固体物理总复习资料及答案(DOC)

固体物理总复习资料及答案(DOC)
固体物理总复习资料及答案(DOC)

固体物理总复习题

一、填空题

1.原胞是 的晶格重复单元。对于布拉伐格子,原胞只包含 个原子。

2.在三维晶格中,对一定的波矢q ,有 支声学波, 支光学波。

3.电子在三维周期性晶格中波函数方程的解具有 形式,式中 在晶格平移下保持不变。

4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表示有 、 、 三种图式。

5.按结构划分,晶体可分为 大晶系,共 布喇菲格子。

6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为

格子,由若干个布喇菲格子相套而成的格子,叫做 格子。其原胞中有 以上的原子。

7.电子占据了一个能带中的所有的状态,称该能带为 ;没有任何电子占据的能带,称为 ;导带以下的第一满带,或者最上面的一个满带称为 ;最下面的一个空带称为 ;两个能带之间,不允许存在的能级宽度,称为 。

8.基本对称操作包

括 , , 三种操作。

9.包含一个n 重转轴和n 个垂直的二重轴的点群叫 。

10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为 。

11.具有晶格周期性势场中的电子,其波动方程

为 。

12.在自由电子近似的模型中, 随位置变化小,当作 来处理。

13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作 处理。这是晶体中描述电子状态

模型。

14.固体可分

为,,

15.典型的晶格结构具有简立方结

构,,,四种结构。

16.在自由电子模型中,由于周期势场的微扰,能量函数将在

K= 处

断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电

子共有化运动的轨道称为,表达式

为。

18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。

19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

21.两种不同金属接触后,费米能级高的带电,对导电有贡献的是

的电子。

22.固体能带论的三个基本假设是:、、

23.费米能量与和因素有关。

二、名词解释

1.声子;2.;布拉伐格子;3. 布里渊散射;4. 能带理论的基本假设.

5.费米能;6. 晶体的晶面;7. 喇曼散射;8. 近自由电子近似。

9.晶体;10. 布里渊散射; 11. 晶格;12. 喇曼散射;

三、简述题

1.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪一种或哪几种结合最可能形成绝缘体、导体和半导体。

2.什么是声子声子与光子有什么相似之处和不同之处

3.什么是德拜温度它有什么物理意义

4.试叙述原子能级与能带之间的对应关系。

5.简述Bloch 定理,解释简约波矢k 的物理意义,并阐述其取值原则。

6.试说明晶体结合的基本类型及其特点

7.共价结合中为什么有”饱和性”和”方向性”

8.什么是晶体热容的爱因斯坦模型和德拜模型比较其主要结果。

9.什么是晶体振动光学支和声学支格波它们有什么本质上的区别

10.近自由电子模型与紧束缚模型各有何特点它们有相同之处

11.金属晶体的结合力是什么一般金属晶体具有何种结构,最大配位数为多少

12.德拜模型在低温下理论结果与实验数据符合相对较好但是仍存在偏差,其

产生偏差的根源是什么

13.原子间的排斥作用取决于什么原因

14.在能带顶,电子的有效质量m*为什么为负值试解释其物理意义。

15.试述固体物理学原胞和结晶学原胞的相似点和区别

16.根据结合力的不同,晶体可分为几种类型其各自的结合力分别是什么

17.爱因斯坦模型在低温下理论结果与实验数据存在偏差的根源是什么

18.什么是“空穴”简述空穴的属性。

四、推导题

1.对一维简单格子,按德拜模型,求出晶格热容,并讨论高、低温极限。

2. 对二维简单格子,按德拜模型,求出晶格热容,并讨论高、低温极限。

3. 推导一维单原子链的色散关系

4. 推导一维双原子链的色散关系

五、计算题

1.已知铝为三价金属,原子量为27,密度为

2.7g/cm 3,金属铝在T =0 K 下的费米波矢、费米能和费米速度。

2.已知电子在周期场中的势能为

?????-≤≤+-=+≤≤---=时

,当时,当b na x b a n x U b na x b na na x b m x U )1(0)(])([21)(222ω 其中:b a 4=,ω为常数。

(1)画出势能曲线,并求出其平均值;

(2)用近自由电子模型求出此晶体的第1及第2个禁带宽度。

3.用紧束缚模型,试求解

(1)面心立方点阵s 态电子的紧束缚能带; (2)证明在k=0附近等能面近似为球形面,并计算有效质量m *. 其中:∑→→?-+=近邻n n R R k i s at s s e J C E k E )(中的at s E ,s C ,J 均为已知,且在

k=0附近时,即ka<<1时,2)21(21121cos a k a k x x -≈ 4.在一维复式格子中,如果kg m 271067.15-??=,4=m

M ,m N 15=β,计算: 1) 光学波频率的最大值o m ax ω和最小值o m in ω,声学波频率的最大值A m ax ω;

2) 相应声子的能量o E m ax 、o E m in 和A E m ax ;

3) 如果用电磁波激发光学波,要激发o m ax ω的声子所用的电磁波波长在什么波

5.已知半导体GaAs 具有闪锌矿结构,Ga 和As 两原子的最近距离d =×10-10m 。

试求:

(1)晶格常数;

(2)固体物理学原胞基矢和倒格子基矢;

(3)密勒指数为(110)晶面族的面间距;

(4)密勒指数为(110)和(111)晶面法向方向间的夹角。(20分)

6.已知一维晶格中电子的能带可写成 ()??

? ??+-=ka ka ma k E 2cos 81cos 8722 式中a 是晶格常数,m 是电子的质量,求:

(1)能带宽度(min max E E E -=?);

(2)电子的平均速度。

7.利用紧束缚方法处理体心立方晶体中S 态电子的能带,求出:

(1)S 态电子的能带()k E

(2)求出能带顶和能带底处的电子的有效质量。

六、证明题

1. 试证明倒格子原胞的体积为c V /)2(3π,其中c V 为正格子原胞的体积。

2. 证明:倒格子矢量332211b h b h b h G ++=垂直于密勒指数为)(321h h h 的晶面

系。

3. 试证明体心立方格子和面心立方格子互为正倒格子。

七、说明题

1. 原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合

力,试分析说明离子性、共价性、金属性和范德瓦耳斯性结合力的特点。

2. 布洛赫电子论作了哪些基本近似它与金属自由电子论相比有哪些改进

固体物理总复习题答案

一、填空题

1.最小;1 2.3;3n -3 3.)()(r u e r k r k i k

?=ψ;)(r u k 4.禁带(带隙);扩展能区图式法;简约布里渊区图式法;周期性能区图式法5.7;14 6.布喇菲;复式;两个 7.满带;空带;价带;导带;带隙8. 平移;旋转 ;反演

9. 双面群 10.简正振动 11.)()()](2[22

r E r r V m

ψψ=+?- 12. 周期势场;

微扰 13. 微扰;紧束缚 14. 晶体;非晶体;准晶体 15. 体心立方;面心立方;六角密排 16. K=

n a π;n V 2 17. 原子轨道线性组合法;

)()(m m i m R r a r -=∑?ψ 18. 频率;格波

19.顶点;面心、体心;20. 离子结合;共价结合;金属结合;范德瓦尔斯结合;氢键结合 21.正;费米面附近 22. 绝热近似;单电子近似;周期场近似

23. 电子密度;温度

二、名词解释

1.晶格振动中格波的能量量子。每个振动模式的能量均以ω 为单位,能量递增为ω 的整数倍——声子的能量,一个格波就是一个振动模式,对应一种声子。

2.由332211a l a l a l ++确定的空间格子。

3.当光与声学波相互作用,散射光的频率移动ωω-'很小,大约在10710310?-赫,称为布里渊散射。

4.(1)绝热近似:将固体分开为电子系统及离子实系统的一种近似方法;(2)

单电子近似(自洽场近似):利用哈特里 —— 福克方法将多电子问题归结为单电子问题;(3)周期场近似:假定单电子势场具有与晶格同样的平移对称性。

5.电子按泡利不相容原理,能量从低至高填充,所达到的最高能级。

6.在布拉伐格子中作一族平行的平面,这些相互平行、等间距的平面可以将所有的格点包括无遗,这些相互平行的平面称为晶体的晶面。

7.当光与光学波相互作用,频率移动大约在1310103103?-?赫,称为喇曼散射。

8.假定周期场的起伏比较小,作为零级近似,可以用势场的平均值V 代替)(x V ,把周期起伏[]V x V -)(做为微扰来处理。

9.晶体是由完全相同的原子、分子或原子团在空间有规则地周期性排列构成的固体材料。

10.当光与声学波相互作用,散射光的频率移动ωω-'很小,大约在10710310?-赫,称为布里渊散射。

11.晶体中的原子是规则排列的,用几组平行直线连接晶体中原子形成的网络,称为晶格。

12.当光与光学波相互作用,频率移动大约在1310103103?-?赫,称为喇曼散射。

三、简述题

1.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪一种

或哪几种结合最可能形成绝缘体、导体和半导体。

答:离子晶体主要依靠正负离子之间的静电库仑力而结合,结合力较强,结构甚

为稳定,结合能较大,因此,导电性能差,这种结合可能形成半导体和绝缘体。共价结合的晶体为原子晶体,是由两原子之间一对自旋相反的共有化电子形成的,其结合力较强,导电性能差,这种结合可能形成半导体和绝缘体。金属性结合的晶体,原子失去价电子而成为离子实,价电子为全体离子实所共有,金属性结合就是价电子与离子实之间的相互作用而形成的,结合能较 小,易形成导体。范德瓦尔斯结合的晶体为分子晶体,这种结合是一种弱的结合,电离能大,易形成绝缘体。

2.什么是声子声子与光子有什么相似之处和不同之处

答:晶格振动的能量是量子化的,把晶格振动能量的量子称为声子。 声子与

光子相类似,凡是应用到光子上的理论,几乎都可以应用到声子上,相同之处是它们都是波色子,碰撞过程中能够被产生、或被消灭,能量的交换是一份一份的,即能量是量子化的。不同之处是声子只代表振动的机械状态,而不具有动量。光子可以在真空中传播,而声子只能在介质中传播。

3.什么是德拜温度它有什么物理意义

答:德拜弹性波模型的截止频率m ω 按B

m k ω 关系式换算得到的温度D Θ称为德拜温度。热容量的特征完全由德拜温度确定,它近似地代表经典比热理论适用的高温范围同低温适用的低温范围的分界温度。可以粗略地指示出晶格振动频率的数量级。

4.试叙述原子能级与能带之间的对应关系。

答:原子能级与能带之间存在着两种对应关系,一是简单的一一对应,原子的各不同能级在固体中将产生一系列相应的能带,低能级的能带较窄,高能级的能带较宽。二是在形成晶体的过程中,不同原子态之间有可能相互混和,使对应关系变的比较复杂,可认为主要是由几个能级相近的原子态相互结合而形成能带,能带发生了明显的重叠。

5.简述Bloch 定理,解释简约波矢k 的物理意义,并阐述其取值原则。 答:在晶体周期性势场中运动的电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式

)()()

()(n k k k r k i k R e +==?μμμψ

其中k 为电子的波矢,R n 为格矢,上述理论称为布洛赫定理。

平移算符和能量算符是对易算符,具有相同的本征态,为了使平移算符在波矢k 的某个范围内,一个本征值对应于一个波函数,我们把波矢限制在??

? ??-2,2k k 范围内,这一区域称为简约布里渊区。在此范围内的波矢,我们称为简约波矢。

6.试说明晶体结合的基本类型及其特点

答: 晶体中的原子之所以能够结合成具有一定几何结构的稳定晶体,是由于原子之间存在着结合力,而这种结合力与原子的结构有关,不同类型的原子之间具有不同性质的结合力,由于结合力的性质不同,晶体会具有不同类型的结合。一般晶体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔斯结合四种基本形式。 离子晶体的典型晶格中,正、负离子相间排列,作用力的总效果为库仑引力,具有结构很稳定、导电性能差、

熔点高、硬度高、膨胀系数小的特点;共价结合的晶体是一对近邻原子相互靠近,波函数交叠,形成共价键,具有饱和性和方向性;金属性结合是共有化的价电子与离子实之间的价键结合,结构密排,具有熔点高、硬度 高、导电、导热性能好、无饱和性和方向性等特点;范德瓦尔斯结合产生在原来稳定电子结构的原子或分子之间,结合后仍保持原来的电子结构,具有结合力小、熔 点很低、硬度很小的特点。

7.共价结合中为什么有”饱和性”和”方向性”

答: 设N 为一个原子的价电子数目,对于ⅣA,ⅤA,ⅥA,ⅦA 族元素,价电子

壳层一共有8个量子态,最多能接纳(8-N)个电子,形成(8-N )个共价键。这就是共价结合的“饱和性”。共价键的形成只能在特定的方向上,这些方向是配对电子波函数的对称轴方向,在这个方向上交迭的电子云密度最大。这就是共价结合的“方向性”。

8.什么是晶体热容的爱因斯坦模型和德拜模型比较其主要结果。

答: 爱因斯坦模型是假设晶体中的所有原子都以相同的频率0ω ,作相互独

立的振动。德拜模型是把晶体看作各向同性的连续介质,格波视为弹性波,色散关系为直线。爱因斯坦模型忽略了各格波的频率差别,假设过于简单,理论值的关系与实验值不符。德拜模型在低温时,热容决定于最低频率的振动,理论值与实验值相符。

9.什么是晶体振动光学支和声学支格波它们有什么本质上的区别

答:在一维双原子的简单复式晶格中,求解原子的运动方程。对应于每一个q 值,都有频率-ω和+ω的两类振动,且-+>ωω ,对应于+ω的格波称为光学分支的格波。对应于-ω的格波称为声学分支的格波。

对于光学分支的格波,相邻两不同原子的振动方向相反。而对于声学分支的格波,相邻两原子的振动方向相一致,且在长波情况下,声学分支的格波与弹性波相一致。

10.近自由电子模型与紧束缚模型各有何特点它们有相同之处

解:所谓近自由电子模型就是认为电子接近于自由电子状态的情况,而紧束缚模型则认为电子在一个原子附近时,将主要受到该原子场的作用,把其它原子场的作用看成微扰作用。这两种模型的相同之处是:选取一个适当的具有正交性和完备性的布洛赫波形式的函数集,然后将电子的波函数在所选取的函数集中展开,其展开式中有一组特定的展开系数,将展开后的电子的波函数代入薛定谔方程,利用函数集中各基函数间的正交性,可以得到一组各展开系数满足的久期方程。这个久期方程组是一组齐次方程组,由齐次方程组有解条件可求出电子能量的本征值,由此便揭示出了系统中电子的能带结构。

11.答:金属晶体的结合力为原子实与电子云之间的静电库仑力,其一般具有面心立方结构及六角密积结构,配位数为12。

12.答:它忽略了晶体的各向异性;忽略了光学波和高频声学波对热容的贡献,光学波和高频声学波是色散波,它们的关系式比弹性波的要复杂的多。

13.答:两部分原因:带正电荷的原子核之间的库仑排斥力; 原子或正负离子的闭合电子壳层相互交叠时,由泡利不相容原理而产生的排斥力。

14.答:晶体中的电子除受外场力,还和晶格相互作用,设外场力为F ,晶格对

电子的作用力为 ,电子的加速度()l F F m

a +=1, 的具体形式难以得知,为了不显含 ,则只有*m

F a =,晶格作用越小,有效质量与真实质量相差越小,当电子的波矢落在布里渊区边界上时,与布里渊区边界平行的晶面族对电子散射作用最强烈。使得加速度与外场力的方向相反,有效质量为负。

15.答: 固体物理学原胞是只考虑周期性的最小的重复单元,而晶胞是同时计及周期性与对称性的尽可能小的重复单元。两者都体现了晶体结构的周期性,但是结晶学原胞还要考虑到对称性,所以其体积往往是固体物理学原胞的几倍。固体物理学原胞原子都在顶点,而结晶学原胞原子可以在顶点也可以在面心、体心即存在于原胞内部。

16.答:晶体根据结合力不同分为五种晶体类型。

离子晶体(正负离子间静电库仑力)

分子晶体(范德瓦尔斯力)

金属晶体(电子云和原子实之间的静电库仑力)

共价晶体(共价键)

氢键晶体(氢键作用)

17.答:爱因斯坦模型建立的基础是认为所有的格波都以相同的频率振动,忽略了频率间的差别,没有考虑格波的色散关系。

18.答:空穴:空缺一个状态的能带的电流犹如由一个带正电荷e ,具有空缺态电子的速度的“粒子”对电流的贡献。这一粒子称为“空穴”

空穴的属性: 带正电荷e

速度为缺失状态电子的速度,

有效质量为正,数值等于该电子有效质量的绝对值。

四、推导题

1. 解:德拜模型格波为弹性波,色散关系为:cq =ω,

l F l F l F

ωd c

dq 1=

∴ ωd 内包含的振动模式数目为: ωππd c

L dq L dZ =?=22 模式密度:c L d dZ g πωω==)( 利用:N d c L d g m m

==

??ωπωωωω00

)( N 是原子总数得 c a m π

ω= 晶格热容:ωωωωωωωd g e e T K k C T k T k B B v B B m )()1()(2//20

-=? ωωωπωωωd e e T K c L k T k T k B B B B m 2//20)

1()(-=? 令T k x B ω =, dx e x e c T Lk C T x x B v D ?Θ-=/02

22)1( π 其中B

m D k ω =Θ 2.解:德拜模型格波为弹性波,色散关系为q νω=,在二维波矢空间内,格波等频线是一个个圆周,在dq q q +→区间内波矢数为: ωπνωππd S qdq S dZ 2222)2(==

模式密度:22)(πν

ωωωS d dZ dg == 二维介质由两支格波,总模式密度:2)(πν

ωωS g = 格波振动能:ωωπνωωωd e S E kT m

)1(/02-=? 晶格热容:ωωωπνωωωd e e KT K S C kT kT v m 2//20

2)1()(-=

? 其中:N d S d g m m 2)(002

==??ωπνωωωωω

令kT x ω =, dx e x e kT k Sk C d x x v ?Θ-=02322)

1()( πν 其中k

m D ω =Θ 高温极限:Nk C x

e v x 21≈+≈,与经典理论一致。 低温极限:)3(6)

1(,

/023ξ=-∞→Θ?∞dx e x e T x x D (常数) 2AT C v = 在低温下二维晶格的热容量与温度的平方成正比。

3. 解:只考虑临近原子相互作用,第n 个原子所受的总作用力

第n 个原子的运动方程

设解的形式为:

运动方程

4. 解:质量为M 的原子位于2n-1, 2n+1, 2n+3 ……。

质量为m 的原子位于2n , 2n+2, 2n+4 ……。 ()112+----=??-=n n n n n u u u u f βφ()11222+----=n n n n u u u u dt d M β()

t qna i n Ae u ω-=()iqa

iqa e e M ---=--22βω()()??

? ??=-=2sin 4cos 1222qa M qa M ββ

ω2sin qa

m ωω=M

m βω2=

运动方程为:()n n n n M 22212122μμμβμ

---=+++ ; ()1212222-+---=n n n n M μμμβμ

设方程解的形式:()[]q na t i n Ae 22-=ωμ和()[]aq n t i n Be 1212+-+=ωμ

因为m M >,复式格子中不同原子振动的振幅一般来说是不同的。将

()[]q na t i n Ae 22-=ωμ

()[]aq n t i n Be 1212+-+=ωμ

带回到运动方程得到:

2222()2(2)(2cos )0

()2(2cos )(2)0iaq iaq iaq iaq m A e e B A m A aq B M B e e A B aq A M B ωβββωβωββββω--?-=+-=--=??-=+-=-+-=??

若A 、B 有非零的解,系数行列式满足:

2

222cos 0

2cos 2m aq aq M βωβββω--=--

221/22()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+

221/22()4{1[1sin ]}()

m M mM aq mM m M ωβ++=+-+221/22()4{1[1sin ]}()m M mM aq mM m M ωβ

-+=--+

五、计算题

1解:由题设可得金属铝的电子浓度为:

)(108.1)(108.1)1002.627

7.2(332932323--?=?=???=m cm n )(1075.1)108.13()3(1103/12923/12-?=???==m n K F ππ

K F )1075.1100546.1(182

103422???-- (2)根据近自由电子模型,此晶体的第1及第2个禁带宽度为

112U E =? 222U E =?

其中1U 和2U 表示周期场)(x U 的展开成傅立叶级数的第一和第二个傅立叶系数。 于是有

32

222241

2341214)(2141)(41πωξξωξξξπξπb m d b m e b d U e b U b b

b i b b b i =-==??---- 222222422342222)(2141)(41πωξξωξξξπξπb m d b m e b d U e b U b b b i b b b i =-==??---- 故此晶体的第1及第2个禁带宽度为

32

21182πωb m U E ==? 22

2222πωb m U E ==?

3. 解:(1)利用紧束缚模型计算能带∑→→?-+=近邻

n n R R k i s at s s e J C E k E )(,对

于面心立方点阵,S 态电子波函数来说,交迭积分相等,原点的最近邻位于

)1,1,0(2

),1,0,1(2),0,1,1(2±±±±±±=→a a a R (3分) 将最近邻的12个格点的格矢代入公式:

)2

1cos 21cos 21cos 21cos 21cos 21(cos 4)(a k a k a k a k a k a k J C E e J C E k E x z z y y x s at s R R k i s at

s

s n n ++-+=-+=∑→

→?近邻

(2)在k<<1的极限下,将a k x 2

1cos 等用泰勒级数展开 ???+-=2)2

1(21121cos a k a k x x 取一级近似,得 2212)(a Jk J C E k E S at s s +-+=

显然,)(k E s 与k 的方向无关,即等能面为球形。 有效质量22

222*

2Ja

k E m =??= 4. 解:1)声学波的最大频率:

M

A βω2max =,s rad A 14max 103?=ω 光学波的最大频率:μβω2max =O ,M M m mM 2.0=+=μ s rad M

O 14max 107.625?==βω 光学波的最小频率:s rad m O 14min 1062?==βω

2)相应声子的能量 M A βω2max =

,A A E max max ω =,eV E A 198.0max = μβω2max =

O ,O O E max max ω =,eV E O 442.0max = m O β

ω2min =,O O E min min ω =,eV E O 396.0min

= 3)因为eV E O 442.0max

=,对应电磁波的波长为m μλ8.2= 要激发O m ax ω的声子所用的电磁波波长在近红外线波段

5.

解:(1)由题意可知,GaAs 的晶格为复式面心

立方晶格,其原胞包含一个Ga 原子和一个As 原子,

其中Ga 原子处于面心立方位置上,而As 原子则处

于立方单元体对角线上距离Ga 原子1/4体对角线

长的位置上,如左图所示:

由此可知:a d 43=

故 m d a 101045.234

34

-??===m 101059.5-?

(2)由于GaAs 的空间点阵为面心立方结构,故其固体物理学原胞基矢为:

????

?????+?=+=+?=+=+?=+=---)(10795.2)(2)(10795.2)(2)(10795.2)(2103102101j i j i a i k i k a k j k j a a a a 其倒格子基矢为:

????

?????-+?=-+=+-?=+-=++-?=++-=--)(10124.1)(2)(10124.1)(2)(10124.1)(2103102101k j i k j i b k j i k j i b k j i k j i b a a a πππ (3)密勒指数为(110)晶面族的面间距为:

m a d 1032111011010795.22

01122-?==?+?+?==b b b K ππ (4)根据倒格子矢的性质可知,密勒指数为(110)和(111)晶面法向方向间的

—Ga 原子 —As 原子

夹角即为倒格子矢110K 和111K 之间的夹角,设为α,则有:

3

213213************

11110111011)111()011(arccos b b b b b b b b b b b b K K K K ?+?-???+?+??+?-???+?+?=??=α = 55.107)3015.0arccos(=-

6. 解(1)

()0=dk k dE ()02sin 281sin 22

=??

? ??-+ka a ka a ma 02sin 4

1sin =-ka ka 0cos sin 2

1sin =-ka ka ka 0sin =ka 0=k ,a /π

当0=k ,()08118

722

=??? ??+-=ma k E , 0min =E 当a k /π=,()222

2281187ma ma k E =??? ??++=,22max 2ma E = 能带宽度:2

2min max 2ma E E E =-=? (2)()()??

? ??-==?=ka a ka a ma dk k dE k E V k 2sin 4sin 11122 ??

? ??-=ka ka ma 2sin 41sin 7. 解:(1)根据紧束缚模型,S 带的能量: ()∑?--=n R k i s s s n e

J A k E ε n R 为最近邻格点

对体心立方,最近邻的原子有8个,即 ??

? ??±±±2,2,2a a a 代入上式,有:

()[s s s J A k E --=ε???? ??++a k a k a k i z y s e 222+???? ??++-a k a k a k i z y x e 222+???? ??++-a k a k a k i z y x e 222+???? ??++--a k a k a k i z y x e 222+

???? ??+--a k a k a k i z y x e 222???? ??+---+a k a k a k i z y x e 222???? ??-+-+a k a k a k i z y x e 222???? ??-+--+a k a k a k i z y x e 222] ()()a k a k a k a k a k a k J A z y x z y x s s ++-+++??

?--=21cos 21cos 2ε ()()a k a k a k a k a k a k z y x z y x -+-++--+21cos 21cos ]

()()??

????++?+--=a k a k a k a k a k a k J A z y x x z y s s 2

1cos 21cos 221cos 21cos 22ε ???

????? ????? ??--=a k a k a k J A z y x S s 21cos 21cos 21cos 8ε

(2)根据()???

????? ????? ??--=a k a k a k J A k E z y x S s s 21cos 21cos 21cos 8ε

在0===z y x k k k 即 ()0,0,0Γ处,()k E s 最小

为能带底 S s s J A E 8min

--=ε 在??? ??0,0,2a H π

处,()k E s 最大

为能带顶 S s s J A E 8max

+-=ε

()???

??????

????? ??=??2cos 2cos 2sin 4a

k a k a k a J k k E z y x s x

()?

??

?????? ????? ??=??2cos 2cos 2cos 2222a k a k a k a J k k E z y x s x

()???

??????

????? ??-=???2cos 2sin 2sin 422a k a k a k a J k k k E z y x s y x

在带底()0,0,0Γ处,有

22

222*2/a

J k E m s x xx =??=

∞=???=y

x xy k k E m /22

*

22

***2a

J m m m s xx zz yy ===

∞==**xz yz m m 在带顶??

? ??0,0,2a H π处,有 22

222*2/a J k E m s x xx

-=??= ∞=???=y x xy

k k E m /22

* 22

***2a J m m m s xx

zz yy -=== ∞==**xz yz m m

六、证明题

1.证明:倒格子基矢为:

3213212a a a a a b ???=π ;3211322a a a a a b ???=π;3

212132a a a a a b ???=π 倒格子体积:)()()()2()(21133233321*a a a a a a V b b b V c c

?????=??=π C B A B C A C B A

)()(?-?=?? 1211312132113])[(])[()()(a V a a a a a a a a a a a a c =??-??=???∴

c

c c c V V a a a V V 313233*

)2()()2(ππ=??= 2. 证明:离原点最近的晶面如下图所示:

ABC 是晶面族(h 1 h 2 h 3)离原点最近的晶面,

022)(

)(1133332211=-=-?++=?→→→→→→→ππh a h a b h b h b h AC K h 022)(

)(1122332211=-=-?++=?→→→→→→→ππh a h a b h b h b h AB K h 所以→→→→++=332211b h b h b h K h 与晶面ABC 正交,也即与晶面指数为(h 1 h 2 h 3)

的晶面族正交。

3.证明:我们知体心立方格子的基矢为:????

?????-+=+-=++-=)(2)(2)

(2321k j i a k j i a k j i a a a a 根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:

????

?????+=Ω?=+=Ω?=+=Ω?=)(2][2)(2][2)(2][2213132321j i a a b k i a a b k j a a b a a a ππππππ 其中 321a =Ω 由此可知,体心立方格子的倒格子为一面心立方格子。 面心立方格子的基矢为:????

?????+=+=+=)(2)(2)

(2321j i a k a k j a a i a a 倒格子基矢为:????

?????-+=Ω?=+-=Ω?=++-=Ω?=)(2][2)(2][2)(2][2213132321k a j a i a j i a a b k i a a b k j a a b ππππππ 其中341a =Ω

由此可知,面心立方格子的倒格子为一体心立方格子。

七、说明题

1.解:答题要点:

离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一

定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排斥力和吸引力相互平衡时,形成稳定的离子晶体。

共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键。

金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。在这种情况下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。

范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。非极性分子晶体就是依靠这瞬时偶极矩的互作用而结合的。

2.解:答题要点:

布洛赫电子论作了3条基本假设,即①绝热近似,认为离子实固定在其瞬时位置上,可把电子的运动与离子实的运动分开来处理;②单电子近似,认为一个电子在离子实和其它电子所形成的势场中运动;③周期场近似,假设所有电子及离子实产生的场都具有晶格周期性。布洛赫电子论相比于金属自由电子论,考虑了电子和离子实之间的相互作用,也考虑了电子与电子的相互作用。

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52体心立方3π/ 8 ≈0.68面心立方2π/ 6 ≈0.74六方密 排2π/ 6 ≈0.74金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为

面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ;

固体物理学概念和习题答案

《固体物理学》概念和习题 固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理学题库..doc

一、填空 1.固体按其微结构的有序程度可分为 _______、_______和准晶体。 2.组成粒子在空间中周期性排列,具有长程有序的固体称为 _______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为 _________。 3.在晶体结构中,所有原子完全等价的晶格称为 ______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为 ____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括 ______________晶体结构和 ______________晶体结构。 5.简单立方结构原子的配位数为 ______;体心立方结构原子的配位数为 ______。6.NaCl 结构中存在 _____个不等价原子,因此它是 _______晶格,它是由氯离子和钠离子各自构成的 ______________格子套构而成的。 7.金刚石结构中存在 ______个不等价原子,因此它是 _________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4 的长度套构而成,晶胞中有 _____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足 a i b j 2 ij 2 ,当i j时 关系的 b1,b 2, b 3为基矢,由0,当 i ( i, j 1,2,3) j时 K h h b h b h构b成的点阵,称为 _______。 1 1 2 2 3 10.晶格常数为 a 的一维单原子链,倒格子基矢的大小为 ________。 11.晶格常数为 a 的面心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为 _______。 12.晶格常数为 a 的体心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为 _______。 13.晶格常数为 a 的简立方晶格的 (010)面间距为 ________ 14.体心立方的倒点阵是 ________________点阵,面心立方的倒点阵是 ________________点阵,简单立方的倒点阵是________________。 15.一个二维正方晶格的第一布里渊区形状是 ________________。 16.若简单立方晶格的晶格常数由 a 增大为 2a,则第一布里渊区的体积变为原来的 ___________倍。

固体物理作业及答案

固体物理作业 2.1 光子的波长为20 nm ,求其相应的动量与能量。 答: 由λ h P = ,υh E =得: 动量1 26 9 3410 313.310 2010626.6----???=???= = m s J m s J h P λ 能量J m s m s J c h h E 18 9 1 8 34 10 932.910 2010998.210626.6----?=???? ??===λ υ 2.2 作一维运动的某粒子的波函数可表达为: , 求归一化常数A? 粒子在何处的几率最大? 答: 再由2 )()(x x ψω=得: 2 22)()(x a x A x -=ω 其中 a x ≤≤0; 3 2 2 2 2 2 462) (x A x aA x A a dx x d +-=ω 令 0)(=dx x d ω得:2 ,21a x a x = = 而a x =1时,0)(=x ω,显然不是最大; 故当2 2a x = 时,粒子的几率最大。 3.1 晶体中原子间的排斥作用和吸引作用有何关系?在什么情况下排斥力和吸引力分别起主导作用? 答:

在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为0r , 当相邻原子间的距离0r r 时, 吸引力起主导作用;当相邻原子间的距离0r r 时, 排斥力起主导作用。 3.2 已知某晶体中相邻两原子间的相互作用势能可表达为: (1) 求出平衡时两原子间的距离;(2) 平衡时的结合能;(3) 若取m=2, n=10,两原子间的平衡距离为3 ?,晶体的结合能为4 eV/atom 。请计算出A 和B 的值。 答: 设平衡时原子间的距离为0r 。达到平衡时,相互作用势能应具有最小值,即)(r u 满 足: 0)(0 =??r r r u ,求得m n Am Bn r -=1 0) ( (1) 将0r 代入,得平衡时的结合能m n m n m Am Bn Am Bn A r u --+- =n 0)(B )( )( (2) 当m=2,n=10时,由(1)式得 5B=A 0r 8, 再由0r =3?,)(0r u -=4eV 代人(2)式可得: 10 96 10 01090.54 )(m eV r r u B ??=- =- 2 1920001002 10 50.4)(45)(m eV r r u r u r r A ??=-=??? ?????-=-B 4.1 一定温度下,一个光学波的声子数目多,还是声学波的声子数目多? 答: 频率为的格波的(平均) 声子数为: .

固体物理习题与答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3r 3 4π,Vc=a 3 ,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理学题库

固体物理学题库 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、 填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠? 当时 (,当时关系的123,,b b b 为基矢,由 112233h K hb h b h b =++构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________

固体物理经典复习题及答案(供参考)

一、简答题 1.理想晶体 答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间 无限重复排列而构成的。 2.晶体的解理性 答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。 3.配位数 答: 晶体中和某一粒子最近邻的原子数。 4.致密度 答:晶胞内原子所占的体积和晶胞体积之比。 5.空间点阵(布喇菲点阵) 答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,

它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。 10.布喇菲原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞) 答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间 划分成各个区域。围绕原点的最小闭合区域为维格纳-赛兹原胞。 一个维格纳-赛兹原胞平均包含一个结点,其体积等于固体物理学原胞的体积。 12. 简单晶格 答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表 该原子,这种晶体结构就称为简单格子或Bravais 格子。 13.复式格子 答:当基元包含2 个或2 个以上的原子时,各基元中相应的原子组成与格 点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。显然,复式格子是由若干相同结构的子晶格相互位移套构而成。 14.晶面指数 答:描写晶面方位的一组数称为晶面指数。设基矢123,,a a a r u u r u u r ,末端分别落 在离原点距离为123d 、d 、h h h d 的晶面上,123、、h h h 为整数,d 为晶面间距,可以证明123、、h h h 必是互质的整数,称123、、h h h 3为晶面指数,记为()123h h h 。用结晶学原胞基矢坐标系表示的晶面指数称为密勒指数。 15.倒格子(倒易点阵)

固体物理学概念和习题答案

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

固体物理作业

固体物理作业 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 2.简单阐述下列概念: I.晶格、晶胞、晶列、晶向、晶面、晶系。 II.固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞)。 III.正格子、倒格子、布喇菲格子和复式格子。 3.晶体的重要结合类型有哪些,他们的基本特征为何? 4.为什么晶体的稳定结合需要引力外还需要排斥力?排斥力的来源是什么? 5.何谓声子?试将声子的性质与光子作一个比较。 6.何谓夫伦克耳缺陷和肖脱基缺陷? 7.自由电子气体的模型的基本假设是什么? 8.绝缘体中的镜带或能隙的起因是什么? 9.试简述重要的半导体材料的晶格结构、特征。 10.超导体的基本电磁性质是什么? 作业解答: 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 解答: I. 取一个阵点做顶点,以不同方向上的平移周期a、b、c为棱长,做一个平 行六面体,这样的平行六面体叫做晶胞。由很多个晶胞结合在一起构成晶 体。 II. 在空间点阵各个点上配置一些粒子,就构成了晶格。晶格是晶体矩阵所形成的空间网状结构。在网状结构的点上配置一些结构就构成了晶体。 III. 在空间无限排列最小的结构称为原胞,原胞是构成了晶体的最小结构。2.简单阐述下列概念: 解答: I . 晶格、晶胞、晶列、晶向、晶面、晶系。 晶格:又称晶架,是指的晶体矩阵所形成的空间网状结构——说白了就是晶胞的 排列方式。把每一个晶胞抽象成一个点,连接这些点就构成了晶格。 晶胞:顾名思义,则是衡量晶体结构的最小单元。众所周知,晶体具有平移对称 性。在一个无限延伸的晶体网络中取出一个最小的结构,使其能够在空间内密铺 构成整个晶体,那么这个立体就叫做晶胞。简而言之,晶胞就是晶体平移对称的 最小单位。 晶列:沿晶格的不同方向晶体性质不同。布喇菲格子的格点可以看成分裂在一系列相 互平行的直线系上,这些直线系称为晶列。 晶向:布喇菲格子可以形成方向不同的晶列,每一个晶列定义了一个反向,称为晶向。 晶面:在晶体学中,通过晶体中原子中心的平面叫作晶面。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可 划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。 II 固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞。

固体物理学答案详细版

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100) (010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

固体物理 题库

一 名词解释 原胞 布喇菲点阵 结点 第一布里渊区 肖脱基缺陷 弗兰克尔缺陷 费米面 费米能量 费米温度 绝热近似 肖特基效应 德哈斯—范阿尔芬效应 马德隆常数 二 简答题 1. 简述Si 的晶体结构的主要特征 2. 证明面心立方的倒格子为体心立方 3. 按对称类型分类,布拉菲格子的点群类型有几种?空间群类型有几种?晶体结构的点群类型有几种?空间群类型有几种? 4. 晶体的宏观对称性中,独立的对称操作元素有那些? 5. 劳厄方程 布拉格公式 6. 固体结合的五种基本形式 7. 写出离子晶体结合能的一般表达式,求出平衡态时的离子间距。 8. 点缺陷基本类型 9. 什么是热缺陷?简述肖特基缺陷和弗仑克尔缺陷的特点。 10. 接触电势差产生的原因 11. 请用自由电子气理论解释常温下金属中电子的比热容很小的原因。 12. 简要解释作为能带理论的三个基本近似:绝热近似、单电子近似和周期场近似。 13. 简述布洛赫定理 14. 试用能带论简述导体、绝缘体、半导体中电子在能带中填充的特点 15. 为什么有的半导体霍尔系数取正值,有的取负值。 16. 自由电子气模型基本假定 17. 能带理论基本假设 三 计算题 1. 某晶体具有面心立方结构,其晶格常数为a 。 (1)写出原胞基矢。 (2)求倒格子基矢,并指出倒格子是什么类型的布喇菲格子。 2. 简单立方晶格中,每个原胞中含有一个原子,每个原子只有一个价电子,使用紧束缚近 似,只计入近邻相互作用。 1) 求出s 态组成的s 能带的E(k)函数。 2) 给出s 能带带顶和带底的位置和能量值。 3) 求电子在能带底部和顶部的有效质量。 5) 求出电子运动的速度。 3.知Si 中只含施主杂质N = 1015 cm -3 D ,求载流子浓度? 4.假设某二价元素晶体的结构是简立方点阵。试证明第一布里渊区角偶点??? ??a a a πππ,,的自由电子动能为区边中心点?? ? ??0,0,a π的三倍。 5. 金属钠是体心立方晶格,晶格常数a =3.5?,假如每一个锂原子贡献一个传导电子而构成金属自由电子气,试推导T=0K 时金属自由电子气费米能表示式,并计算出金属锂费米能。(?=1.05×10-34J ·s ,m=9.1×10-35W ·s 3/cm 2,1eV=1.6×10-19J ) 6. 平时留过的作业题

2013固体物理复习题及答案要点

固体物理卷(A ) 第一部分:名词解释(每小题5分,共40分) 1.原胞:在完整晶体中,晶格在空间的三个方向上都具有一定的周期对称性,这样可以取一个以结点为顶点,边长等于这三个方向上的周期的平行六面体作为最小的重复单元,来概括晶格的特征,这样的重复单元称为初基原胞或简称原胞。 2.晶面指数:一个晶面得取向可以由这个晶面上的任意三个不共线的点确定,如果这三个点处在不同的晶轴上,则通过有晶格常量321,,a a a 表示这些点的坐标就能标定它们所决定的晶面,它们具有相同比率的最小整数称为晶面指数 3.布拉格定律:假设入射波从晶体中的平行原子平面作镜面反射,每个平面反射很少一部分辐射,就像一个轻微镀银的镜子一样。在这种类似镜子的镜面反射中,其反射角等于入射角。当来自平行原子平面的反射发生相长干涉时,就得出衍射束。考虑间距为d 的平行晶面,入射辐射线位于纸面平面内。相邻平行晶面反射的射线行程差是2dsinx ,式中从镜面开始量度。当行程差是波长的整数倍时,来自相继平面的辐射就发生了相长干涉。 这就是布拉格定律。布拉格定律用公式表达为:2dsinx=n*λ(d 为平行原子平面的间距,λ为入射波波长,x 为入射光与晶面之夹角) ,布拉格定律的成立条件是波长小于等于2d 。 布拉格定律是晶格周期性的直接结果。 4.简述三维空间的晶系种类及其所包括的晶格类型 三斜1, 单斜2, 正交 4, 四角 2, 立方3, 三角1, 六角1。 5.布里渊区:在固体物理学中,第一布里渊区是动量空间中晶体倒易点阵的原胞。固体的能带理论中,各种电子态按照它们波矢的分类。在波矢空间中取某一倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区

固体物理学概念和习题答案

固体物理学概念和习题 答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理习题3

固体物理习题 一、 固体电子论基础 1.已知金属铯的E F =1.55eV ,求每立方厘米的铯晶体中所含的平均电子数。 2.证明:在T=0K 时,费米能级0F E 处的能态密度为:0 023)(F F E N E N =, 式中N 为金属中的自由电子数。 3.已知绝对零度时银的费米能为5.5eV ,试问在什么温度下,银的电子摩尔比热和晶格摩尔比热相等?(银的德拜温度是210K )。 4.如果具有bcc 结构的Li 晶体的晶格常数为:5.3=a ?,计算其费 米能(0F E )、费米温度及每个价电子的平均动能。 5.已知某种具有面心立方结构的金属中自由电子气的费米球半径为:a K F 3 1 20)12(π= ,其中a 为晶格参数,每个原子的原子量为63.5,晶体的质量密度为33/1094.8m kg D ?=,试求:(1)该金属的原 子价?=η(2)eV E F ?0= 6.写出三维波矢空间自由电子的量子态密度表达式。 7.费米能随着温度的变化趋势是什么? 8.电子的比热系数、费米能附近电子的能态密度以及电子的有效质量之间的关系是什么? 9.不同的导体之间接触电势差产生的根本原因是什么? 二、 金属的电导理论 1.已知金属铜的费米能,12.7eV E F =在273K 温度下电阻率 cm ?Ω?=-81058.1ρ,求(1)铜中电子的费米速度,(2)平均自由 时间τ和平均自由程Λ。 2.证明对于具有球形费米面的金属,其电导率可以表示为: ()F F F E g v e τσ2231 = 式中e 为电子电量;F v 、F τ为费米面上电子的速度和驰豫时间(或平 均自由时间);)(F E g 为费米面附近单位晶体体积的能态密度,因此

固体物理学测验题

2008级电技专业《固体物理学》测验题 一、 (40分)简要回答: 1、 什么是晶体?试简要说明晶体的基本性质。 2、 试简要说明CsCl 晶体所属的晶系、布喇菲格子类型和 结合键的类型。 3、 试用极射赤平投影图说明3(3次旋转反演轴)的作 用效果并给出其等效对称要素。 4、 什么是格波?什么是声子?声子的能量和动量各为 多少? 5、 试写出自由电子和晶体中电子的波函数。 6、 如需讨论绝缘体中电子的能谱,应采何种模型?其势 能函数有何特点? 7、 什么是禁带?出现禁带的条件是什么? 8、 固体中电子的能量和电子波矢间有何关系? 二、(10分)某晶体具有简立方结构,晶格常数为a 。试画出 该晶体的一个晶胞,并在其中标出下列晶面:(111`),(201),(123)和(110)。 三、(8分)某晶体具有面心立方结构,试求其几何结构因子 并讨论x 射线衍射时的消光规律。 四、(12分)试求晶格常数为2a 的一维布喇菲格子晶格振动 的色散关系,并由此讨论此一维晶格的比热。 五、(15分)对于六角密积结构晶体,其固体物理原胞的基矢 为: k c a j a i a a j a i a a =+-=+=321232232 试求 (1) 倒格子基矢; (2) 晶面蔟(210)的面间距; (3) 试画出以21,a a 为基矢的二维晶格的第一、第二 和第三布里渊区。 六、(15)已知一维晶体电子的能带可写为: ) 2cos 81 cos 87()(22 ka ka ma k E +-= 式中a 是晶格常数,试求: (1) 能带的宽度; (2) 电子在波矢k 态时的速度; (3) 能带底部和能带顶部附近电子的有效质量。 《固体物理学》测验参考答案 一、(40分)请简要回答下列问题: 1. 实际的晶体结构与空间点阵之间有何关系? 答:晶体结构=空间点阵+基元。 2. 什么是晶体的对称性?晶体的基本宏观对称要素有哪些? 答:晶体的对称性指晶体的结构及性质在不同方向上有规律重复的现象。描述晶体宏观对称性的基本对称要素有1、2、3、4、6、对称心i 、对称面m 和4次反轴。 3. 晶体的典型结合方式有哪几种?并简要说明各种结合方式 中吸引力的来源。 答:晶体的典型型方式有如下五种: 离子结合——吸引力来源于正、负离子间库仑引力; 共价结合——吸引力来源于形成共价键的电子对的交换作用力; 金属结合——吸引力来源于带正电的离子实与电子间的库仑引力; 分子结合——吸引力来源于范德瓦尔斯力 氢键结合——吸引力来源于裸露的氢核与负电性较强的离子间 的库仑引力。 4. 由N 个原胞所组成的复式三维晶格,每个原胞内有r 个原子,试问晶格振动时能得到多少支色散关系?其波矢的取值数和模 式的取值数各为多少? 答:共有3r 支色散关系,波矢取值数=原胞数N ,模式取值数=晶体的总自由度数。 5. 请写出自由电子和Bloch 电子的波函数表达式并说明其物理 意义。

固体物理作业知识讲解

固体物理作业

固体物理作业 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 2.简单阐述下列概念: I.晶格、晶胞、晶列、晶向、晶面、晶系。 II.固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S原胞)。 III.正格子、倒格子、布喇菲格子和复式格子。 3.晶体的重要结合类型有哪些,他们的基本特征为何? 4.为什么晶体的稳定结合需要引力外还需要排斥力?排斥力的来源是什么? 5.何谓声子?试将声子的性质与光子作一个比较。 6.何谓夫伦克耳缺陷和肖脱基缺陷? 7.自由电子气体的模型的基本假设是什么? 8.绝缘体中的镜带或能隙的起因是什么? 9.试简述重要的半导体材料的晶格结构、特征。 10.超导体的基本电磁性质是什么? 作业解答: 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 解答: I. 取一个阵点做顶点,以不同方向上的平移周期a、b、c为棱长, 做一个平行六面体,这样的平行六面体叫做晶胞。由很多个晶胞 结合在一起构成晶体。

II. 在空间点阵各个点上配置一些粒子,就构成了晶格。晶格是晶体矩阵所形成的空间网状结构。在网状结构的点上配置一些结构就 构成了晶体。 III. 在空间无限排列最小的结构称为原胞,原胞是构成了晶体的最小结构。 2.简单阐述下列概念: 解答: I . 晶格、晶胞、晶列、晶向、晶面、晶系。 晶格:又称晶架,是指的晶体矩阵所形成的空间网状结构——说白了就是晶胞的排列方式。把每一个晶胞抽象成一个点,连接这些点就构成了晶格。 晶胞:顾名思义,则是衡量晶体结构的最小单元。众所周知,晶体具有平移对称性。 在一个无限延伸的晶体网络中取出一个最小的结构,使其能够在空间内密铺构成 整个晶体,那么这个立体就叫做晶胞。简而言之,晶胞就是晶体平移对称的最小 单位。 晶列:沿晶格的不同方向晶体性质不同。布喇菲格子的格点可以看成分裂在一系列相互平行的直线系上,这些直线系称为晶列。 晶向:布喇菲格子可以形成方向不同的晶列,每一个晶列定义了一个反向,称为晶向。 晶面:在晶体学中,通过晶体中原子中心的平面叫作晶面。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。 II 固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞。 固体物理学原胞(初级原胞):如果只要求反映晶格周期性的特征(即只须概括空间三个方向上的周期大小),可取固体物理学原胞。它是晶格的最小重复单 元,结点只在顶点上,内部和面上皆不含其他结点。固体物理学原胞只含一 种原子。 结晶学原胞(惯用原胞):在结晶学中选择重复单元时,除了要考虑晶体结构的周期性外,还要反映晶体的对称性。而能够不断重复得到整个 晶格又能完整地反映晶体对称的原胞称为结晶学原胞。结晶学原胞的 结点既可以在顶角上也可以在体心或者面心处。

相关文档
最新文档