1 映射与函数的概念

合集下载

高等数学-映射与函数

高等数学-映射与函数
为平面上的全体点集
B ABAc
B AB A
7
二、 映射
1. 映射的概念 引例1.
某校学生的集合
学号的集合
按一定规则查号
某教室座位
某班学生的集合
的集合
按一定规则入座
8
引例2.
引例3.
(点集) (点集)
向 y 轴投影
9
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f , 使得
有唯一确定的
引例2
11
例1. 海伦公式
(满射)
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有 r
(满射)
12
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
名称. 例如,
X (≠ ) f Y (数集)
f
X (≠ )
X
X (数集 或点集 ) f R
f 称为X 上的泛函 f 称为X 上的变换
f 称为定义在 X 上的为函数
13
2. 逆映射与复合映射 (1) 逆映射的定义 定义: 若映射
使
为单射, 则存在一新映射 其中
称此映射 f 1为 f 的逆映射 . 习惯上 , y f (x), x D D
f
f 1
f (D)
的逆映射记成
y f 1(x) , x f (D)
元素 a 不属于集合 M , 记作 a M ( 或 a M ) . M *表示 M 中排除 0 的集 ;
注: M 为数集
M 表示 M 中排除 0 与负数的集 .
3
表示法:
(1) 列举法:按某种方式列出集合中的全体元素 .

映射与函数知识点总结

映射与函数知识点总结

映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。

对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。

记作f:A→B。

2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。

对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。

记作f:A→B。

3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。

二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。

换句话说,每个元素a∈A都对应着集合B中唯一的元素。

2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。

3.双射:即同时满足单射和满射的函数,也称为一一映射。

4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。

5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。

这样的函数g称为函数f的反函数。

三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。

通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。

2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。

大一高数知识点映射与函数

大一高数知识点映射与函数

大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。

在这篇文章中,我们将重点讨论高数中的映射与函数。

一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。

在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。

映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。

映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。

即不同的元素在映射中有不同的对应元素。

2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。

即每一个元素都有对应的映射元素。

3. 一一映射:即又是单射又是满射的映射。

二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。

函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。

函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。

2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。

3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。

4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。

5. 对称性:函数是否具有关于某个轴的对称性。

三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。

下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。

2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。

3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。

4. 三角函数:包括正弦函数、余弦函数和正切函数等。

5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。

函数、映射的概念

函数、映射的概念

函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。

(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。

2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。

显然值域是集合B的子集。

3、构成函数的三要素:定义域,值域,对应法则。

值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。

注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。

•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。

1-1 映射与函数

1-1 映射与函数

例: f ( x ) x 2 在[0, )上单调增加
在 ( , 0]上单调减少 在 ( , )上不是单调的
函数的几种特性
3.函数的奇偶性
设函数f (x) 的定义域D关于原点对称
如果对于任一 x D, f ( x ) f ( x )恒成立
那么称函数f (x)为偶函数
四则运算
函 数
构造 复合映射
构造
基本初等函数
基本初等函数与初等函数
基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 初等函数 由常数和基本初等函数经过有限次四则运算和有限次
的函数复合步骤所构成并可用一个式子表示的函数
否则称为非初等函数
概念
概念 初等函数
逆映射
集 合 区 邻 间 域
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射 若对X中任意两个不同的元素
则称f为X到Y的单射 若映射 f 既是满射又是单射, 则称 f 为一一映射或双射. X f
它们的像
逆映射 若f 是从X到Y的单射,可定义一个从 对每个 规定
到X的新映射g
这x满足
这个映射g称为f的逆映射,记作 注 (1) 只有单射才存在逆映射 (2) 逆映射
1 y f ( x ), x f ( D) y f ( x ), x D 的反函数记成 一般地,
注 (1) f 在D上单调增加(减少),f 1 必定存在
1 且 f 在f (D)上也单调增加(减少)
(2) 函数y=f (x)与其反函数 y f 1 ( x ) 的图形 关于直线y=x对称
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D

《高等数学》第一节:映射与函数

《高等数学》第一节:映射与函数
[1,1] [ 0, ]
[

, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x

2


2
0

2
x
| arctanx |
定义域 (,)

2

2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos

,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!

高三数学第1篇

高三数学第1篇

余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.
首页
上页
下页
末页
第一篇 第1章


自 主 整
《 走


思 想
(3)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是
高 考

方 法
指 满 足 a≤g(x)≤b 的 x 的 取 值 范 围 ; 已 知 f[g(x)] 的 定 义 域 是
第一篇 第1章


自 主 整
《 走



思 想
考 》















B
讲 练

·








首页
上页
下页
末页
第一篇 第1章


自 主 整
《 走




重点难点

考 》


法 点
重点:①映射与函数的概念.
考 总



课 堂
②函数的定义域、值域及求法.
人 教

例 讲 练
③分段函数.
B
习 人


典 例
数,记为y=f(x).
B
讲 练

(2)近代定义:函数是由一个 非空数集 到另一个 非空 数
·
课 堂
数集的映射.



训 练
(3)函数的表示法有:解析法、列表法、图象法.

高数课件-映射与函数

高数课件-映射与函数

义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射

主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档