胰岛素的分泌

合集下载

胰岛素的生物合成和分泌机制

胰岛素的生物合成和分泌机制

胰岛素的生物合成和分泌机制胰岛素是人体内一种非常重要的荷尔蒙,它主要的作用是调节血糖的水平。

当人吃东西之后,胰岛素会被胰腺分泌出来,然后进入到血液循环中,最终让身体内的细胞能够将血液中的葡萄糖转化成能量。

胰岛素的生物合成和分泌机制是一个非常复杂的过程,本文将从分子水平、细胞水平及器官水平三个角度来分析这个过程。

1. 分子水平人体内的胰岛素是一种由两条多肽链组成的蛋白质,分别是A 链和B链。

这两条链中都含有一个含有硫酸基的氨基酸残基,它们会相互连接构成非常稳定的二硫键。

这就是胰岛素分子的第一个特点:非常稳定。

胰岛素的基因结构大约包含有三万个碱基对,其中包含有一些特定的序列,这些序列能够被肝脏和胰腺中的一些酶所识别。

这些酶能够将基因组中的某些片段剪切下来,并将其拼接到一起形成一个成熟的胰岛素基因。

然后,这个成熟的基因会被转录成一条核糖核酸(RNA),并被带入到胰腺的内质网。

在内质网中,一些糖基化酶和剪切酶会作用于这条RNA,使其和几个特定的蛋白质相互结合,形成胰岛素前体。

这个前体由含有A链的蛋白质和含有B链的蛋白质反复结合而成。

2. 细胞水平胰岛素前体被转运到了胰岛素颗粒体中,它们处于一个非常纷乱的环境中,因为还有许多其他的蛋白质和小分子在这里。

但是,颗粒体内有一些酶,它们能够将胰岛素前体剪切成含有A链的蛋白质和含有B链的蛋白质。

这两个蛋白质被合并在一起,形成了成熟的胰岛素分子。

随后,这些胰岛素分子会向细胞膜移动。

在细胞膜上有一些可以结合胰岛素的受体,它们会捕获、结合和摄取这些胰岛素分子。

这些受体被称为胰岛素受体。

它们主要存在于肝脏、肌肉和脂肪细胞等组织中。

胰岛素分子与胰岛素受体的结合,使得细胞内的一些信号通路开始被激活。

这将导致一系列生化反应的发生,最终将血液中的葡萄糖转化成细胞所需的能量和合成脂肪和蛋白质所需的物质。

3. 器官水平胰岛素的主要生产部位是胰腺内的一种细胞——胰岛素β细胞。

这些细胞位于胰腺中的一些小囊泡里,也被称为胰岛素颗粒。

胰岛素分泌原理

胰岛素分泌原理

胰岛素分泌原理
胰岛素是由胰岛素细胞分泌的一种激素,它在调节血糖水平和能量代谢方面起着重要作用。

胰岛素的分泌受到多个因素的调控,主要包括血糖水平、胃肠道激素、运动和神经调节等。

当血糖水平升高时,特别是在进食后,胰岛素细胞会受到刺激,促使胰岛素的分泌。

这是通过血液中的葡萄糖刺激胰岛素细胞表面的受体,导致细胞内钙离子浓度增加,进而促进胰岛素合成和分泌的过程。

此外,胃肠道激素也能够间接地刺激胰岛素的分泌。

在进食过程中,胃肠道分泌的一些激素(如胃抑素、胰高血糖素等)能够刺激胰岛β-细胞合成和分泌胰岛素。

运动对胰岛素的分泌也有一定的影响。

运动能够增加肌肉组织对葡萄糖的摄取和利用,刺激胰岛β-细胞合成和分泌胰岛素。

神经调节也对胰岛素的分泌起着一定的调控作用。

交感神经活动的增加会促进胰岛素的分泌,而副交感神经活动则抑制胰岛素的分泌。

总体而言,胰岛素的分泌受到多种因素的综合调控,这种调节使得血糖水平保持在一个相对稳定的范围内,维持机体的能量代谢和生理功能的正常进行。

第五节 胰岛素的分泌

第五节  胰岛素的分泌

第五节胰岛内分泌胰岛(pancreatic islet)为胰腺的内分泌部,是呈小岛状散在分布于外分泌腺泡之间的内分泌细胞团。

细胞之间有丰富的毛细血管分布,有利于胰岛细胞分泌的激素进入循环血液。

成年人胰腺内的胰岛有(1-2)×106个,约占胰腺总体积的1%。

胰岛内分泌细胞按形态学特征及分泌的激素分类至少有五种细胞:分泌胰高血糖素(glucagon)的α(A)细胞,约占胰岛细胞总数的25%;分泌胰岛素(insulin)的β(B)细胞,占60%-70%;分泌生长抑素(somatostatin, SS)的δ(D)细胞,约占10%;分泌血管活性肠肽(vasoactive intestinal peptide, VIP)的D1(H)细胞和分泌胰多肽(pancreatic polypeptide, PP)的F(PP)细胞数则很少。

一、胰岛素(一)胰岛素及其受体1.胰岛素人胰岛素是含51个氨基酸残基的小分子蛋白质,分子量为5.8kD,由21肽的A链和30肽的B链组成。

A、B两链之间借助于两个二硫键相连,A链内还有一个二硫键,如果二硫键断开,胰岛素便失去活性。

在β细胞内,前胰岛素原(preproinsulin)在粗面内质网中被水解成胰岛素原(proinsulin),随后被运至高尔基复合体进一步加工,最后经剪切形成胰岛素和连接肽(connecting peptide, C肽)。

由于C肽与胰岛素一同被释放入血,两者的分泌量呈平行关系,故测定C肽含量可反映β细胞的分泌功能。

β细胞分泌时亦有少量的胰岛素原进入血液,但其生物活性仅为胰岛素的3%-5%。

C肽虽无胰岛素活性,但具有激活钠泵及内皮细胞中的一氧化氮合酶等作用。

正常成年人胰岛素的分泌量为40-50U/d(1.6-2.0mg/d)。

空腹时,血清胰岛素浓度约为10uU/ml(69pmol/L或40ng/dI)。

胰岛素在血液中以与血浆蛋白结合和游离的两种形式存在,二者之间保持动态平衡,只有游离的胰岛素具有生物活性。

胰岛素由哪个器官分泌

胰岛素由哪个器官分泌

胰岛素由哪个器官分泌
一、胰岛素由哪个器官分泌二、胰岛素注射液的用法用量三、胰岛素的副作用
胰岛素由哪个器官分泌1、胰岛素由哪个器官分泌
胰岛素是由胰脏内的胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的刺激而分泌的一种蛋白质激素。

胰岛素是机体内唯一降低血糖的激素,同时促进糖原、脂肪、蛋白质合成。

外源性胰岛素主要用来糖尿病治疗。

2、胰岛素化验结果的临床意义
2、1型糖尿病患者多在5μU/ml以下,2型患者血浆胰岛胰岛素水平可正常、偏低或高于正常。

增高明显者呈高胰岛素血症,提示有胰岛素抵抗。

在进行OGTT的同时测定血浆胰岛胰岛素浓度,了解胰岛β细胞功能,以鉴别1型糖尿病和2型糖尿病。

1型糖尿病患者空腹和糖刺激后胰岛素水平均较低,呈低平曲线。

2.2、血浆胰岛胰岛素降低尚可见于嗜铬细胞瘤、生长抑素瘤、醛固酮增多症、原发性甲状旁腺功能减退症等所引起的继发性糖尿病和胰岛B 细胞瘤、胰外肿瘤及垂体功能低下等所致的低血糖症。

2.3、X综合征患者多同时具有肥胖、高脂血症、高血压和高胰岛素血症。

3、胰岛素的作用
3.1、药理作用,糖尿病,浪费性疾病的治疗。

为促进血液循环,葡萄糖进入肝细胞、肌细胞、脂肪细胞等组织细胞合成糖原,以降低血糖,促进脂肪和蛋白质的合成。

3.2、生理作用,胰岛素的主要生理作用是调节代谢过程。

对糖代谢:促。

胰岛素的分泌

胰岛素的分泌


---- 嘌呤霉素,能减弱第二时相,但对 胰岛素释放的早期相没有影响。研究还发

现,β细胞内存在 2 个胰岛素释放池:
一个是由先合成的胰岛素组成的即刻释放
池,在快速分泌相排出;另一个是由新合
成的胰岛素和少量胰岛素原及贮存胰岛素
组成的继续释放池,在第二时相时分泌。
餐时胰岛素分泌
正常人进餐后8~10分钟血浆胰岛素水 平开始上升,30~45分钟达高峰,此后随 血糖水平的下降而降低,至餐后90~120 分钟恢复到基础水平。正常人餐后胰岛 素分泌约6~8个单位。
胰 岛 素 双
相 分

第一时相:快速分泌相 反映B细胞贮存颗粒中胰岛素的分泌,与 糖耐量有一定关系。对调节肝脏葡萄糖 排出有重要意义,但不影响周围组织对 葡萄糖的利用。 0.5-1.0分钟出现 持续5-10分钟后下降 第二时相:延迟分泌相 30分钟后出现 缓慢而持久

•分泌途径

思 路
•生理性分泌模式
•胰岛素的双相分泌
•胰岛素原分解成胰岛素、C

肽、精氨酸和赖氨酸

•成熟颗粒内的INS(胰岛素)
途 径
与锌离子结合成晶体向微小 管移动,依靠其缩力,进而 与细胞膜融合
•通过胞吐作用释放胰岛素和 C肽
分 泌 途 径
合成的胰岛素六聚体图像 锌结晶胰岛素的立体结构=3+2
中心紫色代表二价锌离子
位于B链第10 位的组氨酸残 基的咪唑环与 锌原子方向一 致,依靠B链C 端的第24位和 26位的氨基酸 残基之间的氢 链,形成六聚 体,最终形成 反向平行的片 状结构。
分 泌 途 径
生理信号
胰岛B细胞
入血
生理信号:葡萄糖浓度增加,精氨酸刺激等

胰岛素分泌调节的分子机制

胰岛素分泌调节的分子机制

胰岛素分泌调节的分子机制胰岛素是一个重要的激素,它可以调节血糖水平、促进葡萄糖的吸收和利用。

当一个人摄取食物时,血糖水平会升高,这时胰岛素就会被分泌出来,以调节血糖水平。

但是,当这种分泌过度或不足时,就会导致一系列的代谢障碍。

因此,了解胰岛素分泌调节的分子机制是非常重要的。

胰岛素的分泌主要由胰岛β 细胞来控制。

当胰岛腺细胞感知到血糖水平上升时,它们会释放存储在内部的胰岛素颗粒。

但是,这个胰岛素的释放过程并不是一直发生的。

相反,它是涉及到多个信号分子和调节机制的。

一、Glucokinase一种胰岛β 细胞中的关键葡萄糖代谢酶是葡萄糖激酶(Glucokinase,GCK)。

这个酶介导葡萄糖转化成葡萄糖-6-磷酸,这是一种重要的代谢路径。

此外,它对于维持葡萄糖的舒适水平也很重要。

如果血糖水平太低,GCK 会失去其活性。

要想增进胰岛素的分泌,我们需要增加胰岛β 细胞的 GCK 活性。

二、增强响应的 AMPK腺苷酸酰化酶(AMPK)是一个细胞内的关键代谢调节因子,它在胰岛素的分泌调节中也扮演着一个非常重要的角色。

当AMPK 活性增强时,它可以促进胰岛素的分泌。

它也要求胰岛β 细胞增加其对葡萄糖和氧气的响应,这是 AMPK 能够调节胰岛素分泌的关键机制。

因此,AMPK 活性增强是一种增加胰岛素分泌的一种方法。

三、ATP敏感K+通道ATP 敏感 K+ 通道是胰岛β 细胞中的一种离子通道,它会受到胰岛素类物质的开放或关闭的调节。

当胰岛素浓度低时,ATP 敏感 K+ 通道被关闭,从而增加细胞膜上的电位差。

这种清除过程会在细胞膜上产生一种内向的离子流,这会导致胰岛素的分泌。

因此,ATP 敏感 K+ 通道在胰岛素分泌调节的分子机制中扮演着一个非常重要的角色。

四、肽类的调节因子在胰岛素的分泌调节中,还有一些其他的肽类因子,例如阻抗素、GLP-1(葡萄糖相关肽)和 GIP(胰高糖素样多肽)。

这些肽类因子可以增加胰岛素的分泌,并且它们对葡萄糖的吸收和利用也起着很重要的作用。

胰岛素分泌不正常原因

胰岛素分泌不正常原因

胰岛素分泌不正常原因全文共四篇示例,供读者参考第一篇示例:胰岛素是人体内一种重要的激素,它通过调节血糖水平,帮助身体正常运作。

胰岛素的分泌不正常会导致严重的健康问题,例如糖尿病。

那么,造成胰岛素分泌不正常的原因有哪些呢?胰岛素分泌不正常的一个原因是胰岛素产生细胞受损。

胰岛素产生细胞主要在胰岛中的β细胞中,这些细胞负责分泌胰岛素。

如果这些细胞受到损伤或破坏,就会影响到胰岛素的正常分泌。

导致胰岛素产生细胞受损的原因可能是遗传因素、自身免疫疾病或生活方式因素等。

患有胰岛素抵抗的人也容易出现胰岛素分泌不正常的情况。

胰岛素抵抗是一种常见的代谢性疾病,它使得细胞对胰岛素的敏感度降低,导致需要更多的胰岛素来维持正常的血糖水平。

长期处于胰岛素抵抗状态的人体内的β细胞会逐渐衰竭,从而导致胰岛素的分泌不足。

一些疾病也会引起胰岛素分泌不正常。

胰腺炎是一种常见的胰腺疾病,它会导致胰岛素产生细胞受损,从而影响到胰岛素的正常分泌。

其他一些疾病,如肿瘤、感染和遗传性疾病等,也可能对胰岛素的分泌造成负面影响。

除了疾病因素外,生活方式因素也会对胰岛素的分泌产生影响。

饮食不当、缺乏运动、压力过大和睡眠不足等因素都可能导致胰岛素分泌不正常。

高糖高脂肪的饮食会增加胰岛素的分泌需求,长期下去可能导致β细胞的损伤。

胰岛素分泌不正常的原因是多方面的,包括遗传因素、疾病因素和生活方式因素等。

为了维持正常的胰岛素分泌,我们应该注意保持健康的生活方式,避免患有胰腺疾病,保持适当的体重等。

及时就医并根据医生的建议进行治疗也是非常重要的。

只有这样,才能确保胰岛素能够正常分泌,维持身体的代谢平衡,保持身体的健康。

【字数过短,请问是否还需要我继续增补内容?】第二篇示例:胰岛素是一种由胰腺分泌的重要激素,它对人体血糖水平的调节起着至关重要的作用。

胰岛素分泌不正常会导致血糖水平失控,进而引发一系列健康问题。

胰岛素分泌不正常的原因可以是多方面的,包括生活习惯、遗传因素、疾病等。

胰岛素的合成、分泌和作用机制

胰岛素的合成、分泌和作用机制

胰岛素的合成、分泌和作用机制胰岛素是由胰岛B细胞所分泌的,具有重要代谢调节作用的肽类激素。

旱在19世纪末期,von Mering和Minkowski即指出,胰腺在抗糖尿病的作用中起重要作用。

1909年和1917年,de Mayer和Sir Edward Sharpey—Schaffer分别命名这种胰岛内调节血糖水平的激素为“胰岛素”。

直到20世纪20年代初期,加拿大人Banting、Best和Collip才真正分离出牛胰岛素,并稍后作为特效药应用于糖尿病患者。

随后,结晶胰岛素的获得,氨基酸顺序的阐明,具生物活性的胰岛素的合成,胰岛素检测方法的建立,对胰岛素生物合成途径及分泌机制的认识,胰岛素受体的发现,均成为人类对胰岛素本身及相关疾病认识的里程碑。

随着医学及相关科学的发展,特别是近年来分子生物学方法的广泛应用,人们对这个领域的认识突飞猛进,也推动了糖尿病学的迅速发展。

一、胰岛素的提取、纯化及结构特征1.胰岛素的提取、纯化和检测 早期,胰岛素是以乙醇或酸性乙醇溶液来抽提的,以这种方法抽提可使胰岛素从组织中溶解出来,并灭活蛋白酶。

这种方法仍为现代提取方法的基础。

在有机溶剂提取脂肪后.含胰岛素的酸性乙醇的抽提物可经盐析及等电点沉淀等分离,进一步作凝胶过滤,离子交换,高效液相色谱等纯化。

以前曾一度认为以锌结晶方法可有助于胰岛素的纯化,现认为反复结晶仍不能去除胰岛中的其他成分,如胰升糖素、胰岛素原、胰岛素样类似物及部分降解的胰岛素片段,而且部分动物的胰岛素不能与锌结合或产生结晶。

基因重组胰岛素的生物合成技术可得到不含其他激素的较纯净的胰岛素,但仍常含有其他来自宿主细菌或真菌的蛋白质污染,经凝胶过滤和离子亲和层析后,可得到纯度高于99%的胰岛素。

这种胰岛素对人的抗原性远小于来自动物的结晶胰岛素,不易产生抗体,更有利于糖尿病病情的控制。

血清胰岛素测定可用放射免疫法等,但在精确度和敏感性方面仍有一定的局限性。

用聚丙烯酰胺凝胶电泳和高效液相色谱可鉴定胰岛素的量及纯度,并区分开胰岛素和胰岛素原。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

胰腺灌注实验发现,蛋白质合成的抑制剂
---- 嘌呤霉素,能减弱第二时相,但对 胰岛素释放的早期相没有影响。研究还发 现,β 细胞内存在 2 个胰岛素释放池: 一个是由先合成的胰岛素组成的即刻释放 池,在快速分泌相排出;另一个是由新合 成的胰岛素和少量胰岛素原及贮存胰岛素 组成的继续释放池,在第二时相时分泌。
位于B链第10 位的组氨酸残 基的咪唑环与 锌原子方向一 致,依靠B链C 端的第24位和 26位的氨基酸 残基之间的氢 链,形成六聚 体,最终形成 反向平行的片 状结构。
分 泌 途 径
生理信号
胰岛B细胞


生理信号:葡萄糖浓度增加,精氨酸刺激等
生物信号作用于胰岛B细胞时,成熟的分泌颗粒 通过胞吐而释放。同时释放的还有等分子数的C 肽和少量的胰岛素原,未完全裂解形式的胰岛 素中间产物,以及更少量的细胞的其他分泌产 物。
生 理 性 分 泌
餐时胰岛素分泌
正常人进餐后8~10分钟血浆胰岛素水 平开始上升,30~45分钟达高峰,此后随 血糖水平的下降而降低,至餐后90~120 分钟恢复到基础水平。正常人餐后胰岛 素分泌约6~8个单位。
胰 岛 素 双 相 分 泌
第一时相:快速分泌相 反映B细胞贮存颗粒中胰岛素的分泌,与 糖耐量有一定关系。对调节肝脏葡萄糖 排出有重要意义,但不影响周围组织对 葡萄糖的利用。 0.5-1.0分钟出现 持续5-10分钟后下降 第二时相:延迟分泌相 30分钟后出现 缓慢而持久
生 理 性 分 泌
早5-6
下午4-5
基础胰岛素分泌的两个高峰
第一个分泌高峰自凌晨3:00开始增高,5: 00~6:00达高峰,7:00逐渐下降 第二个分泌高峰自下午3:00增加至下午4: 00~5:00出现第二个分泌高峰
刺激后胰岛素分泌(餐时):
1.概念:在外源性刺激后分泌的, 思 路
•分泌途径
•生理性分泌模式 •胰岛素的双相分泌
分 泌 途 径
•胰岛素原分解成胰岛素、C 肽、精氨酸和赖氨酸 •成熟颗粒内的INS(胰岛素) 与锌离子结合成晶体向微小 管移动,依靠其缩力,进而 与细胞膜融合
•通过胞吐作用释放胰岛素和 C肽
分 泌 途 径
合成的胰岛素六聚体图像 锌结晶胰岛素的立体结构=3+2 中心紫色代表二价锌离子
生 理 性 分 泌
正常人胰岛素的生理性分泌: 基础胰岛素分泌+刺激后胰岛素分泌 各占50% 基础胰岛素分泌:
1.概念:24小时胰岛细胞持续脉冲式分泌的 微量胰岛素(约0.5~1单位/小时),不依赖于 进食或指空腹状态下的胰岛素分泌。 2.主要生理作用:通过抑制肝脏糖原分解及 糖异生来减少葡萄糖的产生和维持周围组织 器官(如大脑、肌肉等)对葡萄糖的利用,使 空腹状态下血糖保持在正常水平。
进食的反应,即餐时胰岛素分泌。餐时胰岛 素是伴随进餐分泌的胰岛素。
2.主要生理作用:
餐时胰岛素的早时相分泌控制了餐后血糖升 高的幅度和持续时间,其主要的作用是抑制 肝脏内源性葡萄糖的生成。通过该作用机制, 血糖在任何时间均被控制在接近空腹状态的 水平;餐后血糖的峰值在7.0mmol/L以下,并 且血糖水平高于5.5mmol/L的时间不超过30分 钟。
双 相 分 泌 的 机 制
第一时相释放的机制虽仍未彻底阐明,但 胰岛内钙及三磷酸肌醇水平可能与双相胰 岛素分泌相平行,提示阳离子或磷脂的转 化可能为胰岛素分泌提供一个启动信号。 葡萄糖进入细胞后的代谢产物为6-磷酸葡 萄糖和磷酸烯醇式内酮酸,均可激活蛋白 激酶,持续和增强胰岛素分泌,兴奋第二 时相释放。
相关文档
最新文档