通信原理实验报告

通信原理实验报告
通信原理实验报告

通信原理实验报告

————————————————————————————————作者:————————————————————————————————日期:

通信原理实验报告

实验名称:实验一数字基带传输系统的MATLAB仿真实验二模拟信号幅度调制仿真实验

班级:10通信工程三班

学号:2010550920

姓名:彭龙龙

指导老师:王仕果

实验一 数字基带传输系统的MATLAB 仿真

一、实验目的

1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB 函数;

2、掌握连续时间和离散时间信号的MATLAB 产生;

3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;

4、掌握利用MATLAB 计算卷积的编程方法,并利用所编写的MATLAB 程序验证卷积的常用基本性质;

5、掌握MATLAB 描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB 求解系统功率谱,绘制相应曲线。

基本要求:掌握用MATLAB 描述连续时间信号和离散时间信号的方法,能够编写MATLAB 程序,实现各种常用信号的MATLAB 实现,并且以图形的方式再现各种信号的波形。

二、实验内容

1、编写MATLAB 程序产生离散随机信号

2、编写MATLAB 程序生成连续时间信号

3、编写MATLAB 程序实现常见特殊信号

三、实验原理

从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI 编码、扰码等属于码层次上的变换,而基带成形、滤波、调制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解决信号与信号系统在软件中表示的问题。 3.1 信号及系统在计算机中的表示 3.1.1 时域取样及频域取样

一般来说,任意信号s(t)是定义在时间区间(-∞,+∞)上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理(-∞,+∞)这样一个时间段。为此将把s(t)按区间,22T T ??-????

截短为s T (t),再对s T (t)按时间间隔Δt 均匀取样,得到取样点数为:

T

Nt t

=

? (3-1) 仿真时用这个样值集合来表示信号s(t)。显然Δt 反映了仿真系统对信号波形的分辨率,Δt 越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是1t ?。如果信号的最高频率为f H ,那么必须有f H ≤12t

?才能保证不发生频域混叠失真。设

1

2s B t

=

? (3-2) 则称B s 为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是Δt ,那么不能用

此仿真程序来研究带宽大于B s 的信号或系统。

此外,任意信号s(t)的频谱S(f)通常来说也是定义在时间区间(-∞,+∞)上的连续函数,所以仿真频域特性时,也必须把S(f)截短并取样。考虑到系统带宽为B s ,便把频谱的截短区间设计为[-B s , B s ]然后再按间隔Δf 均匀取样,得到取样点数为:

2s

B Nf f

=

? (3-3) 将式(3-2)代入式(3-3)得

1

Nf N t f

==

?? (3-4) 同样,信号在频域被离散后,对应到时域也是一个周期信号,其周期为

1

f

?。如果时域截短时间为T ,那么必须T ≤1/df 才能保证不发生频域混叠失真。也就是说,如果仿真程序中设定得频域采样间隔是Δf ,那么就不能仿真截短时间超过1

f

?的信号。所以,可以把频域的取样间隔设计为:

1

f T

?=

(3-5) 将式(3-5)代入式(3-1)得

1

Nt N t f

==

?? (3-6) 这样一来,时域的总取样点数及频域的总取样点数都相等,为1

N t f

=

??。要提高仿真的精度,就必须降低时域取样间隔Δt 及频域取样间隔Δf ,也就是要加大总取样点数N 。这说明仿真的精度与仿真系统的运算量直接有关。

为了处理上的方便,我们今后规定采样点数N 为2的整幂。举例来说,例如设计要求的系统带宽为1MHz ,频域最好分辨率为10kHz ,那么据此可求得2200s

B Nf f

=

=?,则取N =256。对应的其他参数为B s =1MHz ,27.8s B f kHz N

?=

=,1

128T s f μ==?,0.5T

t s N

μ?=

=。 3.1.2 频域分析

限于篇幅,在此不介绍MATLAB 中关于傅立叶变换的有关函数。为了方便仿真,我们利用MATLAB 提供的函数编写了两个函数t2f 和f2t 。t2f 的功能是做傅立叶变换,f2t 的功能是做傅立叶反变换,它们的引用格式分别为X=t2f(x)及x=f2t(X),其中x 是时域信号x(t)j 截短并采样所得的取样值矢量,X 是对x(t)的傅立叶变换X(f)截短并采样所得的取样值矢量。

这两个函数分别如附录所示。

我们关心的另一个指标是信号的功率谱密度,任意信号s(t)的功率谱的定义是

2

()

()lim T

s

T

S f

P f

T

→∞

=,其中()

T

S f是s(t)截短后所得信号()

T

s t的傅立叶变化,2

()

T

S f是

()

T

s t的能量谱,

2

()

T

S f

T

是()

T

s t在截短时间T内的功率谱。对于MATLAB仿真系统,若x是时域取样值矢量,X是对应的傅立叶变换,那么x的功率谱便为矢量(.())/

P X conj X T

=。

3.2 与随机信号产生相关的指令

3.2.1 高斯噪声的产生

由于函数randn(1,N)产生N个互不相关的、均值为零、方差为1的高斯随机数,所以可用它来产生高斯白噪声。设仿真系统的取样点数是N,系统带宽为B s,矢量0**(1,)

x n Bs randn N

=的总功率为0*

n Bs,最高频率分量为B s,并且各样点的值互不相关,故它代表双边功率谱密度为

2

n

(W/Hz)的白噪声。

3.2.2 随机码序列的产生

语句round(rand(1,M))产生M个取值1、0等概的随机码。函数round表示四舍五入。函数rand产生均匀分布于区间[0,1]的随机数。

语句sign(rand(1,M))产生M个取值±1等概的随机码。函数sign(x)对矢量x的元素取正负号,而高斯数randn取正负数的概率是相等的。

3.2.3 产生数字随机信号的一般方法

一般来说,随机数字信号可以直接或间接表示成PAM信号(请参阅通信原理教材)。PAM

信号是指所有形如∑∞

-∞

=

-

=

i

s

i

iT

t

g

a

t s)

(

)(的信号。它可以用如下的等效模型来表示:

故对所有不同的数字信号,都可以用相同的方法来产生。

1)产生随机序列矢量a

a=round(rand(1,M));

为了方便起见,一般规定a的长度M是2的整幂。

2)产生冲击序列信号imp(t)

imp=zeros(1,N);

imp(1:L:M)=a/dt;

矢量imp代表信号imp(t)。

其中,N 是imp 的矢量长度,M 是码元矢量a 中的码元数,L 是每码元内的采样点数。现规定M 、N 都是2的整幂,于是L 自然也是2的整幂。

3) 产生PAM 数字信号s(t)

)()()(t g t imp t s ?=

)(t g 代表脉冲波形,例如,升余弦滚降要求的波形有:

2

)

/2(1)

/cos(//sin )(s s s s T t a T t a T t T t t g ππππ-?=

设)(t g 的傅立叶变换为)(f G ,)(t s 的傅立叶变换为)(f S ,则有:

G imp f t f S *).(2)(= %t2f

为傅立叶变换函数

))((2)(f S t f t s = %f2t

为傅立叶反变换函数

设矢量s 代表数字信号)(t s ,矢量g 代表脉冲波形)(t g ,矢量G 代表其频谱)(f G 。

那么s 的产生方法是: s=conv(imp,g); 其中,函数conv 表示卷积。卷积后s 的长度是length(imp)+length(g)-1。扣除延迟时间及拖尾时间后,数字信号为: Ii=find(g=max(g)); s=s([1:N]+ii(1)); 也可用频域的方法产生数字信号)(t s :

s=f2t(t2f(imp).*G);

注意,此时imp 的点数应与g 或G 相同。若g 的宽度小于imp ,则应用零补齐。

3.3 信号的仿真

3.3.1 连续时间信号的仿真

如前所述,MATLAB 有很多内部数学函数可以用来产生这样的数字序列,例如sin()、cos()、exp()等函数可以直接产生一个按照正弦、余弦或指数规律变化的数字序列。 例如,运行如下程序

%program1_1

% This program is used to generate a sinusoidal signal and draw its plot clear, % Clear all variables

close all, % Close all figure windows

dt = 0.01; % Specify the step of time variable t = -2:dt:2; % Specify the interval of time x = sin(2*pi*t); % Generate the signal

plot(t,x) % Open a figure window and draw the plot of x(t) title('Sinusoidal signal x(t)')

xlabel('Time t (sec)')

在《通信原理》课程中,单位阶跃信号u(t) 和单位冲激信号δ(t) 是二个非常有用的信号。它们的定义如下:

这里分别给出相应的简单的产生单位冲激信号和单位阶跃信号的扩展函数。产生单位冲激信号的扩展函数为:

function y = delta(t)

dt = 0.01;

y = (u(t)-u(t-dt))/dt;

产生单位阶跃信号的扩展函数为:

% Unit step function

function y = u(t)

y = (t>=0); % y = 1 for t > 0,

else y = 0

请将这二个MATLAB函数分别以delta 和u为文件名保存在work文件夹中,以后,就可以像教材中的方法使用单位冲激信号δ(t) 和单位阶跃信号u(t)。

3.3.2 离散时间信号的仿真

程序Program1_2用来产生离散时间信号x[n]=sin(0.2πn)。

% Program1_2

% This program is used to generate a discrete-time sinusoidal signal and draw its plot clear, % Clear all variables

close all, % Close all figure windows

n = -10:10; % Specify the interval of time

x = sin(0.2*pi*n); % Generate the signal

stem (n,x) % Open a figure window and draw the plot of x[n]

title ('Sinusoidal signal x[n]')

xlabel ('Time index n')

请仔细阅读该程序,比较程序Program1_1和Program1_2中的不同之处,以便自己编程时能够正确使用这种方法方针连续时间信号和离散时间信号。

程序Program1_3用来仿真下面形式的离散时间信号:

x[n]={...., 0.1, 1.1, -1.2, 0, 1.3, ….}

↑n=0

% Program1_3

% This program is used to generate a discrete-time sequence

% and draw its plot

clear, % Clear all variables

close all, % Close all figure windows

n = -5:5; % Specify the interval of time, the number of points of n is 11.

x = [0, 0, 0, 0, 0.1, 1.1, -1.2, 0, 1.3, 0, 0]; % Generate the signal

stem(n,x,'.') % Open a figure window and draw the plot of x[n]

grid on,

title ('A discrete-time sequence x[n]')

xlabel ('Time index n')

由于在程序的stem(n,x,'.') 语句中加有'.'选项,因此绘制的图形中每根棒条线的顶端是一个实心点。

如果需要在序列的前后补较多的零的话,可以利用函数zeros(),其语法为zeros(1, N):圆括号中的1和N表示该函数将产生一个一行N列的矩阵,矩阵中的所有元素均为零。利用这个矩阵与序列x[n]进行组合,从而得到一个长度与n相等的向量。

例如,当x[n]={ 0.1, 1.1, -1.2, 0, 1.3} 时,为了得到程序Program1_3中的序列,

↑n=0

可以用这个MATLAB语句x = [zeros(1,4) x zeros(1, 2)] 来实现。用这种方法编写的程序如下:

% Program1_4

% This program is used to generate a discrete-time sinusoidal signal

% and draw its plot

clear, % Clear all variables

close all, % Close all figure windows

n = -5:5; % Specify the interval of time

x = [zeros(1,4), 0.1, 1.1, -1.2, 0, 1.3, zeros(1,2)]; % Generate the sequence

stem(n,x,'filled','r') % Open a figure window and draw the plot of x[n]

grid on,

四、实验步骤

(1)分析程序每条指令的作用,运行该程序,将结果保存,贴在下面的空白处。然后修改程序,将dt改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果怎样。

dt=0.01时的信号波形

dt=0.2时的信号波形

请问:上述的两幅图形有什么区别,哪一副图形看起来更接近于实际信号波形?为什么会有这种区别?

答:前者波形曲线光滑,后者曲折,第一幅图更接近于实际信号波形。

(2)修改program1_1,,存盘程序名为Q1_2,生成实指数信号x(t)=e-2t。要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。然后执行该程序,保存所的图形。

修改Program1_1后得到的程序Q1_2如下:

%program1_1

% This program is used to generate a sinusoidal signal and draw its plot clear, % Clear all variables

close all, % Close all figure windows

dt = 0.01; % Specify the step of time variable

t = -2:dt:2; % Specify the interval of time

X=exp(-2*t); % Generate the signal

plot(t,x) % Open a figure window and draw the plot of x(t) axis{[0,2,0,2]}

Grid on,

title('Sinusoidal signal x(t) 彭龙龙熊犇')

xlabel('Time t (sec)')

图形结果如下:

(3)将前文中所给的单位冲激信号和单位阶跃信号的函数文件在MA TLAB文件编辑器中编写好,并分别以文件名delta和u存入work文件夹中以便于使用。

抄写函数文件delta如下:

unction y = delta(t)

dt = 0.01;

y = (u(t)-u(t-dt))/dt;

抄写函数文件u如下:

f% Unit step function

Function y = u(t)

y = (t>=0); % y = 1 for t > 0, else y = 0

(4) 修改程序Program1_4,并以Q1_4为文件名存盘,利用axis()函数,将图形窗口的横坐标范围改为-2≤n≤5,纵坐标范围改为-1.5≤ x ≤1.5。

修改Program1_4后得到的程序Q1_4如下:

% Program1_4

% This program is used to generate a discrete-time sinusoidal signal

% and draw its plot

clear, % Clear all variables

close all, % Close all figure windows

n = -2:5; % Specify the interval of time

axis{[-2,5,-1.5,1.5]}

x = [zeros(1,4), 0.1, 1.1, -1.2, 0, 1.3, zeros(1,2)]; % Generate the sequence

stem(n,x,'filled','r') % Open a figure window and draw the plot of x[n]

grid on,

信号的波形图

(5)根据示例程序的编写方法,编写一个MATLAB程序,以Q1_5文件名存盘,给给定信号

x(t) = e-0.5t u(t)

求信号y(t)=x(1.5t+3),并绘制出x(t)和y(t)的图形。

编写的程序Q1_5如下:

% Program1_5

% This program is used to generate a discrete-time sequence

% and draw its plot

clear, % Clear all variables

close all, % Close all figure windows

t=-5:0:2:10

%y=exp(-0.5*t)*u(t);

y=exp(-0.5*(1.5*t+3))*u(1.5*t+3);

plot(t,y);

grid on

title('Sinusoidal signal x(t) penglonglong xiongben')

x(t)和y(t)的图形分别为:

(6)仔细分析附录中的PCM编码和PCM解码的子函数,分别说明两程序的编程思路。

答:求函数m(t)傅立叶变换的函数T2F有两个输入参数,两个输出参数。输入参数t 表示输入数组的时间变量,st存放输入数组,它的长度由length(t)决定;输出参数f表示输出的傅立叶变换对的频率变量,sf用来存放输出数组。

求函数m(t)傅立叶反变换的函数F2T有两个输入参数,两个输出参数。输入参数f表示输入数组的时间变量,sf存放输入数组,它的长度由length(t)决定;输出参数t表示输出的傅立叶变换对的频率变量,st用来存放反变换后的数组。

五、实验报告要求

1、按要求完整书写你所编写的全部MATLAB程序

2、详细记录实验过程中的有关信号波形图(存于自带的U盘中),图形要有明确的标题。全部的MATLAB图形应该用打印机打印,然后贴在本实验报告中的相应位置,实验报告必须手写。

3、实事求是地回答相关问题,严禁抄袭。

本实验完成时间:年月日

附录

在进行信号时域和频域特性分析时,经常要求函数的傅立叶变换和傅立叶反变换运算,为了编程的方便,可将傅立叶变换和反变换分别自定义为两个子函数,在编程时直接调用可提高编程的灵活性和方便程度。下面将这两个常用的子函数定义如下:

1.T2F子函数

求函数m(t)傅立叶变换的函数T2F有两个输入参数,两个输出参数。输入参数t表示输入数组的时间变量,st存放输入数组,它的长度由length(t)决定;输出参数f表示输出的傅立叶变换对的频率变量,sf用来存放输出数组。

T2F函数的程序如下:

function [f,sf]=T2F(t,st)

% This is a function using the FFT function to calculate a signal's Fourier

% Transiation

% Input is the time and signal vectors, the length of time must greater

% than 2

% Output is the frequency and the signal spectrum

dt=t(2)-t(1);

T=t(end);

df=1/T;

N=length(st);

f=-N/2*df:df:N/2*df-df;

sf=fft(st);

sf=T/N*fftshift(sf);

2.F2T子函数

求函数m(t)傅立叶反变换的函数F2T有两个输入参数,两个输出参数。输入参数f表示输入数组的时间变量,sf存放输入数组,它的长度由length(t)决定;输出参数t表示输出的傅立叶变换对的频率变量,st用来存放反变换后的数组。

F2T函数程序如下:

function [t,st]=F2T(f,sf)

% This function calculate the time signal using ifft function for the input

% signal's spectrum

df=f(2)-f(1);

Fmx=(f(end)-f(1)+df);

dt=1/Fmx;

N=length(sf);

T=dt*N;

%t=-T/2:dt:T/2-dt;

t=0:dt:T-dt;

sff=fftshift(sf);

st=Fmx*ifft(sff);

实验二模拟信号幅度调制仿真实验

一、实验目的

1.加深对模拟线性调制的原理与实现方法的理解;

2.掌握AM、DSB、SSB功率谱密度函数的特点,并进行对比;

3.掌握MATLAB基本指令的使用;

4.掌握MATLAB中M文件的调试以及子函数调用的方法。

二、实验内容

1.复习AM、DSB和SSB调制的相关原理

2. 编写MATLAB程序实现AM调制;

3. 编写MATLAB程序实现DSB调制;

4. 编写MATLAB程序实现SSB调制;

三、实验原理

调制是一个将信号变换成适于在信道传输的过程。由于信源的特性与信道的特性可能不匹配,直接传输可能严重影响传输质量。模拟调制针对的信源为模拟信号,常用的模拟调制有调幅、调相、调频。本次实验进行的是模拟信号的幅度调制。

幅度调制是由调制信号去控制高频载波的幅度,使之随调制信号做线性变化的过程。由于已调信号的幅度随基带信号的规律呈正比地变化,这一特点反映在频谱结构上,表现为已调信号的频谱完全是基带信号频谱在频域内的简单搬移。所以,幅度调制通常又称为线性调制。幅度调制包括AM、DSB和SSB调制。

调幅(AM)是标准调幅,也就是常规双边带调制。假设调制信号m(t)的平均值为0,将其外加一个直流偏量A0后与载波相乘,即可形成调幅信号。其时域表达式为:

S AM(t)=[A0+m(t)]cosωc t

抑制载波的双边带调制(DSB)是一种高调制效率的调制方式,其时域表达式为:

S DSB(t)= m(t)cosωc t

单边带调制(SSB)信号是将双边带信号中的一个边带滤掉而形成的。根据滤波方法的不同,产生SSB信号的方法有滤波法和相移法两种。

下面我们分别介绍这三种调制方法的仿真过程。

3.1 AM调制

假定基带信号为一个频率为1Hz、功率为1的余弦信源m(t),载波是频率为10Hz,幅值A=2的余弦信号,在用信源对载波进行常规调幅的过程中,我们应该做以下工作:

1. 产生给定的基带信号

如何产生题目要求的频率为1Hz、功率为1的余弦信号,实验一已经有了详细的介绍,并且做了相关的仿真实验。这个问题并不难解决。

唯一要注意的是,题目给定的是基带信号的功率,而没有直接给出余弦信号的幅值。因此在定义基带信号的幅值前,应先根据确知信号的幅值与功率之间关系的定义式,求出题目

要求的余弦信号的幅值Am,可知Am为2。

相关的指令为:

% 信源

close all;

clear all;

dt=0.001;

fm=1; fc=10; T=5;

t=0:dt:T;

mt=sqrt(2)*cos(2*pi*fm*t);

2. 产生给定的载波信号

如何产生题目要求的频率为10Hz ,幅值A=2的余弦信号,基于与基带信号产生同样的思路,这个问题很容易解决。相关的定义请参照1自行定义。 3. 依据调制原理进行AM 调制。

根据《通信原理》相关章节的学习,我们知道AM 调制后的已调信号可表示为:

S AM (t)=[A 0+m(t)]cos ωc t

也就是定义一个直流分流A 0与步骤1中产生的基带信号相加后,与步骤2定义的余弦信号相乘。

相关的指令如下:

%AM modulation A=2;

s_am=(A+mt).*cos(2*pi*fc*t); B=2*fm; figure(1) subplot(211); plot(t,s_am); hold on ;

plot(t,A+mt,'r--');

title('AM 调制信号及其包络'); xlabel('t');

要注意的是,为了能够用包络检波器还原出基带信号,要求AM 调制过程中,不能出现“过调幅”现象,也就是说加入的直流分量A 0的大小必须满足一定的条件。 4. 求已调信号的功率谱密度

根据确知信号功率谱求解的方法,我们知道确知信号m(t)的功率谱密度可由如下的公式求解:

2

()()G f S f =,而2()()j ft S f s t e dt π∞

--∞

=?

也就是说,先求出信号的傅立叶变换,再求出傅立叶变换函数的模的平方,即可得信号的功率谱密度。

依据该公式,可求出步骤3得到的已调信号S AM (t)的功率谱密度。相关的程序如下:

subplot(212)

[f,sf]=T2F(t,s_am); [f1,sf1]=T2F(t,A+mt); psf1=(abs(sf1).^2)/T; psf=(abs(sf).^2)/T; plot(f,psf,'r-'); hold on ;

plot(f1,psf1);

axis([-2*fc 2*fc 0 max(psf)]);

title('AM信号功率谱');

xlabel('f');

在上面的程序段中,psf是调制信号的功率谱密度,而psf1表示加上了直流的基带信号的功率谱密度。

以上便是对信号进行AM调制并进行功率谱分析的全过程,若将该过程用程序2表示,以AM.m为文件名保存,则通过改变基带信号和载波的形式,得到不同基带信号对不同形式的载波(正弦波和非正弦波)进行AM调制的信号,并能分析其频域特性。

3.2 DSB调制

假定基带信号仍然是一个频率为1Hz、功率为1的余弦信源m(t),载波是频率为10Hz,幅值A=2的余弦信号,用该基带信号对载波进行DSB调制的过程可概括为以下几步:

1. 产生给定的基带信号

题目要求的频率为1Hz、功率为1的余弦信号的产生方法参见3.1中。

同样需要注意的是,题目给定的是基带信号的功率,而没有直接给出余弦信号的幅值。因此在定义基带信号的幅值前,应先根据确知信号的幅值与功率之间关系的定义式,求出题

目要求的余弦信号的幅值Am,可知Am为2。

相关的指令为:

close all;

clear all;

dt=0.001;

fm=1;

fc=10;

T=5;

t=0:dt:T;

mt=sqrt(2)*cos(2*pi*fm*t);

2. 产生给定的载波信号

题目要求的频率为10Hz,幅值A=2的余弦信号的产生方法参见1。

3. 依据调制原理进行DSB调制。

根据《通信原理》相关章节的学习,我们知道DSB调制后的已调信号可表示为:

S DSB(t)= m(t)cosωc t

也就是将步骤1产生的基带信号与步骤2定义的余弦信号直接相乘。

相关的指令如下:

%DSB modulation

s_dsb=mt.*cos(2*pi*fc*t);

B=2*fm;

figure(1);

subplot(211);

plot(t,s_dsb);

hold on;

plot(t,mt,'r--');

title('DSB调制信号');

xlabel('t');

就可得到基带信号的DSB调制波形。

4. 求已调信号的功率谱密度

根据确知信号功率谱求解的方法,我们知道确知信号m(t)的功率谱可由如下的公式求解:

2

()()G f S f =,而2()()j ft S f s t e dt π∞

--∞

=?

也就是说,先求出信号的傅立叶变换,再求出傅立叶变换函数的模的平方,即可得信号的功率谱密度。

依据该公式,可求出步骤3得到的已调信号S DSB (t)的功率谱密度。相关的程序如下:

subplot(313)

[f,sf]=T2F(t,s_dsb); psf=(abs(sf).^2)/T; plot(f,sf);

axis([-2*fc 2*fc 0 max(psf)]); title('DSB 信号功率谱'); xlabel('f');

在上面的程序段中,psf 是调制信号的功率谱密度,而psf1表示基带信号的功率谱密度。

以上便是对信号进行DSB 调制并进行功率谱分析的全过程,若将该过程用程序2表示,存档文件名为DSB.m 的话,则通过改变基带信号和载波的形式,得到不同基带信号对不同形式的载波(正弦波和非正弦波)进行DSB 调制的信号,并能分析其频域特性。

3.3 SSB 调制

假定基带信号仍然是一个频率为1Hz 、功率为1的余弦信源m(t),载波是频率为10Hz ,幅值A=2的余弦信号,用该基带信号对载波进行SSB 调制的过程可概括为以下几步: 1. 产生给定的基带信号

题目要求的频率为1Hz 、功率为1的余弦信号的产生方法参见3.1中。

同样需要注意的是,题目给定的是基带信号的功率,而没有直接给出余弦信号的幅值。因此在定义基带信号的幅值前,应先根据确知信号的幅值与功率之间关系的定义式,求出题目要求的余弦信号的幅值Am ,可知Am 为2。

相关的指令为:

% 信源

close all ; clear all ; dt=0.001; fm=1; fc=10; T=5;

t=0:dt:T;

mt=sqrt(2)*cos(2*pi*fm*t);

2. 产生给定的载波信号

题目要求的频率为10Hz ,幅值A=2的余弦信号的产生方法参见1。 3. 用相移法产生SSB 信号

用相移法产生SSB 信号,可用以下的表达式表示:

11

?()()cos ()cos 22

SSB C C s t m t t m

t t ??=±

其中?()m

t 表示()m t 的希尔伯特变换式。 也就是说将基带信号m(t)本身乘以余弦信号本身,对基带信号进行希尔伯特变换后与

正弦信号相乘,最后将两个乘积相加即可。在MATLAB 程序设计时,先设计出希尔伯特变换函数,再按以上步骤实施,就得到了SSB 调制的程序。参考程序如下:

%SSB modulation A=2;

s_ssb=real(hilbert(mt).*exp(j*2*pi*fc*t));

%s_ssb=mt.*cos(2*pi*fc*t)/2+sqrt(2)*sin(2*pi*fm*t).*sin(2*p i*fc*t)/2; B=fm; figure(1) subplot(211); plot(t,s_ssb); hold on ;

plot(t,mt,'r--');

title('SSB 调制信号及其包络'); xlabel('t');

当然若是不熟悉希尔伯特函数hilbert 的使用,可直接将基带信号相移2π,得到正

弦信号,直接带入计算也是可以实现的。相关的程序如上被注释的程序所示:

%s_ssb=mt.*cos(2*pi*fc*t)/2+sqrt(2)*sin(2*pi*fm*t).*sin(2*pi*fc *t)/2;

4. 用滤波法进行SSB 调制。

将生成的DSB 信号送入理想低通滤波器或者理想带通滤波器,就可得到相应的下边带和上边带SSB 信号。

设计理想低通或者理想带通滤波器生成的MATLAB 程序,并利用3.2中得到的DSB 调制信号,将滤波器的传输函数h(t)与S AM (t)卷积,就得到了用滤波法生成的SSB 信号。 5. 求已调信号的功率谱密度

根据确知信号功率谱求解的方法,我们知道确知信号m(t)的功率谱可由如下的公式求解:

2

()()G f S f =,而2()()j ft S f s t e dt π∞

--∞

=?

也就是说,先求出信号的傅立叶变换,再求出傅立叶变换函数的模的平方,即可得信号的功率谱密度。

依据该公式,可求出得到的已调信号S SSB (t)的功率谱密度。相关的程序如下:

subplot(212)

[f,sf]=T2F(t,s_ssb); psf=(abs(sf).^2)/T; plot(f,psf);

axis([-2*fc 2*fc 0 max(psf)]); title('SSB 信号功率谱'); xlabel('f');

以上便是对信号进行SSB 调制并进行功率谱分析的全过程,若将该过程用程序3表示,

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验报告2

通信原理 实验报告 课程名称:通信原理 实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名: 学号: 班级: 2012年12 月

实验三二进制数字信号调制仿真实验 一、实验目的 1.加深对数字调制的原理与实现方法; 2.掌握OOK、2FSK、2PSK功率谱密度函数的求法; 3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较; 4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。 二、实验内容 1. 复习二进制数字信号幅度调制的原理 2. 编写MATLAB程序实现OOK调制; 3. 编写MATLAB程序实现2FSK调制; 4. 编写MATLAB程序实现2PSK调制; 5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。 三、实验原理 在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分为基带信号和频带信号。 通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。 调制信号为二进制数字基带信号时,对应的调制称为二进制调制。在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。 下面分别介绍以上三种调制方法的原理,及其MATLAB实现: 本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。 假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。整个过程可用如下程序段实现: %定义相关参数 clear all; close all; A=1 fc=2; %2Hz; N_sample=8; N=500; %码元数 Ts=1; %1 Baud/s dt=Ts/fc/N_sample; %波形采样间隔 t=0:dt:N*Ts-dt; Lt=length(t);

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

通信原理实验报告——xxx

通信原理 实验报告 实验名称:实验一码型变换实验 姓名:xxxx 专业班级:电信xxxxx班 学号:xxxxxxxxxxxxx 中南大学物理与电子学院 X2013年下学期 xx月xx号

码型变换实验: 一、实验目的 1、了解几种常用的数字基带信号。 2、掌握常用数字基带传输码型的编码规则。 3、掌握常用CPLD实现码型变换的方法。 二、实验内容 1、观察NRZ码、RZ码、AMI码HDB3码CMI 码BPH码的波形。 2、观察全0码或者全1码时各码型的波形。 3、观察HDB3码、AMI码的正负极性波形。 4、观察RZ码、AMI码、HDB3码、CMI码、 BPH码经过码型反变换后的输出波形。5、自行设计码型变换电路,下载并观察波 形。 三、实验器材 1、信号源模块 2、编码、译码模块 3、20M双示踪示波器 4、连接线 四、实验结果分析 1、CMI、RZ、BPH码遍解码电路观测

信号源: S1:01110010 S2:01010101 S3:00110011 CMI码: DOUT1波形:1110010 NRZ-OUT输出波形:01010101001100110111 RZ码: DOUT1:11001101

NRZ-OUT输出波形:001100110111001001 DOUT1:10111001001010101

NRZ-OUT输出波形:010110010110011 2、AMI、HDB3码编解码电路观测 S1:01110010 S2:00011000 S3:01000011 AMI码: DOUT1:

DOUT2: AMI-OUT:101001100100110111010011001

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验报告

实 验 报 告 实验名称:PAM编译码器系统 姓名: 学号: 日期: 一.实验名称:PAM编译码器系统 二、实验仪器 1、J H5001通信原理综合实验系统一台 2、20MHz双踪示波器一台

3、函数信号发生器一台 三、实验目的 1、验证抽样定理 2、观察了解PAM信号形成的过程 3、了解混迭效应形成的原因 四、实验内容 准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。 1.近似自然抽样脉冲序列测量 (1)首先将输入信号选择开关K701设置在T(测试状态)位置,将低通滤波器选择开关K702设置在F(滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200~1000Hz、输出电平为2Vp-p的测试信号送入信号测试端口J005和J006(地)。 (2)用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。 2.重建信号观测 TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信号,观测时以J005输入信号做同步。 3.平顶抽样脉冲序列测量 将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。 方法同1测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果做比较。 4.平顶抽样重建信号观测 将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。 方法同2测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果对比分析平顶抽样的测试结果。 5.信号混迭观测 (1)当输入信号频率高于4KHz(1/2抽样频率)时,重建信号将出现混迭效应。观测时,将跳线开关K702设置在NF(无输入滤波器)位置。调整函数信号发生器正

通信原理实验报告89077

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

通信原理实验报告眼图

部分响应系统 一、实验目的 1.通过实验掌握第一类部分响应系统的原理及实现方法; 2.掌握基带信号眼图的概念及绘制方法。 二、实验原理 1.部分响应系统 为了提高系统的频带利用率,减小定时误差带来的码间干扰,升余弦传输特性在这两者的选择是有矛盾的。理想低通传输特性可以有最高的频带利用率 2=s η,但拖尾的波动比较大,衰减也比较慢。若能改善这种情况,并保留系统 的带宽等于奈奎斯特带宽,就能在保证一定的传输质量前提下显著地提高传输速率。这是有实际意义的,特别是在高速大容量传输系统中。部分响应传输系统就具有这样的特点。 部分响应传输系统是通过对理想低通滤波器冲激响应的线性加权组合,来控制整个传输系统冲激响应拖尾的波动幅度和衰减。当然,这样做会引入很强的码间干扰,但这种码间干扰是可控制的,是已知的,因此很容易从接收信号的抽样值中减去。由于这种组合并不影响系统的传输带宽,因此频带利用率高。 第一类部分响应系统是在相邻的两个码元间引入码间干扰。由于理想低通系统的传递函数为 其冲激响应为s s T t T t t h //sin )(ππ= ,如果用)(t h 以及)(t h 的时延s T 的波形作为系统的 冲激响应,那么它的系统带宽肯定限制在??? ? ? ?-s s T T 21,21,也就是说,系统的频带利用率为2bit/Hz 。 接着来看系统的冲激响应函数)(t g : s s s s s s s T t T t T t T T t c T t c T t h t h t g /11 sin )(sin sin )()()(-= ?? ????-+=-+=ππππ s T f 21 ||< 其他 ???=0 )(s T f H

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

通信原理实验报告修订版

通信原理实验报告 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

学院 实验报告 课程名称: 姓名: 学号: 班级: 指导教师: 2017年6月1日

目录 实验网络和实验板简介 (3) 实验1 数字基带信号与 AMI/HDB3编译码 (4) 1.1 实验目的 (4) 1.2 基本原理 (4) 1.3 实验步骤及实验结果 (5) 1.4 实验思考题 (10) 实验2 数字调制 (12) 2.1 实验目的 (12) 2.2 实验原理 (12) 2.3 实验步骤及实验结果 (12) 2.4 实验思考题 (14) 实验3 模拟锁相环与载波同步 (15) 3.1 实验目的 (15) 3.2 实验原理 (15) 3.3 实验步骤及实验结果 (15) 3.4 实验思考题 (18) 实验4 数字解调与眼图 (18) 4.1 实验目的 (18) 4.2 实验原理 (18) 4.3 实验步骤及实验结果 (19) 4. 2FSK解调实验 (21) 4.4 实验思考题 (22) 实验5 数字锁相环与位同步 (22) 5.1 实验目的 (22) 5.2 实验原理 (22) 5.3 实验步骤及实验结果 (23) 5.4 实验思考题 (24) 实验6 帧同步 (25) 6.1 实验目的 (25) 6.2 实验原理 (25) 6.3 实验步骤及实验结果 (26) 6.4 实验思考题 (28) 实验 7 时分复用数字基带通信系统 (28) 7.1 实验目的 (28) 7.2 实验原理 (29) 7.3 实验步骤及实验结果 (30) 7.4 实验思考题 (31) 实验 8 时分复用 2DPSK、2FSK 通信系统 (31) 8.1 实验目的 (31) 8.2 实验原理 (32) 8.3 实验步骤及实验结果 (32) 8.4 实验思考题 (33)

北京邮电大学通信原理软件实验报告-28页文档资料

《通信原理软件》实验报告专业通信工程 班级 2011211118 姓名朱博文 学号 2011210511 报告日期 2013.12.20

基础实验: 第一次实验 实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)截短,按时间间隔均匀取样,仿真时用这个样值集合来表示信号 s(t)。△t反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*f,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信

号。 三、实验内容 1、方案思路: 通过改变取点频率观察示波器显示信号的变化 2、程序及其注释说明: 3、仿真波形及频谱图: Period=0.01 Period=0.3 4、实验结果分析: 以上两图区别在于示波器取点频率不同,第二幅图取点频率低于第一幅图,导致示波器在画图时第二幅图不如第一幅图平滑。 四、思考题 1.两幅图中第一幅图比第二幅图更加平滑,因为第一幅图中取样点数更 多 2.改为0.5后显示为一条直线,因为取点处函数值均为0 实验三频域仿真精度分析 一、实验目的

通信原理实验报告80352

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落 信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信 源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒, 相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道 设置如下图所示:

1.1.3实验作业 1)根据信道参数,计算信道相干带宽和相干时间。 fm=200; t=[0 4e-06 8e-06 1.2e-05]; p=[10^0 10^-0.3 10^-0.6 10^-0.9]; t2=t.^2; E1=sum(p.*t2)/sum(p); E2=sum(p.*t)/sum(p); rms=sqrt(E1-E2.^2); B=1/(2*pi*rms) T=1/fm 2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并 分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、 Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。(配合截图来分析) Impulse Response(IR)

从冲击响应可以看出,该信道有四条不同时延的路径。多径信道产生随机衰落,信道冲击响应幅值随机起伏变化。可以看出,该信道的冲激响应是多路冲激响应函数的叠加,产生严重的码间干扰。 Frequency Response(FR) 频率响应特性图不再是平坦的,体现出了多径信道的频率选择性衰落。

移动通信原理课程设计_实验报告_321321资料

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

通信原理实验报告

信息与通信工程学院通信原理硬件实验报告 指导教师:** 实验日期:2019-5-8

目录 必做: 实验一:双边带抑制载波调幅(DSB-SC AM)实验二:具有离散大载波的双边带调幅 实验三:调频(FM) 实验六:眼图 实验七:采样、判决 实验八:二进制通断键控(OOK) 实验十二:低通信号的采样与重建 选作: 实验九:二进制移频键控(2FSK) 实验十一:信号星座

实验一:双边带抑制载波调幅(DSB-SC AM) 一、实验目的 1、了解DSB-SC AM信号的产生以及相干解调的原理和实现方法。 2、了解DSB-SC AM信号波形以及振幅频谱特点,并掌握其测量方法。 3、了解在发送DSB-SC AM信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。 二、实验原理 DSB-SC AM信号的产生及相干解调原理 图2.2.1表示 DSB-SC AM信号的产生及相干解调原理框图。

将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到 DSB-SC AM信号,其频谱不包含离散的载波分量。DSB-SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,一种方法是在发送端加导频,如图2.2.1所示。收端可用锁相环来提取导频信号作为恢复载波。此锁相环必须是窄带锁相,仅用来跟踪导频信号。 在锁相环锁定时,VCO输出信号sin(2πft+ψ)与输入的导频信号 cos2πft的频率相同,但二者的相位差为(ψ+90°),其中ψ很小。锁相环中乘法器(相当于鉴相器)的两个输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到 锁相环中的LPF带宽窄,能通过分量,滤除m(t)的频率分量及四倍频载频分量。 因为ψ很小,所以sinψ≈ψ的输出亏以负反馈的方式控制VCO,使其保持在锁定状态。锁定后的VCO输出信号经90°移相后,以作为相干解调的恢复载波,它与输人的导频信号同频,几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带信号 经过低通滤波可以滤除四倍载频分量。而是直流分量,可通过隔直流电路滤除,于是输出为。 三、电路 DSB-SC AM信号的产生原理图如下图2.2.2

通信原理实验报告

验 报 告 告 实验名称:PAM编译码器系统 姓名:________________ 学号:____________ 日期:__________ .实验名称:PAM编译码器系统

、实验仪器 1、JH5001通信原理综合实验系统一台 2、20MHz双踪示波器一台 3、函数信号发生器 三、实验目的 1、验证抽样定理 2、观察了解PAMI信号形成的过程 3、了解混迭效应形成的原因 四、实验内容 准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。 1. 近似自然抽样脉冲序列测量 (1)首先将输入信号选择开关K701设置在T (测试状态)位置,将低通滤波器选择开关 K702设置在F (滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200? 1000Hz、输出电平为2Vp-p的测试信号送入信号测试端口J005和J006 (地)。 (2)用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序 列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。 2. 重建信号观测 TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信号,观测时以J005 输入信号做同步。 3. 平顶抽样脉冲序列测量 将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。 方法同 1 测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果做比较。 4. 平顶抽样重建信号观测 将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。 方法同 2 测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果对比分析平顶抽样的测试结果。

相关文档
最新文档