胰岛素分泌
胰岛素的生物合成和分泌机制

胰岛素的生物合成和分泌机制胰岛素是人体内一种非常重要的荷尔蒙,它主要的作用是调节血糖的水平。
当人吃东西之后,胰岛素会被胰腺分泌出来,然后进入到血液循环中,最终让身体内的细胞能够将血液中的葡萄糖转化成能量。
胰岛素的生物合成和分泌机制是一个非常复杂的过程,本文将从分子水平、细胞水平及器官水平三个角度来分析这个过程。
1. 分子水平人体内的胰岛素是一种由两条多肽链组成的蛋白质,分别是A 链和B链。
这两条链中都含有一个含有硫酸基的氨基酸残基,它们会相互连接构成非常稳定的二硫键。
这就是胰岛素分子的第一个特点:非常稳定。
胰岛素的基因结构大约包含有三万个碱基对,其中包含有一些特定的序列,这些序列能够被肝脏和胰腺中的一些酶所识别。
这些酶能够将基因组中的某些片段剪切下来,并将其拼接到一起形成一个成熟的胰岛素基因。
然后,这个成熟的基因会被转录成一条核糖核酸(RNA),并被带入到胰腺的内质网。
在内质网中,一些糖基化酶和剪切酶会作用于这条RNA,使其和几个特定的蛋白质相互结合,形成胰岛素前体。
这个前体由含有A链的蛋白质和含有B链的蛋白质反复结合而成。
2. 细胞水平胰岛素前体被转运到了胰岛素颗粒体中,它们处于一个非常纷乱的环境中,因为还有许多其他的蛋白质和小分子在这里。
但是,颗粒体内有一些酶,它们能够将胰岛素前体剪切成含有A链的蛋白质和含有B链的蛋白质。
这两个蛋白质被合并在一起,形成了成熟的胰岛素分子。
随后,这些胰岛素分子会向细胞膜移动。
在细胞膜上有一些可以结合胰岛素的受体,它们会捕获、结合和摄取这些胰岛素分子。
这些受体被称为胰岛素受体。
它们主要存在于肝脏、肌肉和脂肪细胞等组织中。
胰岛素分子与胰岛素受体的结合,使得细胞内的一些信号通路开始被激活。
这将导致一系列生化反应的发生,最终将血液中的葡萄糖转化成细胞所需的能量和合成脂肪和蛋白质所需的物质。
3. 器官水平胰岛素的主要生产部位是胰腺内的一种细胞——胰岛素β细胞。
这些细胞位于胰腺中的一些小囊泡里,也被称为胰岛素颗粒。
胰岛素分泌原理

胰岛素分泌原理
胰岛素是由胰岛素细胞分泌的一种激素,它在调节血糖水平和能量代谢方面起着重要作用。
胰岛素的分泌受到多个因素的调控,主要包括血糖水平、胃肠道激素、运动和神经调节等。
当血糖水平升高时,特别是在进食后,胰岛素细胞会受到刺激,促使胰岛素的分泌。
这是通过血液中的葡萄糖刺激胰岛素细胞表面的受体,导致细胞内钙离子浓度增加,进而促进胰岛素合成和分泌的过程。
此外,胃肠道激素也能够间接地刺激胰岛素的分泌。
在进食过程中,胃肠道分泌的一些激素(如胃抑素、胰高血糖素等)能够刺激胰岛β-细胞合成和分泌胰岛素。
运动对胰岛素的分泌也有一定的影响。
运动能够增加肌肉组织对葡萄糖的摄取和利用,刺激胰岛β-细胞合成和分泌胰岛素。
神经调节也对胰岛素的分泌起着一定的调控作用。
交感神经活动的增加会促进胰岛素的分泌,而副交感神经活动则抑制胰岛素的分泌。
总体而言,胰岛素的分泌受到多种因素的综合调控,这种调节使得血糖水平保持在一个相对稳定的范围内,维持机体的能量代谢和生理功能的正常进行。
第五节 胰岛素的分泌

第五节胰岛内分泌胰岛(pancreatic islet)为胰腺的内分泌部,是呈小岛状散在分布于外分泌腺泡之间的内分泌细胞团。
细胞之间有丰富的毛细血管分布,有利于胰岛细胞分泌的激素进入循环血液。
成年人胰腺内的胰岛有(1-2)×106个,约占胰腺总体积的1%。
胰岛内分泌细胞按形态学特征及分泌的激素分类至少有五种细胞:分泌胰高血糖素(glucagon)的α(A)细胞,约占胰岛细胞总数的25%;分泌胰岛素(insulin)的β(B)细胞,占60%-70%;分泌生长抑素(somatostatin, SS)的δ(D)细胞,约占10%;分泌血管活性肠肽(vasoactive intestinal peptide, VIP)的D1(H)细胞和分泌胰多肽(pancreatic polypeptide, PP)的F(PP)细胞数则很少。
一、胰岛素(一)胰岛素及其受体1.胰岛素人胰岛素是含51个氨基酸残基的小分子蛋白质,分子量为5.8kD,由21肽的A链和30肽的B链组成。
A、B两链之间借助于两个二硫键相连,A链内还有一个二硫键,如果二硫键断开,胰岛素便失去活性。
在β细胞内,前胰岛素原(preproinsulin)在粗面内质网中被水解成胰岛素原(proinsulin),随后被运至高尔基复合体进一步加工,最后经剪切形成胰岛素和连接肽(connecting peptide, C肽)。
由于C肽与胰岛素一同被释放入血,两者的分泌量呈平行关系,故测定C肽含量可反映β细胞的分泌功能。
β细胞分泌时亦有少量的胰岛素原进入血液,但其生物活性仅为胰岛素的3%-5%。
C肽虽无胰岛素活性,但具有激活钠泵及内皮细胞中的一氧化氮合酶等作用。
正常成年人胰岛素的分泌量为40-50U/d(1.6-2.0mg/d)。
空腹时,血清胰岛素浓度约为10uU/ml(69pmol/L或40ng/dI)。
胰岛素在血液中以与血浆蛋白结合和游离的两种形式存在,二者之间保持动态平衡,只有游离的胰岛素具有生物活性。
胰岛素的分泌

机
---- 嘌呤霉素,能减弱第二时相,但对 胰岛素释放的早期相没有影响。研究还发
制
现,β细胞内存在 2 个胰岛素释放池:
一个是由先合成的胰岛素组成的即刻释放
池,在快速分泌相排出;另一个是由新合
成的胰岛素和少量胰岛素原及贮存胰岛素
组成的继续释放池,在第二时相时分泌。
餐时胰岛素分泌
正常人进餐后8~10分钟血浆胰岛素水 平开始上升,30~45分钟达高峰,此后随 血糖水平的下降而降低,至餐后90~120 分钟恢复到基础水平。正常人餐后胰岛 素分泌约6~8个单位。
胰 岛 素 双
相 分
泌
第一时相:快速分泌相 反映B细胞贮存颗粒中胰岛素的分泌,与 糖耐量有一定关系。对调节肝脏葡萄糖 排出有重要意义,但不影响周围组织对 葡萄糖的利用。 0.5-1.0分钟出现 持续5-10分钟后下降 第二时相:延迟分泌相 30分钟后出现 缓慢而持久
讲
•分泌途径
解
思 路
•生理性分泌模式
•胰岛素的双相分泌
•胰岛素原分解成胰岛素、C
分
肽、精氨酸和赖氨酸
泌
•成熟颗粒内的INS(胰岛素)
途 径
与锌离子结合成晶体向微小 管移动,依靠其缩力,进而 与细胞膜融合
•通过胞吐作用释放胰岛素和 C肽
分 泌 途 径
合成的胰岛素六聚体图像 锌结晶胰岛素的立体结构=3+2
中心紫色代表二价锌离子
位于B链第10 位的组氨酸残 基的咪唑环与 锌原子方向一 致,依靠B链C 端的第24位和 26位的氨基酸 残基之间的氢 链,形成六聚 体,最终形成 反向平行的片 状结构。
分 泌 途 径
生理信号
胰岛B细胞
入血
生理信号:葡萄糖浓度增加,精氨酸刺激等
胰岛素分泌调节的分子机制

胰岛素分泌调节的分子机制胰岛素是一个重要的激素,它可以调节血糖水平、促进葡萄糖的吸收和利用。
当一个人摄取食物时,血糖水平会升高,这时胰岛素就会被分泌出来,以调节血糖水平。
但是,当这种分泌过度或不足时,就会导致一系列的代谢障碍。
因此,了解胰岛素分泌调节的分子机制是非常重要的。
胰岛素的分泌主要由胰岛β 细胞来控制。
当胰岛腺细胞感知到血糖水平上升时,它们会释放存储在内部的胰岛素颗粒。
但是,这个胰岛素的释放过程并不是一直发生的。
相反,它是涉及到多个信号分子和调节机制的。
一、Glucokinase一种胰岛β 细胞中的关键葡萄糖代谢酶是葡萄糖激酶(Glucokinase,GCK)。
这个酶介导葡萄糖转化成葡萄糖-6-磷酸,这是一种重要的代谢路径。
此外,它对于维持葡萄糖的舒适水平也很重要。
如果血糖水平太低,GCK 会失去其活性。
要想增进胰岛素的分泌,我们需要增加胰岛β 细胞的 GCK 活性。
二、增强响应的 AMPK腺苷酸酰化酶(AMPK)是一个细胞内的关键代谢调节因子,它在胰岛素的分泌调节中也扮演着一个非常重要的角色。
当AMPK 活性增强时,它可以促进胰岛素的分泌。
它也要求胰岛β 细胞增加其对葡萄糖和氧气的响应,这是 AMPK 能够调节胰岛素分泌的关键机制。
因此,AMPK 活性增强是一种增加胰岛素分泌的一种方法。
三、ATP敏感K+通道ATP 敏感 K+ 通道是胰岛β 细胞中的一种离子通道,它会受到胰岛素类物质的开放或关闭的调节。
当胰岛素浓度低时,ATP 敏感 K+ 通道被关闭,从而增加细胞膜上的电位差。
这种清除过程会在细胞膜上产生一种内向的离子流,这会导致胰岛素的分泌。
因此,ATP 敏感 K+ 通道在胰岛素分泌调节的分子机制中扮演着一个非常重要的角色。
四、肽类的调节因子在胰岛素的分泌调节中,还有一些其他的肽类因子,例如阻抗素、GLP-1(葡萄糖相关肽)和 GIP(胰高糖素样多肽)。
这些肽类因子可以增加胰岛素的分泌,并且它们对葡萄糖的吸收和利用也起着很重要的作用。
胰岛素-百度百科

胰岛素科技名词定义中文名称:胰岛素英文名称:insulin定义:胰腺朗格汉斯小岛所分泌的蛋白质激素。
由A、B链组成,共含51个氨基酸残基。
能增强细胞对葡萄糖的摄取利用,对蛋白质及脂质代谢有促进合成的作用。
所属学科:生物化学与分子生物学(一级学科);激素与维生素(二级学科)本内容由全国科学技术名词审定委员会审定公布胰岛素是由胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的刺激而分泌的一种蛋白质激素。
胰岛素是机体内唯一降低血糖的激素,也是唯一同时促进糖原、脂肪、蛋白质合成的激素。
目录胰岛β细胞中储备胰岛素约200U,每天分泌约40U。
空腹时,血浆胰岛素浓度是5~15μU/mL。
进餐后血浆胰岛素水平可增加5~10倍。
编辑本段体内胰岛素的生物合成速度体内胰岛素的分泌主要受以下因素影响:刺激胰岛素分泌血浆葡萄糖浓度血浆葡萄糖浓度是影响胰岛素分泌的最重要因素。
口服或静脉注射葡萄糖后,胰岛素释放呈两相反应。
早期快速相,门静脉血浆中胰岛素在2分钟内即达到最高值,随即迅速下降;延迟缓慢相,10分钟后血浆胰岛素水平又逐渐上升,一直延续1小时以上。
早期快速相显示葡萄糖促使储存的胰岛素释放,延迟缓慢相显示胰岛素的合成和胰岛素原转变的胰岛素。
进食含蛋白质较多的食物进食含蛋白质较多的食物后,血液中氨基酸浓度升高,胰岛素分泌也增加。
精氨酸、赖氨酸、亮氨酸和苯丙氨酸均有较强的刺激胰岛素分泌的作用。
进餐后胃肠道激素增加进餐后胃肠道激素增加可促进胰岛素分泌如胃泌素、胰泌素、胃抑肽、肠血管活性肽都刺激胰岛素分泌。
自由神经功能状态可影响胰岛素分泌迷走神经兴奋时促进胰岛素分泌;交感神经兴奋时则抑制胰岛素分泌。
胰岛素是与C肽以相等分子分泌进入血液的。
临床上使用胰岛素治疗的病人,血清中存在胰岛素抗体,影响放射免疫方法测定血胰岛素水平,在这种情况下可通过测定血浆C肽水平,来了解内源性胰岛素分泌状态。
编辑本段胰岛素的结构不同种族动物(人、牛、羊、猪等)的胰岛素功能大体相同,成分稍有差异。
胰岛素分泌不正常原因

胰岛素分泌不正常原因
胰岛素分泌不正常可能由多种原因引起。
以下是一些可能的原因:1. 胰腺炎:胰腺炎是由胰腺组织的炎症引起的疾病。
当胰腺受损时,它可能无法正常分泌足够的胰岛素,导致血糖升高。
2. 胰岛细胞损伤:胰岛细胞是产生胰岛素的细胞。
如果这些细胞受到损伤或破坏,它们可能无法正常分泌胰岛素。
3. 自身免疫疾病:自身免疫疾病可能导致免疫系统攻击胰岛细胞,破坏它们的功能。
这种情况下,胰岛素分泌减少。
4. 遗传因素:某些遗传因素可能导致胰岛细胞功能异常,从而影响胰岛素的分泌。
5. 药物或化学物质的影响:某些药物或化学物质可能干扰胰岛素的分泌过程。
例如,长期使用某些药物,如糖皮质激素,可能导致胰岛素分泌不正常。
6. 肥胖:肥胖与胰岛素分泌不正常之间存在密切的关系。
肥胖会导致胰岛细胞的功能异常,从而影响胰岛素的分泌。
以上是胰岛素分泌不正常的一些可能原因。
这些原因可能单独或同时发生,导致胰岛素分泌不足或分泌过多,从而影响血糖的调节。
如果胰岛素分泌不正常,可能会出现血糖升高或降低的情况,进而引发糖尿病等疾病。
因此,了解这些原因,并采取适当的措施来纠
正胰岛素分泌异常非常重要。
胰岛素释放实验正常的标准

胰岛素释放实验正常的标准胰岛素释放实验是一种常用的研究方法,用来评估胰岛素的分泌水平和功能。
胰岛素是一种重要的激素,能够调节血糖水平,并参与脂肪代谢和蛋白质合成等生理过程。
胰岛素释放实验正常的标准根据个体的性别、年龄以及饮食等因素而有所不同。
下面是一些一般情况下认定为正常的标准:1. 空腹胰岛素分泌:正常情况下,胰岛在空腹状态下会持续分泌一定量的胰岛素,以维持正常的血糖水平。
正常人的空腹胰岛素水平通常在2-20 mU/L之间。
2. 餐后胰岛素分泌:正常人在餐后会有胰岛素的峰值分泌,以帮助降低血糖水平。
正常人的餐后胰岛素水平通常在30-300 mU/L之间。
这个范围可以根据个体的体重和代谢情况而有所不同。
3. 胰岛素反应曲线:在胰岛素释放实验中,测量胰岛素血浆浓度的变化可以绘制胰岛素反应曲线。
正常的反应曲线通常是一个尖峰型,显示出快速的胰岛素释放和迅速的血糖降低。
这表明胰岛素的分泌和血糖调节功能处于正常范围内。
4. 胰岛素抗性评估:通过胰岛素释放实验可以评估胰岛素抗性程度。
正常情况下,胰岛素在餐后迅速释放,使血糖水平迅速下降。
而胰岛素抗性较高的人则会出现胰岛素分泌不足或者胰岛素分泌过多,导致血糖无法得到有效控制。
综上,胰岛素释放实验正常的标准包括空腹胰岛素分泌范围、餐后胰岛素水平范围、胰岛素反应曲线形态以及胰岛素抗性程度。
这些标准可以帮助检测和评估个体的胰岛素分泌和功能是否正常,为临床诊断和治疗提供参考依据。
需要注意的是,这些标准可能根据个体的特殊情况而有所不同,所以在进行胰岛素释放实验时应该考虑个体的生理特征和疾病状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2型糖尿病合理治疗方法
100 OGTT时平均 胰岛素水平 (mU/l) 80 60 40 20 0
空腹血糖 (mg/dl)
80 病人教育 饮食控制 锻炼 二甲双胍 噻唑烷二酮 120 160 200
磺脲类
胰岛素 Matthaei S, et al. Endocr Rev 21:585,2000
糖尿病的定义
糖尿病是胰岛素分泌的缺陷或/和胰岛素作 用障碍,导致的一组以慢性高血糖为特征的代 谢性疾病。慢性高血糖可导致多种组织,特别 是眼、肾脏、神经、心血管的长期损伤、功能 缺陷和衰竭。
American Diabetes Accosiation, 2003
WHO血糖指标图示
空腹血糖 (mmol/L)
4 1-2 3-6 2-3
20-24 12-14 10-15 8-12
20 30 320 100
50 89 80 70
格列喹酮
格列美脲
1.5
4-7
2-3
3-5
4-6
24
180
8
5
60
磺脲类药物继发性失效的原因及处理
原因:胰岛素抵抗进一步增加 B细胞功能进一步恶化 高血糖的毒性作用 一部分可能未被识别的LADA
糖尿病的治疗
饮食治疗
运动治疗
药物治疗 血糖监测 糖尿病教育
2型药物联合治疗
小剂量降糖药物的联合应用可达到更好的降糖效果,并 能够减少单一药物的毒副作用。 早期联合治疗对强化血糖控制、延缓胰岛细胞功能衰竭 至关重要。
主要口服抗糖尿病药物单一治疗的继发性失效率:
–磺酰脲类(SU),每年约5-10 % –二甲双胍类(MET),每年约5-10 %
缓解症状 改善生活质量 预防各种急、慢性并发症 减少死亡率 治疗各种伴发疾病
始动因素不同,治疗策略也应不同
◆
以细胞功能缺陷为主者,1型糖尿病首选胰岛素治疗, 2型糖尿病首选胰岛素促分泌剂或胰岛素。 以胰岛素抵抗为主要表现者宜首选胰岛素增敏剂。 严重细胞功能衰竭同时伴明显胰岛素抵抗者,及早 联合使用胰岛素和胰岛素增敏剂。
◆ ◆
2型糖尿病胰岛素分泌缺陷的特点
–对血糖变化不能作出快 速分泌反应
£ ê© ø ± ×× £Ý Ú¨ ·Ã Ø Ö µË Òº È
߯ ¸ ÏÌ ÑÌ ÇË ®Æ ½ Ú µ 1à Ï
–第一时相减弱、消失
–第二时相分泌延缓 第一阶段:相对不足。 分泌量可为正常或高 于正常,但对高血糖 而言仍为不足
糖尿病治疗新进展
三峡大学仁和医院 梁新国
糖尿病: 全球面临的威胁
百万
1995 3.5 115 118
2000 4.4 147 151
2010 5.5 215 221
1型
2型 共计
Amos AF et al. Diab. Med 1997; 14: 57-585
2型糖尿病患者估计前10位的国家
排名 1 2 国家 印度 中国 美国 俄联邦 日本 巴西 印度尼西亚 巴基斯坦 墨西哥 Ukraine 所有其他国家 Total 1995 (百万) 19.4 16.0 国家 印度 中国 美国 巴基斯坦 印度尼西亚 俄联邦 墨西哥 巴西l 埃及 2025 (百万) 57.2 37.6
糖尿病
7.0 6.1
IFG 正常糖耐量
IGR IGT
7.8
11.1
IGR=IFG+IGT
75g OGTT2小时 血糖值(mmol/L)
糖尿病诊断标准的确立:血糖与微血管并 发症的关系
20 15
◆ FPG
视网膜病变(%)
2hPG ▲ HbA1c
10 5 0
FPG(mg/dl) 2hPG (mg/dl) HbA1c(%)
降糖药物的种类
磺脲类(SU) 非SU促胰岛素分泌剂 双胍类(MET) 噻唑烷二酮类(TZDs) a-糖苷酶抑制剂(AGI) 胰岛素
ห้องสมุดไป่ตู้
第二、三代磺脲类药物的种类和作用特点
名 称 半衰期
(h)
峰 值
(h)
作用时间
(h)
最大剂量
(mg)
肾脏排泄
(%)
格列本脲 格列吡嗪 格列齐特 格列波脲
2-4 1-5 6-15 1.5
处理:改用另一种第二代磺脲类药物 加用胰岛素增敏剂或/和糖苷酶抑制剂
改用或联合应用胰岛素
非SU促胰岛素分泌剂
瑞格列奈:苯甲酸衍生物 那格列奈:苯甲氨酸衍生物
作用机制:与SU促泌剂基本相同,均与SUR结
合,促进胰岛素分泌,但与SUR结合位点不同
3 4 5 6 7 8 9 10
13.9 8.9 6.3 4.9 4.5 4.3 3.8 3.6 49.7 135.3
日本 所有其他国家
21.9 14.5 12.4 12.2 11.7 11.6 8.8 8.5 103.6 300.0
King H, et al. Diabetes Care 1998;21:1414–31.
第二阶段:绝对不足,
ù »Ö µ
Ú µ 2à Ï
分泌量低于正常
0« ¡5· ÖÖ Ó ±ä Ê ¼
正常人胰岛素分泌特点
ß Æ ¸ Ï Ì Ñ Ì Ç Ë ® Æ ½
£ ê© ø ± ×× £Ý Ú¨ ·Ã Ø Ö µË Òº È
Ú µ 1à Ï
ù » Ö µ
Ú µ 2à Ï
0« ¡ 5 · Ö Ö Ó ±ä Ê ¼
诊断时应注意:
除非有显著高血糖伴急性代谢失代偿或明显症状, 否则应在另1日重复试验以确认符合诊断标准; 血糖为静脉血浆葡萄糖 随机是指任何时候,无须考虑与进餐的关系 空腹指无能量摄入至少8小时 随机血糖不能用于诊断 IGT 和 IFG 诊断标准应在非应激状态(感染、创伤、手术等) 下进行 尿糖测定不能用于诊断
糖尿病分型
1型糖尿病
A.免疫性 B.特发性
2型糖尿病 其他特异型
A. B. C. D. E. F. G. H. B细胞功能基因缺陷 胰岛素作用的基因异常 胰腺外分泌疾病 内分泌疾病 药物或化学制剂所致的糖尿病 感染 非常见的免疫介导的糖尿病 并有糖尿病的其他遗传综合征
妊娠糖尿病
糖尿病治疗的基本目标
42- 8734- 75-
9086-
93-
96-
98- 101- 104- 109- 120-
94- 102- 112- 120- 133- 154- 1955.5- 5.6- 5.75.8- 8.2-
3.3- 4.9- 5.1- 5.2- 5.4-
Diabetes Care 26, Supplement 1, Jan 2003