X的幂集,τ ⊂ P ( X ) 如果满足 (1)∅ , X ∊ τ
k
(2)∩A i ∊ τ , A i ∊ τ ( i = 1, 2,…, k )
i =1
+∞
(3)∪A i ∊ τ , A i ∊ τ ( i = 1, 2,…)
0 , 1 。注意L1 0 , 1 里面的函数不一定是连续函数。积分的时候需要用雷贝克积 分,而不能用黎曼积分。 ● { x | f ( x )≠ 0 }为f ( x ) 的支撑集。当f ( x ) 的支撑集有界时,{ x | f ( x )≠ 0} 为f ( x )的 紧 支集,记作supp { f ( x )}(因为如果支撑集本身是有界的,在加上闭包的限制。那么得 到的集合就是有界闭区间, 也就是紧的。所以叫做紧支集。 注意无限支撑函数没有紧支 集。 ) ● C 0 D 为 D 上所有紧支集上的连续函数空间。 ●
● 如果距离空间( X , d ) 中的每一个 Cauchy 列都收敛于X中的某一个点,则( X , d ) 是完 1 n ∞ ) } n =1是 Cauchy 列。列中的每个元素都是有理数,而其 n 收敛于 e。是一个无理数。所以此 Cauchy 列在( ℚ, d ) 中没有极限,由于ℚ不是完备 的。在( ℝ , d )有极限,由于ℝ是完备的。 ) ● 有覆盖的集合是紧集,或者称为紧的。由有限覆盖定理(Heine-Borel Theorem) :有 备距离空间。 (例如{( 1 + 界闭合子集都可由有限个开集所覆盖(表示为∀ [ a , b ], ∃ ∪( a i , bi )使[ a , b ] ⊂

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

点集拓扑学(第一章1.1)

点集拓扑学(第一章1.1)
Department of Mathematics
1736年欧拉 解决七桥问题
哥尼斯堡 七桥问题 四色问题 Euler示性数
1976年9月四
Mö bius带
色问题得到解决
Department of Mathematics
哥尼斯堡七桥问题
哥尼斯堡是东普鲁士的首都,普莱格尔河横贯其中。 十八世纪在这条河上建有七座桥,将河中间的两个岛和河
岸联结起来。人们闲暇时经常在这上边散步
一天有人提出:能不能每座桥 都只走一遍,最后又回到原来的
位置。
这个问题看起来很简单, 有很有趣的问题吸引了大家. 很多人在尝试各种各样的走法,但谁也没有做到。看
来要得到一个明确理想的答案还不那么容易
Department of Mathematics
1736年,有人带着这个问题找到了当时的大数学家 欧拉,欧拉经过一番思考,很快就用一种独特的方法给出
了解答。
他把两座小岛和河的两岸分别看作四个点, 而把七座桥看 作这四个点之间的连线。那么这个问题就简化成,能不能用一 笔就把这个图形画出来。 经过进一步的分析,欧拉得出结论——不可能每座桥都走一 遍,最后回到原来的位置。并且给出了所有能够一笔画出来的 图形所应具有的条件。这是拓扑学的“先声”。
Department of Mathematics
和数学知识,能对实际问题进行分析、归纳、
提炼和解决,提高他们的数学素养。
Department of Mathematics
教学目标
掌握拓扑空间、度量空间和连续映射的定义、例子、
性质。掌握连通性,可数性,分离性,紧性等拓扑性质。 掌握几个重要的拓扑性质的可积性、可商性和遗传性。
教学要点
拓扑空间、度量空间和连续映射的定义、例子、性 质。连通性,可数性,分离性,紧性等拓扑性质。几个重

拓扑空间及其性质与应用

拓扑空间及其性质与应用

拓扑空间及其性质与应用拓扑空间是数学中一种较为抽象的概念,它研究的是集合内元素间的空间性质。

在拓扑学的研究中,我们并不关心元素的具体性质,而是关注它们之间的相对关系。

因此,在拓扑学中,我们可以用更为广泛的眼光来观察空间的形态和性质,从而研究许多实际问题。

1. 拓扑空间的定义及性质拓扑空间一般是指一个非空集合X及其上的某些特定子集的一个集合T,这些子集被称为X的开集合,满足以下条件:(1)X和∅(空集)都是开集合;(2)任何一组开集合的交集仍是开集合;(3)任何有限个开集合的并集仍是开集合。

拓扑空间在定义上的几何意义,是指我们可以在一个集合X中定义“开”概念,从而建立一个“空间”,并在此空间中研究“连续性”、“紧性”、“连通性”等性质,并对它们加以分类和研究。

在拓扑学中,一个集合的子集所构成的拓扑空间,有时被称为“子空间”。

我们可以利用子空间的方法,把一个大的拓扑空间划分为若干个小的拓扑空间,使得我们对它们的研究更加方便。

2. 拓扑空间的常见性质(1)Hausdorff性质:指的是任何两个不同点都可以被它们所在的开集合所分离的性质。

也就是说,对于任意的两个不同点x和y,我们可以找到x所在的一个开集合U和y所在的一个开集合V,使得U和V没有任何交集。

这个性质使得拓扑空间中的点与点之间的距离更明确,从而方便我们对拓扑空间中的连通性和路径的讨论。

(2)连通性:指的是在拓扑空间中,任何一对不同点都可以被某种形式的路径所连通,即这对点所在的集合是连通的。

连通性是拓扑空间中的一种重要性质,它使得我们对拓扑空间中的形态更为直观,同时也方便我们对拓扑空间的分类和归纳。

(3)紧性:指的是拓扑空间中的任何一个开覆盖都存在有限的子覆盖。

紧性是拓扑空间中的另一个重要性质,它在实际问题中有很广泛的应用。

例如,在微积分学中,一些重要的定理,如还原定理和傅里叶定理的证明,需要利用紧性的性质。

3. 拓扑空间的应用(1)生物学中:利用拓扑空间的方法,可以对DNA及其上的蛋白质结构进行拓扑学分析,从而研究生物体的启动子序列、调节基因、编码基因等结构间的关系。

第一章、拓扑学基础

第一章、拓扑学基础

第一章、拓扑学基础1.1拓扑空间概念拓扑空间是一个二元组(S, O),这里S是给定集合,O是由S的一些子集构成的集类,其元素称为开集,并满足如下开集公理:T1 ∅, S∈O(即,∅, S是开集);T2 若U1,U2∈O,则U1⋂U2∈O(即,O对有限交封闭);T3 开集的任意并集还是开集(即,O对任意并封闭)。

註记满足上述开集公理的O,也称为集合S上的拓扑,(S, O)为相应的拓扑空间,也记为S。

例子实数集合ℝ上的标准拓扑:开集定义为若干个开区间的并集。

不难验证:这里定义的开集满足开集公理。

只需说明:两个开区间的交集为空集或开区间。

例子离散拓扑与平凡拓扑对给定的集合S,定义下列两个拓扑:(S,O1): O1由S的所有子集构成,它是S上的拓扑(最大拓扑)。

(S,O2): O2={∅,S},它是S上的拓扑(最小拓扑)。

练习给出实数集合ℝ上三种不同的拓扑空间结构。

练习设S是一个集合,O由∅,S及S的某个固定子集A的所有子集构成。

验证O是S上的拓扑。

从而,(S,O)是一个拓扑空间。

概念设(S, O)是拓扑空间,称A⊂S是闭集,如果S\A是开集。

拓扑空间S的所有闭集构成集合,记为C。

命题拓扑空间S中的闭集满足闭集公理C1 ∅, S∈C;C2 若A1,A2∈C,则A1⋃A2∈C(即,C对有限并封闭);C3 闭集的任意交集还是闭集(即,C对任意交封闭)。

证明:利用下列等式可证。

S\(A1⋃A2)=(S\A1)⋂(S\A2),S\(B ii。

i)=(S\B i)註记开集公理与闭集公理是等价的:若S中的某些子集指定为闭集,并满足闭集公理。

则S是拓扑空间,其开集由闭集的余集所构成。

概念对拓扑空间S,点u∈S的开邻域是指包含u的开集U;子集A⊂S的开邻域是指包含A的开子集;一个点(或子集)的邻域是一个子集,它包含该点(或该子集)的一个开邻域。

例子对拓扑空间ℝ,U=(-1,1)是0的开邻域;W=[-1,1]是0的邻域。

拓扑学的拓扑空间

拓扑学的拓扑空间

拓扑学的拓扑空间拓扑学是数学的一个重要分支,研究的对象是拓扑空间及其性质。

拓扑空间是集合论的一个应用领域,它是指任意一个集合及其上的拓扑结构。

本文将介绍拓扑空间的定义、性质以及与其他数学概念的关系。

一、拓扑空间的定义拓扑空间由两个部分组成:一个是集合,另一个是定义在这个集合上的拓扑结构。

集合可以是有限的,也可以是无限的。

拓扑结构则规定了集合中元素之间的接近方式或者邻近关系。

具体地说,拓扑结构包括了开集的概念和满足一定条件的子集之间的关系。

二、拓扑空间的性质1. 开集和闭集:在拓扑空间中,开集是指满足包含于自身内部的集合,闭集则是指包含它所有极限点的集合。

开集和闭集是拓扑空间中的基本概念,它们具有很多重要的性质。

2. 连通性:拓扑空间中的一个重要性质是连通性。

连通性是指拓扑空间中不存在可以将其划分为非空、互不相交且一个集合开,另一个集合闭的两个子集。

连通性在拓扑学和几何学中有广泛的应用,它刻画了空间的固有性质。

3. 同胚和同伦:同胚是指两个拓扑空间之间的一个一一映射,而且这个映射和其逆映射都是连续的。

同胚将一个拓扑空间映射到另一个拓扑空间,保持了拓扑结构的性质。

同伦是拓扑学中的一个关键概念,它刻画了两个空间之间的变形关系。

三、拓扑空间与其他数学概念的关系1. 拓扑空间与度量空间:度量空间是由距离函数所构成的空间,它是拓扑空间的一种特殊情况。

拓扑空间可以通过引入度量而变成度量空间,而度量空间中也能定义拓扑。

2. 拓扑空间与集合论:拓扑空间是集合论的一个应用领域,它运用了集合的概念和理论。

在拓扑学中,集合的元素被看作是拓扑空间中的点,而集合的子集则对应于拓扑空间的开集和闭集。

3. 拓扑空间与几何学:几何学是研究空间形状和性质的学科,而拓扑学则研究了几何学中的一些基本概念和性质。

拓扑空间提供了一种抽象的框架来研究几何学中的问题,使得研究更加一般化和推广。

总结:拓扑学的拓扑空间是集合论的一个重要应用领域,它研究了集合和集合上拓扑结构之间的关系,具有许多有趣的性质。

拓扑空间、开集、闭集、闭包、聚点、邻域

拓扑空间、开集、闭集、闭包、聚点、邻域

第一章拓扑空间与拓扑不变量数学分析中的连续函数的定义与和值域都是欧氏空间(直线、平面或空间)或是其中的一部分。

本章将首先把连续函数的定义域和值域的主要特征抽象出来用以定义度量空间,将连续函数的主要特征抽象出来用以定义度量空间的连续映射。

然后将两者再度抽象,给出拓扑空间和拓扑空间之间的连续映射。

随后逐步提出拓扑空间的一些基本问题如邻域、开集、闭集、闭包、聚点、导集、内部、边界、序列、极限等。

进一步引入紧致性、连通性、可数性与分离性等重要的拓扑不变性§1.1拓扑空间、开集、闭集、聚点、闭包、邻域一、问题的引入数学分析里我们知道,在连续函数的定义中只涉及距离这个概念,定义域是一维欧氏空间,即实数空间,两点之间的距离d(x,y)=|x-y|,即两两实数之差的绝对值,定义域是n维欧氏空间,两点x=(x1 ,x2,…,x n),Y=(y1,y2,…,y n) 之间的距离。

无论是几维空间,它的距离都有下面的性质:1. d(x,y)≥0 , ∀x,y∈n R;2. d(x,y) = 0 ⇔x = y ;3. d(x,y) = d(y,x) ∀x,y∈n R;4. d(x,z) ≤d(x,y) + d(y,z) ,∀x,y,z∈n R;这些性质反映了距离的特征。

将n R推广为一般的集合,我们由距离可以抽象出度量以及度量空间的定义。

(一)度量空间1.定义定义1 设X是一个集合,ρ:X×X→R ,如果对于任何x,y,z∈X,有①(正定性)ρ(x,y)≥0 并且ρ(x,y) = 0 ⇔x = y ;②(对称性)ρ(x,y) = ρ(y,x) ;③(三角不等式)ρ(x,z) ≤ρ(x,y) + ρ (y,z)则称ρ是集合X中的一个度量。

如果ρ是集合X中的一个度量,则称偶对(X,ρ)是一个度量空间,或径称X 是一个度量空间。

而ρ(x,y )称为从点X 到点Y 的距离。

2. 度量空间举例例2.1.1 实数空间R对实数集合,定义ρ:R×R →R 如下:∀x,y ∈R ,令ρ(x,y )=|x-y| ,易知ρ是R 的一个度量。

泛函分析期末复习提要.doc

泛函分析期末复习提要.doc

泛函分析期末复习提要一、距离空间与拓扑空间(一)教学内容1.距离空间的基本概念:定义与例子、收敛性、距离空间的连续映射与等距。

2.距离空间中的点集:开集与闭集、稠密子集,可分距离空间。

3.完备距离空间:Cauc/巧列,完备性、闭球套定理、纲,纲定理、距离空间完备化。

4.压缩映射原理:不动点,压缩映射原理、压缩原理的一些应用。

5.拓扑空间的基本概:拓扑空间的定义、拓扑基、拓扑空间中的连续映射, 同胚、分离公理。

6.紧性和距离空间的紧性:紧性的概念、紧空间的连续映射。

7.距离空间的紧性:列紧集,全有界集、Arzela定理。

重点掌握距离空间的基本概念、距离空间中的点集、完备距离空间、压缩映射原理、拓扑空间的基本概念、紧性和距离空间的紧性。

难点完备距离空间、压缩映射原理。

(-)教学基本要求1・理解距离空间、距离空间中的点集等基木概念。

2•了解完备距离空间的概念,掌握压缩映射原理的证明。

3.理解拓扑空间的基木概念及其运算性质。

二、赋范线性空间(一)教学内容1.赋范空间的基本概念:赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例。

2.空间L p(p>\):Holder不等式与Minkowski不等式、空间r(E)(p>i).空间r(E)o3•赋范空间进一步的性质:赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。

4.有穷维赋范空间。

重点赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例、Holder 不等式与Minkowski不等式、空间(£)(/?> 1) >空间匕(E)、赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。

难点Holder不等式与Minkowski不等式、赋范空间的完备化、空间r(E)(p>i).空间r(E)o(-)教学基本要求1•理解赋范空间的定义、赋范空间的基本性、凸集、赋范空间的子空间、赋范线性空间的基本概念、等价范数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从而 D 是完备的。
4、补充最大模原理:在区域内不恒为常数的解析函数的模的最大值只能在 边界达到。
① d ( x, y) ≥ 0 ,且 d ( x, y) = 0 当且仅当 max | x − y |= max | x − y |= 0 当且仅当
|t|≤1
|t| =1
x = y。
② d ( x, y) = d ( y, x) 显然。
∀A ⊆ X , ∃��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
相关文档
最新文档