胰岛素及其分泌
胰岛素的生物合成和分泌机制

胰岛素的生物合成和分泌机制胰岛素是人体内一种非常重要的荷尔蒙,它主要的作用是调节血糖的水平。
当人吃东西之后,胰岛素会被胰腺分泌出来,然后进入到血液循环中,最终让身体内的细胞能够将血液中的葡萄糖转化成能量。
胰岛素的生物合成和分泌机制是一个非常复杂的过程,本文将从分子水平、细胞水平及器官水平三个角度来分析这个过程。
1. 分子水平人体内的胰岛素是一种由两条多肽链组成的蛋白质,分别是A 链和B链。
这两条链中都含有一个含有硫酸基的氨基酸残基,它们会相互连接构成非常稳定的二硫键。
这就是胰岛素分子的第一个特点:非常稳定。
胰岛素的基因结构大约包含有三万个碱基对,其中包含有一些特定的序列,这些序列能够被肝脏和胰腺中的一些酶所识别。
这些酶能够将基因组中的某些片段剪切下来,并将其拼接到一起形成一个成熟的胰岛素基因。
然后,这个成熟的基因会被转录成一条核糖核酸(RNA),并被带入到胰腺的内质网。
在内质网中,一些糖基化酶和剪切酶会作用于这条RNA,使其和几个特定的蛋白质相互结合,形成胰岛素前体。
这个前体由含有A链的蛋白质和含有B链的蛋白质反复结合而成。
2. 细胞水平胰岛素前体被转运到了胰岛素颗粒体中,它们处于一个非常纷乱的环境中,因为还有许多其他的蛋白质和小分子在这里。
但是,颗粒体内有一些酶,它们能够将胰岛素前体剪切成含有A链的蛋白质和含有B链的蛋白质。
这两个蛋白质被合并在一起,形成了成熟的胰岛素分子。
随后,这些胰岛素分子会向细胞膜移动。
在细胞膜上有一些可以结合胰岛素的受体,它们会捕获、结合和摄取这些胰岛素分子。
这些受体被称为胰岛素受体。
它们主要存在于肝脏、肌肉和脂肪细胞等组织中。
胰岛素分子与胰岛素受体的结合,使得细胞内的一些信号通路开始被激活。
这将导致一系列生化反应的发生,最终将血液中的葡萄糖转化成细胞所需的能量和合成脂肪和蛋白质所需的物质。
3. 器官水平胰岛素的主要生产部位是胰腺内的一种细胞——胰岛素β细胞。
这些细胞位于胰腺中的一些小囊泡里,也被称为胰岛素颗粒。
第十一章内分泌系统 目的要求 1、掌握胰岛素的生理作用及其分泌调节

目的要求
1、掌握胰岛素的生理作用及其分泌调节。
2、掌握甲状腺激素及甲状旁腺与甲状旁腺激素、甲状腺滤泡旁细胞
、降钙素、维生素D3的生理作用及其分泌调节。
3、了解内分泌系统的调节主要生理过程中的作用与作用机制。掌握下丘脑及垂体激素的生理作用及其分泌调节。
授课内容(重点、难点)
教学重点
1、胰岛素和胰高血糖素的生物学作用及分泌的调节
2促进细胞的增殖与分化,影响细胞的衰老,确保各组织、各器官的正常生长、发育,以及细胞的更新与衰老。例如生长激素、甲状腺激素、性激素等都是促进生长发育的激素。
3促进生殖器官的发育成熟、生殖功能,以及性激素的分泌和调节,包括生卵、排卵、生精、受精、着床、妊娠及泌乳等一系列生殖过程。
4影响中枢神经系统和植物性神经系统的发育及其活动,与学习、记忆及行为活动有关。
5在调节某一生理功能时,它们之间的相互作用既有相互协同的,也有相互拮抗的,如胰高血糖素、生长素和糖皮质激素在升高血糖方面,它们之间是协同的,而胰岛素则降低血糖,与上述三个激素在调节血糖方面是拮抗的。还有些激素不能对某些细胞起调节作用,但当其存在时,可使另一激素作用加强,称这一现象为允许作用(permissive action)。此外,激素与神经系统密切配合对生命过程进行调节,既保持内环境相对稳定,又能使机体对环境做出适应性反应。
激素的分类
按化学结构,激素可分为三大类:
第一类是含氮类激素,又可分为肽、胺、蛋白质类激素,如下丘脑分泌的调节肽、甲状腺素、胰岛素等;
第二类是类固醇激素,如肾上腺皮质激素和性腺激素;
第三类是固醇类激素,如胆钙化醇(维生素D3)。
二、激素的作用
激素的生理作用非常复杂,但可以将其归纳为五个方面:
第五节 胰岛素的分泌

第五节胰岛内分泌胰岛(pancreatic islet)为胰腺的内分泌部,是呈小岛状散在分布于外分泌腺泡之间的内分泌细胞团。
细胞之间有丰富的毛细血管分布,有利于胰岛细胞分泌的激素进入循环血液。
成年人胰腺内的胰岛有(1-2)×106个,约占胰腺总体积的1%。
胰岛内分泌细胞按形态学特征及分泌的激素分类至少有五种细胞:分泌胰高血糖素(glucagon)的α(A)细胞,约占胰岛细胞总数的25%;分泌胰岛素(insulin)的β(B)细胞,占60%-70%;分泌生长抑素(somatostatin, SS)的δ(D)细胞,约占10%;分泌血管活性肠肽(vasoactive intestinal peptide, VIP)的D1(H)细胞和分泌胰多肽(pancreatic polypeptide, PP)的F(PP)细胞数则很少。
一、胰岛素(一)胰岛素及其受体1.胰岛素人胰岛素是含51个氨基酸残基的小分子蛋白质,分子量为5.8kD,由21肽的A链和30肽的B链组成。
A、B两链之间借助于两个二硫键相连,A链内还有一个二硫键,如果二硫键断开,胰岛素便失去活性。
在β细胞内,前胰岛素原(preproinsulin)在粗面内质网中被水解成胰岛素原(proinsulin),随后被运至高尔基复合体进一步加工,最后经剪切形成胰岛素和连接肽(connecting peptide, C肽)。
由于C肽与胰岛素一同被释放入血,两者的分泌量呈平行关系,故测定C肽含量可反映β细胞的分泌功能。
β细胞分泌时亦有少量的胰岛素原进入血液,但其生物活性仅为胰岛素的3%-5%。
C肽虽无胰岛素活性,但具有激活钠泵及内皮细胞中的一氧化氮合酶等作用。
正常成年人胰岛素的分泌量为40-50U/d(1.6-2.0mg/d)。
空腹时,血清胰岛素浓度约为10uU/ml(69pmol/L或40ng/dI)。
胰岛素在血液中以与血浆蛋白结合和游离的两种形式存在,二者之间保持动态平衡,只有游离的胰岛素具有生物活性。
胰岛素由哪个器官分泌

胰岛素由哪个器官分泌
一、胰岛素由哪个器官分泌二、胰岛素注射液的用法用量三、胰岛素的副作用
胰岛素由哪个器官分泌1、胰岛素由哪个器官分泌
胰岛素是由胰脏内的胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的刺激而分泌的一种蛋白质激素。
胰岛素是机体内唯一降低血糖的激素,同时促进糖原、脂肪、蛋白质合成。
外源性胰岛素主要用来糖尿病治疗。
2、胰岛素化验结果的临床意义
2、1型糖尿病患者多在5μU/ml以下,2型患者血浆胰岛胰岛素水平可正常、偏低或高于正常。
增高明显者呈高胰岛素血症,提示有胰岛素抵抗。
在进行OGTT的同时测定血浆胰岛胰岛素浓度,了解胰岛β细胞功能,以鉴别1型糖尿病和2型糖尿病。
1型糖尿病患者空腹和糖刺激后胰岛素水平均较低,呈低平曲线。
2.2、血浆胰岛胰岛素降低尚可见于嗜铬细胞瘤、生长抑素瘤、醛固酮增多症、原发性甲状旁腺功能减退症等所引起的继发性糖尿病和胰岛B 细胞瘤、胰外肿瘤及垂体功能低下等所致的低血糖症。
2.3、X综合征患者多同时具有肥胖、高脂血症、高血压和高胰岛素血症。
3、胰岛素的作用
3.1、药理作用,糖尿病,浪费性疾病的治疗。
为促进血液循环,葡萄糖进入肝细胞、肌细胞、脂肪细胞等组织细胞合成糖原,以降低血糖,促进脂肪和蛋白质的合成。
3.2、生理作用,胰岛素的主要生理作用是调节代谢过程。
对糖代谢:促。
胰岛素的分泌

机
---- 嘌呤霉素,能减弱第二时相,但对 胰岛素释放的早期相没有影响。研究还发
制
现,β细胞内存在 2 个胰岛素释放池:
一个是由先合成的胰岛素组成的即刻释放
池,在快速分泌相排出;另一个是由新合
成的胰岛素和少量胰岛素原及贮存胰岛素
组成的继续释放池,在第二时相时分泌。
餐时胰岛素分泌
正常人进餐后8~10分钟血浆胰岛素水 平开始上升,30~45分钟达高峰,此后随 血糖水平的下降而降低,至餐后90~120 分钟恢复到基础水平。正常人餐后胰岛 素分泌约6~8个单位。
胰 岛 素 双
相 分
泌
第一时相:快速分泌相 反映B细胞贮存颗粒中胰岛素的分泌,与 糖耐量有一定关系。对调节肝脏葡萄糖 排出有重要意义,但不影响周围组织对 葡萄糖的利用。 0.5-1.0分钟出现 持续5-10分钟后下降 第二时相:延迟分泌相 30分钟后出现 缓慢而持久
讲
•分泌途径
解
思 路
•生理性分泌模式
•胰岛素的双相分泌
•胰岛素原分解成胰岛素、C
分
肽、精氨酸和赖氨酸
泌
•成熟颗粒内的INS(胰岛素)
途 径
与锌离子结合成晶体向微小 管移动,依靠其缩力,进而 与细胞膜融合
•通过胞吐作用释放胰岛素和 C肽
分 泌 途 径
合成的胰岛素六聚体图像 锌结晶胰岛素的立体结构=3+2
中心紫色代表二价锌离子
位于B链第10 位的组氨酸残 基的咪唑环与 锌原子方向一 致,依靠B链C 端的第24位和 26位的氨基酸 残基之间的氢 链,形成六聚 体,最终形成 反向平行的片 状结构。
分 泌 途 径
生理信号
胰岛B细胞
入血
生理信号:葡萄糖浓度增加,精氨酸刺激等
胰岛素分类及作用机制简介

胰岛素分类及作用机制简介胰岛素是一种重要的激素,在机体内发挥着调节血糖水平的关键作用。
本文将介绍胰岛素的分类以及其作用机制。
I. 胰岛素分类1. 依源泵分析-自源性胰岛素与外源性胰岛素自源性胰岛素是由胰腺分泌的内源胰岛素,其合成、储存和分泌均由机体自身调节。
而外源性胰岛素则是由外部补充的胰岛素,通常以注射剂的形式使用。
2. 依工艺分类-天然胰岛素、合成胰岛素与基因重组胰岛素天然胰岛素是从动物(如猪、牛)的胰腺中提取得到的,与人体胰岛素结构相似。
合成胰岛素则是通过人工合成得到,结构与天然胰岛素一致。
基因重组胰岛素是通过基因工程技术将胰岛素基因导入微生物或细胞表达,然后进行纯化和合成。
II. 胰岛素作用机制胰岛素通过多种方式调节机体血糖水平,下面将介绍其作用机制:1. 促进葡萄糖转运胰岛素能够促进细胞膜上葡萄糖转运体的激活,增强葡萄糖进入细胞内的能力,从而降低血糖浓度。
2. 促进糖的合成与储存胰岛素能够促进肝脏、肌肉和脂肪组织中糖原的合成与储存,将多余的葡萄糖转化为糖原,存储起来以备不时之需。
3. 抑制葡萄糖生成胰岛素通过抑制肝脏中糖异生相关酶的活性,降低葡萄糖的合成速率,从而减少肝脏对血液中糖的贡献。
4. 促进脂肪合成与抑制脂肪分解胰岛素能够刺激脂肪细胞中的葡萄糖转化为甘油三酯,并抑制脂肪分解酶的活性,从而促进脂肪合成,抑制脂肪组织中游离脂肪酸的产生。
5. 蛋白质合成与氨基酸吸收胰岛素能够促进蛋白质合成,增加肌肉组织对氨基酸的吸收和利用,同时抑制蛋白质降解,维持良好的氮平衡。
总结:胰岛素根据来源和工艺可分为自源性胰岛素和外源性胰岛素,以及天然胰岛素、合成胰岛素和基因重组胰岛素。
胰岛素通过促进葡萄糖转运、促进糖的合成与储存、抑制葡萄糖生成、促进脂肪合成与抑制脂肪分解,以及促进蛋白质合成与氨基酸吸收等多种机制来调节血糖水平。
了解胰岛素的分类和作用机制有助于我们深入理解其重要性及临床应用。
胰岛素分泌调节的分子机制

胰岛素分泌调节的分子机制胰岛素是一个重要的激素,它可以调节血糖水平、促进葡萄糖的吸收和利用。
当一个人摄取食物时,血糖水平会升高,这时胰岛素就会被分泌出来,以调节血糖水平。
但是,当这种分泌过度或不足时,就会导致一系列的代谢障碍。
因此,了解胰岛素分泌调节的分子机制是非常重要的。
胰岛素的分泌主要由胰岛β 细胞来控制。
当胰岛腺细胞感知到血糖水平上升时,它们会释放存储在内部的胰岛素颗粒。
但是,这个胰岛素的释放过程并不是一直发生的。
相反,它是涉及到多个信号分子和调节机制的。
一、Glucokinase一种胰岛β 细胞中的关键葡萄糖代谢酶是葡萄糖激酶(Glucokinase,GCK)。
这个酶介导葡萄糖转化成葡萄糖-6-磷酸,这是一种重要的代谢路径。
此外,它对于维持葡萄糖的舒适水平也很重要。
如果血糖水平太低,GCK 会失去其活性。
要想增进胰岛素的分泌,我们需要增加胰岛β 细胞的 GCK 活性。
二、增强响应的 AMPK腺苷酸酰化酶(AMPK)是一个细胞内的关键代谢调节因子,它在胰岛素的分泌调节中也扮演着一个非常重要的角色。
当AMPK 活性增强时,它可以促进胰岛素的分泌。
它也要求胰岛β 细胞增加其对葡萄糖和氧气的响应,这是 AMPK 能够调节胰岛素分泌的关键机制。
因此,AMPK 活性增强是一种增加胰岛素分泌的一种方法。
三、ATP敏感K+通道ATP 敏感 K+ 通道是胰岛β 细胞中的一种离子通道,它会受到胰岛素类物质的开放或关闭的调节。
当胰岛素浓度低时,ATP 敏感 K+ 通道被关闭,从而增加细胞膜上的电位差。
这种清除过程会在细胞膜上产生一种内向的离子流,这会导致胰岛素的分泌。
因此,ATP 敏感 K+ 通道在胰岛素分泌调节的分子机制中扮演着一个非常重要的角色。
四、肽类的调节因子在胰岛素的分泌调节中,还有一些其他的肽类因子,例如阻抗素、GLP-1(葡萄糖相关肽)和 GIP(胰高糖素样多肽)。
这些肽类因子可以增加胰岛素的分泌,并且它们对葡萄糖的吸收和利用也起着很重要的作用。
胰岛素的合成、分泌和作用机制

胰岛素的合成、分泌和作用机制胰岛素是由胰岛B细胞所分泌的,具有重要代谢调节作用的肽类激素。
旱在19世纪末期,von Mering和Minkowski即指出,胰腺在抗糖尿病的作用中起重要作用。
1909年和1917年,de Mayer和Sir Edward Sharpey—Schaffer分别命名这种胰岛内调节血糖水平的激素为“胰岛素”。
直到20世纪20年代初期,加拿大人Banting、Best和Collip才真正分离出牛胰岛素,并稍后作为特效药应用于糖尿病患者。
随后,结晶胰岛素的获得,氨基酸顺序的阐明,具生物活性的胰岛素的合成,胰岛素检测方法的建立,对胰岛素生物合成途径及分泌机制的认识,胰岛素受体的发现,均成为人类对胰岛素本身及相关疾病认识的里程碑。
随着医学及相关科学的发展,特别是近年来分子生物学方法的广泛应用,人们对这个领域的认识突飞猛进,也推动了糖尿病学的迅速发展。
一、胰岛素的提取、纯化及结构特征1.胰岛素的提取、纯化和检测 早期,胰岛素是以乙醇或酸性乙醇溶液来抽提的,以这种方法抽提可使胰岛素从组织中溶解出来,并灭活蛋白酶。
这种方法仍为现代提取方法的基础。
在有机溶剂提取脂肪后.含胰岛素的酸性乙醇的抽提物可经盐析及等电点沉淀等分离,进一步作凝胶过滤,离子交换,高效液相色谱等纯化。
以前曾一度认为以锌结晶方法可有助于胰岛素的纯化,现认为反复结晶仍不能去除胰岛中的其他成分,如胰升糖素、胰岛素原、胰岛素样类似物及部分降解的胰岛素片段,而且部分动物的胰岛素不能与锌结合或产生结晶。
基因重组胰岛素的生物合成技术可得到不含其他激素的较纯净的胰岛素,但仍常含有其他来自宿主细菌或真菌的蛋白质污染,经凝胶过滤和离子亲和层析后,可得到纯度高于99%的胰岛素。
这种胰岛素对人的抗原性远小于来自动物的结晶胰岛素,不易产生抗体,更有利于糖尿病病情的控制。
血清胰岛素测定可用放射免疫法等,但在精确度和敏感性方面仍有一定的局限性。
用聚丙烯酰胺凝胶电泳和高效液相色谱可鉴定胰岛素的量及纯度,并区分开胰岛素和胰岛素原。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胰岛是在胰脏腺泡之间的散在的细胞团。
胰岛能分泌胰岛素与胰高血糖素等激素。
参考资料:胰岛人类的胰岛细胞按其染色和形态学特点,主要分为A细胞、B细胞、D 细胞及PP细胞。
A细胞约占胰胰岛细胞的20%,分泌胰主血糖素(glucagon);B细胞占胰岛细胞的60%-70%,分泌胰岛素(insulin);D细胞占胰岛细胞的10%,分泌生成抑素;PP细胞数量很少,分泌胰多肽(pancreatic polyeptide)。
一、胰岛素胰岛素是含有51个氨基酸的小分子蛋白质,分子量为6000,胰岛素分子有靠两个二硫键结合的A链(21个氨基酸)与B链(30个氨基酸),如果二硫键被打开则失去活性(图11-21)。
B细胞先合成一个大分子的前胰岛素原,以后加工成八十六肽的胰岛素原,再经水解成为胰岛素与连接肽(C 肽)。
图11-21 人胰岛素的化学结构胰岛素与C肽共同释入血中,也有少量的胰岛素原进入血液,但其生物活性只有胰岛素的3%-5%,而C肽无胰岛素活性。
由于C肽是在胰岛素合成过程产生的,其数量与胰岛素的分泌量有平行关系,因此测定血中C肽含量可反映B 细胞的分泌功能。
正常人空腹状态下血清胰岛素浓度为35-145pmol/L。
胰岛素在血中的半衰期只有5min,主要在肝灭活,肌肉与肾等组织也能使胰岛素失活。
1965年,我国生化学家首先人工合成了具有高度生物活性的胰岛素,成为人类历史上第一次人工合成生命物质(蛋白质)的创举。
(一)胰岛素的生物学作用胰岛素是促进合成代谢、调节血糖稳定的主要激素。
1.对糖代谢的调节胰岛素促进组织、细胞对葡萄糖的摄取和利用,加速葡萄糖合成为糖原,贮存于肝和肌肉中,并抑制糖异生,促进葡萄糖转变为脂肪酸,贮存于脂肪组织,导致血糖水平下降。
胰岛素缺乏时,血糖浓度升高,如超过肾糖阈,尿中将出现糖,引起糖尿病。
2.对脂肪代谢的调节胰岛素促进肝合成脂肪酸,然后转运到脂肪细胞贮存。
在胰岛素的作用下,脂肪细胞也能合成少量的脂肪酸。
胰岛素还促进葡萄糖进入脂肪细胞,除了用于合成脂肪酸外,还可转化为α-磷酸甘油,脂肪酸与α-磷酸甘油形成甘油三酯,贮存于脂肪细胞中,同时,胰岛素还抑制脂肪酶的活性,减少脂肪的分解。
胰岛素缺乏时,出现脂肪代谢紊乱,脂肪分解增强,血脂升高,加速脂肪酸在肝内氧化,生成大量酮体,由于糖氧化过程发和障碍,不能很好处理酮体,以致引起酮血症与酸中毒。
3.对蛋白质代谢的调节胰岛素促进蛋白质合成过程,其作用可在蛋白质合成的各个环节上:①促进氨基酸通过膜的转运进入细胞;②可使细胞核的复制和转录过程加快,增加DNA和RNA 的生成;③作用于核糖体,加速翻译过程,促进蛋白质合成;另外,胰岛素还可抑制蛋白质分解和肝糖异生。
由于胰岛素能增强蛋白质的合成过程,所以,它对机体的生长也有促进作用,但胰岛素单独作用时,对生长的促进作用并不很强,只有与生长素共同作用时,才能发挥明显的效应。
近年的研究表明,几乎体内所有细胞的膜上都有胰岛素受体。
胰岛素受体已纯化成功,并阐明了其化学结构。
胰岛素受体是由两个α亚单位和两个β亚单位构成的四聚体,α亚单位由719个氨基酸组成,完全裸露在细胞膜外,是受体结合胰岛素的主要部位。
α与α亚单位、α与β亚单位之间靠二硫键结合。
β亚单位由620个氨基酸残基组成,分为三个结构域:N端194个氨基酸残基伸出膜外;中间是含有23个氨基酸残基的跨膜结构域;C端伸向膜内侧为蛋白激酶结构域。
胰岛素受体本身具有酪氨酸蛋白激酶活性,胰岛素与受体结合可激活该酶,使受体内的酪氨酸残基发生磷酸化,这对跨膜信息传递、调节细胞的功能起着十分重要的作用。
关于胰岛素与受体结合启动的一系列反应,相当复杂,尚不十分清楚。
(二)胰岛素分泌的调节1.血糖的作用血糖浓度是调节胰岛素分泌的最重要因素,当血糖浓度升高时,胰岛素分泌明显增加,从而促进血糖降低。
当血糖浓度下降至正常水平时,胰岛素分泌也迅速恢复到基础水平。
在持续高血糖的刺激下,胰岛素的分泌可分为三个阶段:血糖升高5min内,胰岛素的分泌可增加约10倍,主要来源于B细胞贮存的激素释放,因此持续时间不长,5-10min后胰岛素的分泌便下降50%;血糖升高15min后,出现胰岛素分泌的第二次增多,在2-3h 达高峰,并持续较长的时间,分泌速率也远大于第一相,这主要是激活了B细胞胰岛素合成酶系,促进了合成与释放;倘若高血糖持续一周左右,胰岛素的分泌可进一步增加,这是由于长时间的高血糖刺激B细胞增生布引起的。
2.氨基酸和脂肪酸的作用许多氨基酸都有刺激胰岛素分泌的作用,其中以精氨酸和赖氨酸的作用最强。
在血糖浓度正常时,血中氨基酸含量增加,只能对胰岛素的分泌有轻微的刺激作用,但如果在血糖升高的情况下,过量的氨基酸则可使血糖引起的胰岛素分泌加倍增多。
务右脂肪酸和酮体大量增加时,也可促进胰岛素分泌。
3.激素的作用影响胰岛素分泌的激素主要有:①胃肠激素,如胃泌素、促胰液素、胆囊收缩素和抑胃肽都有促胰岛素分泌的作用,但前三者是在药理剂量时才有促胰岛素分泌作用,不像是一引起生理刺激物,只有抑胃肽(GIP)或称依赖葡萄糖的促胰岛素多肽(glucose-dependent insulin-stimulating polypeptide)才可能对胰岛素的分泌起调节作用。
②生长素、皮质醇、甲状腺激素以及胰高血糖素告示可通过升高血糖浓度而间接刺激胰岛素分泌,因此长期大剂量应用这些激素,有可能使B细胞衰竭而导致糖尿病;③胰岛D细胞分泌的生长抑至少可通过旁分泌作用,抑制胰岛素和胰高血糖的分泌,而胰高血糖素也可直接刺激B细胞分泌胰岛素(图11-22)。
图11-22 胰岛细胞的分布及其分泌激素之间的相互影响→表示促进----→表示抑制GIH:生长抑素4.神经调节胰岛受迷走神经与交感神经支配。
刺激迷起神经,可通过乙酰胆碱作用于M受体,直接促进胰岛素的分泌;迷走神经还可通过刺激胃肠激素的释放,间接促进胰岛素的分泌。
交感神经兴奋时,则通过去甲肾上腺素作用于α2受体,抑制胰岛素的分泌。
二、胰高血糖素人胰高血糖是由29个氨基酸组成的直链多肽,分子量为3485,它也是由一个大分子的前体裂解而来。
胰高血糖在血清中的浓度为50-100ng/L,在血浆中的半衰期为5-10min, 主要在肝灭活,肾也有降解作用。
(一)胰高血糖的主要作用与胰岛素的作用相反,胰高血糖素是一种促进分解代谢的激素。
胰高血糖素具有很强的促进糖原分解和糖异生作用,使血糖明显升高,1mol/L的激素可使3×106mol/L的葡萄糖迅速从糖原分解出来。
胰高血糖素通过cAMP-PK系统,激活肝细胞的磷酸化酶,加速糖原分解。
糖异生增强是因为激素加速氨基酸进入肝细胞,并激活糖异生过程有关的酶系。
胰高血糖素还可激活脂肪酶,促进脂肪分解,同时又能加强脂肪酸氧化,使酮体生成增多。
胰高血糖素产生上述代谢效应的靶器官是肝,切除肝或阻断肝血流,这些作用便消失。
另外,胰高血糖素可促进胰岛素和胰岛生长抑素的分泌。
药理剂量的胰高血糖素可使心肌细胞内cAMP 含量增加,心肌收缩增强。
(二)胰高血糖素分泌的调节影响胰高血糖素分泌的因素很多,血糖浓度是重要的因素。
血糖降低时,胰高血糖素胰分泌增加;血糖升高时,则胰高血糖素分泌减少。
氨基酸的作用与葡萄糖相反,能促进胰高血糖素的分泌。
蛋白餐或静脉注入各种氨基酸均可使胰高血糖素分泌增多。
血中氨基酸增多一方面促进胰岛素释放,可使血糖降低,另一方面还能同时刺激胰高血糖素分泌,这对防止低血糖有一定的生理意义。
胰岛素可通过降低血糖间接刺激胰高血糖素的分泌,但B细胞分泌的胰岛不比和D细胞分泌的生长抑素可直接作用于邻近的A细胞,抑制胰高血糖素的分泌(图11-22)。
胰岛素与胰高血糖素是一对作用相反的激素,它们都与血糖水平之间构成负反馈调节环路。
因此,当机体外于不同的功能状态时,血中胰岛素与胰高血糖素的摩尔比值(I/G)也是不同的。
一般在隔夜空腹条件下,I/G比值为2.3,但当饥饿或长时间运动时,比例可降至0.5以下。
比例变小是由于胰岛素分泌减少与胰高血糖素分泌增多所致,这有利于糖原分解和糖异生,维持血糖水平,适应心、脑对葡萄糖的需要,并有利于脂肪分解,增强脂肪酸氧化供能。
相反,在摄食或糖负荷后,比值可升至10以上,这是由于胰岛素分泌增加而胰高血糖素分泌减少所致。
在这种情况下,胰岛不比的作用占优势。
胰岛素(insulin)为胰腺中胰岛β细胞分泌的一种激素。
1922年由英国的班廷(Banting)和贝斯特(Best)所发现,为一种能降低血糖的物质。
1926年获得结晶的胰岛素。
1954年阐明胰岛素的氨基酸组成。
到60年代中期,已进行人工合成。
我国于1965年首次用化学方法合成了具有生物活性的结晶牛胰岛素;随后,查明了胰岛素的三级空间结构。
胰岛素由51个氨基酸组成A、B两条肽链,A链含21个氨基酸,B 链含30个氨基酸,两条肽链之间借两个二硫键联结,A链的第6与第11位氨基酸之间也有一个二硫键。
人胰岛素分子量为5734道尔顿,等电点为pH5.6。
在酸性环境(pH2.5~3.5)较稳定,在碱性溶液中易被破坏,可形成锌、钴等胰岛素结晶。
又由于其分子中酸性氨基酸较多,可与碱性蛋白如鱼精蛋白等结合,形成分子量大、溶解量低的鱼精蛋白锌胰岛素。
此种制剂注入皮下或肌肉吸收较慢,作用时间长,为长效胰岛素。
从胰岛分泌的胰岛素,经门脉进入肝脏,40~50%在肝内分解,其余进入体循环分布于全身。
从静脉注射胰岛素,90%在20分钟内从血液中消失,绝大部分被组织吸收或被肝脏灭活。
胰岛素的生理作用主要为促进合成代谢,主要靶器官是肝脏、脂肪组织、骨骼肌。
对糖代谢的调节:血糖浓度为生理条件下对胰岛素分泌的最重要调节因素。
当血糖升高时,胰岛素分泌可使肝脏、肌肉和脂肪组织加速摄取、贮存和利用葡萄糖,以使血糖水平下降。
胰岛素使进食后吸收的葡萄糖大量转化成糖原贮存,并促进葡萄糖转变成脂肪酸,转运到脂肪贮存。
抑制糖原异生。
肌肉组织在无胰岛素作用时,几乎不能摄取葡萄糖。
胰岛素可使葡萄糖转运入肌细胞,并可加速葡萄糖利用和肌糖原合成,致血糖降低。
对脂肪代谢的调节:胰岛素对脂肪合成和贮存起重要作用,在肝脏加速葡萄糖合成脂肪酸,贮存于脂肪细胞,脂肪本身在胰岛素作用下也可合成少量脂肪酸,促进葡萄糖进入脂肪细胞,使其转化成α-磷酸甘油,并与脂肪酸形成甘油三酯贮存于脂肪细胞中。
对蛋白质代谢的调节:胰岛素对蛋白质合成和贮存起主要作用。
促进氨基酸转运入细胞,并作用于核糖体,增加核糖核酸和脱氧核糖核酸生成,从而进一步增加蛋白质合成。
抑制蛋白质分解,抑制糖原异生。
如胰岛素缺乏时,体内蛋白质极度消耗,蛋白质分解和脂肪分解快而导致体重显著减轻。
胰岛素分泌的调节:血糖浓度是生理条件下对胰岛素分泌的最主要调节因素。