大修航空发动机涡轮叶片的检修技术通用版

大修航空发动机涡轮叶片的检修技术通用版
大修航空发动机涡轮叶片的检修技术通用版

解决方案编号:YTO-FS-PD367

大修航空发动机涡轮叶片的检修技术

通用版

The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation.

标准/ 权威/ 规范/ 实用

Authoritative And Practical Standards

大修航空发动机涡轮叶片的检修技

术通用版

使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。

介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。

涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。

1.修理前的处理与检测

涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术

手段。

1.1清洗

由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。

1.2无损检测

在修理前,使用先进的检测仪器对叶片的叶型完整性和内部结构进行检测,以评估磨损、烧熔、腐蚀、掉块、裂纹、积炭和散热孔堵塞等损伤缺陷情况,从而指导叶片的具体修理工艺。

目前,CT已经成为适用于测量涡轮叶片壁厚和内部裂纹的主要方法。一台CT机由X辐射源和专用计算机组成。检测时,辐射源以扇形释放光子,通过被检叶片后被探测器采集。其光子量和密度被综合后,产生一幅二维层析X 光照片,即物体的截面图,从中分析叶片内部组织结构,得出裂纹的准确位置及尺度。连续拍摄物体的二维扫描,可生成数字化三维扫描图,用于检测整个叶片的缺陷,还可检测空心叶片冷却通道的情况。CT可探测到10-2mm 级的裂纹。

1.3叶型的精确检测

目前,在坐标测量机(CMM)的基础上,编制微机控制自动检测所用的应用软件,发展研制了检测涡轮叶片的叶身几何形状的坐标测量系统(CMMS),可自动检测叶身的几何形状,并与标准叶型比较;自动给出偏差检测结果,来判断叶片的可用度和所需采用的修理手段。

不同CMMS制造商所采用的测量方法有所不同,但都有以下共同点:自动化程度高;检测速度快,通常一个叶片在1分钟内检测完毕;检测结果精度高;软件扩充性好,只要修改标准叶型数据库就可以适用不同型号的叶片的检测。

2.叶片修理技术

采用先进的叶片修理技术,修复叶片表面以及内部的缺陷,恢复甚至增强其原有的性能等,这都将大大降低发动机的寿命周期费用,有效提高其经济性。目前国内外在涡轮叶片修理中所应用的工艺和技术主要有以下几种。

2.1表面损伤的修理

如果经检验,叶片表面的微小裂纹或者由烧蚀、腐蚀所导致的缺陷尺度在允许修理范围内,则对其进行修补。目前先进的修补方法有以下几种。

一是活化扩散愈合法。其原理及工艺特点是借助低熔点焊接合金把高温合金粉末"注入"裂纹中,通过液相烧结使

焊接合金同时向高温合金粉末和基体金属中扩散,从而使裂纹得到愈合。

另外一种方法是激光熔覆,是利用一定功率密度的激光束照射(扫描)覆于裂纹、缺陷处的合金粉末,使之完全融化,而基材金属表层微熔,冷凝后在基材表面形成一个低稀释度的包覆层,从而弥合裂纹及缺陷。

2.2叶顶的修复

对于叶片受损(主要是磨损、腐蚀和硫化)的顶部,可用等离子电弧焊及钨极惰性气体保护焊来修复,即先堆焊上合适的材料,再磨削到所要求的叶片高度。钴基合金抗热腐蚀性能好,是一种合适的堆焊材料。经验表明,René142合金结合此工艺修复的叶片具有良好的结构完整性。除焊修外,低压等离子喷涂McrAlY涂层,已成功地用于修复叶片的顶部了,涂层厚度为2.03mm。

2.3热静压

热静压是将叶片保持在1000~1200℃温度和100~200MPa压力的热等压条件下,可用于以下目的修复:

①消除焊后存在于金属中的内应力;

②冶金成分退化修复,涡轮叶片在工作过程中会沿晶界出现脆生相,将降低叶片的塑性和强度,热静压固溶处理可有效恢复叶片结构的退化情况;

③低循环疲劳的修复;

④蠕变损坏的修复。

热静压可恢复叶片原有的强度极限和延伸率,延长蠕变断裂寿命。

2.4喷丸强化

喷丸是以高速弹丸流撞击受喷工件表面,在受喷材料的再结晶温度下进行的一种冷加工方法。叶片喷丸强化可提高抗疲劳和抗应力腐蚀性能。它是利用高速弹丸在撞击叶片时,叶片表面迅速伸长,从而引起表层材料在一定深度范围内的塑性流动塑性变形。变形层的深度取决于弹丸撞击程度和工件材料的力学性能,通常变形层深度可达0.12mm~0.75mm。改变喷丸参数,也可以得到合适的变层深度。当喷丸引起叶片表层材料塑性变形时,与表层相邻的次表层材料也将由于表层变形而变形。但与表层相比较,次表层的变形程度较小,未达到该材料屈服点而保持弹性变形状态,因此,表层与次表层的这种不均匀塑性变形,能引起材料受喷后的残余应力场(即应力分布)的改变。试验表明,喷丸后表层呈现残余压缩应力,而在一定深度的次表层则为拉伸应力。表层的残余压缩应力可比次表层的拉伸应力高达数倍。这种残余应力分步模式很有利于疲劳强度和抗应力腐蚀性能的提高。

2.5涂层修复

许多性能先进的航空发动机涡轮叶片已应用涂层技术提高其抗氧化、抗腐蚀、耐磨、耐高温性能以及涡轮的气动效率,但叶片在使用过程中涂层会不同程度地缺损,因此,在叶片修理时都要对防护涂层进行修复,一般都要将原涂层剥落,重新涂覆新的涂层。另外,原没有涂层的涡轮叶片,也可以在叶片基体表面涂覆防护涂层,以提高叶片的工作可靠性和使用寿命。目前,涡轮叶片所应用的涂层种类主要有抗氧化耐腐蚀涂层、MCrAlY金属基陶瓷热障涂层、耐磨涂层主要用于叶冠和叶根、封严涂层等,所采用的涂层制备工艺主要有以下几种。

①扩散渗金属法:将某种防腐蚀金属的化学成分在高温下从填充物中释放,转移到部件上并扩散到里面,形成部件防腐的致密层。

②热喷涂工艺:采用气体、液体燃料或电弧、等离子弧作热源,将金属、合金、金属陶瓷、氧化物、碳化物等喷涂材料加热到熔融或半熔融状态,通过高速气流使其雾化、喷射沉积到工件表面而形成附着牢固的表层的方法。

③物理沉积工艺及化学相沉积工艺:通过金属或化学成分的蒸气相迁移到基体金属表面。此工艺受到工装设备的限制,应用较少。

由于涡轮叶片工作环境恶劣、合金材料价格贵,其机

械状态检测和修理受到航空动力界更多的重视。多年的实践表明,先进的修理技术在航空发动机涡轮叶片的维修中的广泛应用,在很大程度上有效提高了发动机的航线工作可靠性,降低了全寿命费用。当然,采用何种检测技术及修理工艺,也要充分考虑维修的经济性,因此,工艺复杂的维修技术一般只用于合金材料昂贵、制造工艺难度大的叶片。

目前,在我国,航空发动机涡轮叶片的机上孔探检查已广泛使用,但叶片的先进的修理技术应用不多,这与我国自己制造的发动机叶片材料并不十分昂贵有关。但随着新型高性能的发动机研制生产,也将采用先进的涡轮叶片材料和制造工艺,这会使涡轮叶片的造价大幅增加。因此,对于国产航空发动机来说,涡轮叶片精确检测与先进修理技术也有着非常广阔的应用前景。

该位置可输入公司/组织对应的名字地址

The Name Of The Organization Can Be Entered In This Location

汽车发动机机械系统检修内容简介、

内容简介 本书为任驱动的项目式教材,内容包括认识汽车、发动机的基本知识、曲柄连杆机构的 构造与维修、配气机构的构造与维修、冷却系的构造与维修、润滑系的构造与维修、汽油 机燃料供给系统构造与维修、柴油机燃料供给系统构造与维修、发动机拆装与调试等九个 项目。 本书既可作为高职高专院校汽车检测与维修、汽车运用技术、汽车运用工程等相关专 业使用,也可供本科及相关专业师生作为教辅教材,还可供汽车维修、汽车运输等工程技 术人员自学和作为参考用书。 前言 据了解,“十二五”规划将指出中国汽车产业的发展目标和发展战略,2015年,中国将促进汽车产业与关联产业、城市交通基础设施和环境保护协调发展,从汽车制造大国转向 汽车强国。随着汽车行业的快速发展,我国对汽车专业技能人才需求量不断增大。2010年 我国汽车保有量达到8000万辆,快速增长的汽车保有量为汽车行业人才输送提供了良好的 就业平台,中国汽车行业的发展前景被称为美好的“朝阳行业”。 为适应目前高等职业技术教育的形势,中南大学出版社召集了全国20多所院校的骨干 教师于2010年10月在中南大学组织召开“高职高专汽车类“十二五”规划/精品课程教材”研讨会,确定了本套教材的编写指导思想和编写计划,并于2011年1月在湖南长沙召开本 套教材的主编会,讨论并通过了本套教材的编写大纲。 本套教材紧紧围绕职业工作需求,以就业为导向,以技能训练为中心,以培养高技能 应用型人才为目的。在编写过程中注重知识的前沿性和实用性,旨在探索“教、学、做” 一体化教学模式。 本套教材的特点: 1.教材是目前较先进的任务驱动项目式,适用于高职、技工、成人大专、本科汽车类 学生学习;以项目为引领,任务驱动为载体,按学习目标、案例引入、项目描述、项目内容、项目实施、项目考核、项目小结、复习思考题等要求进行编写。 2.教材突出实用性、新颖性,操作性,注重“项目内容”、“项目实施”、“项目考核”等内容编写,旨在引导学生在“做”中“学”。内容安排采用案例引入的方式,以激发学生的阅读兴趣,符合学生的认知规律。同时也兼顾技能抽考和技术等级考核。 3.教材编排力求图文并茂,通俗易懂,简明实用,由浅入深,深浅适度,便于读者学 习把握。 本书参加编写工作人员有:衡阳技师学院邹龙军、刘敏、邓交岳;湖南科技经贸职院彭 文武;湖北省创业技工学校李禧旺;长沙大学扬兴发;湖南交通职业技术学院马云贵、黄鹏;……………,全书由衡阳技师学院邹龙军担任主编。 限于编者的水平和经验有限,本套教材难免存在着错误和不足,敬请读者给予批评指正。 编者 2011年3月18日

航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

航空发动机维修工程

1.描述MGS-2和MSG-3的不同之处? MGS-2飞机维修大纲规定的维修要求主要是针对飞机系统单独项目的维修方式(定时、视情、监控维修方式);MGS-3飞机维修大纲规定的维修要求是针对飞机系统或分系统的维修工作(润滑/勤务,操作检查/目标检查、检查/功能测试、恢复和报废)。 MSG2:面向过程的维修 MSG2是针对维修方式的分析逻辑。人们把在波音747 项目上获得的经验应用到所有新研制的飞机上,为了做到这一点,更新了判定逻辑,删除了某些特定的747 过程信息,剩下的通用文件即为MSG2。根据MSG2方法制定的维修大纲,主要针对飞机的每类组件(系统、部件或设备)采用“从下往上”的分析方法,其分析结果是为指定的各组件确定适宜的维修方式。作为20世纪70年代制定新飞机维修大纲的指导文件,MSG2确定了三种维修工作方式,即:定时(HT)、视情(OC)和状态监控(CM)。 MSG3:面向任务的维修 MSG3是针对维修工作的分析逻辑。根据MSG3制定的维修大纲,主要针对飞机的系统/分系统的维修工作。采用“从上往下”或称“故障结果”逻辑方法,从飞机系统的最高管理层面而不是在部件层面进行故障分析,确定适合的计划维修任务,以防止故障发生和保证系统的固有可靠性水平。它所采用的“从上往下”的逻辑方法,着眼于系统功能失效时的潜在影响、确定故障的能力和故障及维修的成本。基于这个原理有效维修系统的目标是: 1、确保实现飞机固有的安全性和可靠性水平 2、当偏离发生时能恢复到固有的安全性和可靠性水平 3、能够从固有的可靠性不适合的项目中获得改进设计

2.简述系统/动力装置MSG-3分析过程包含的步骤 答:(1)重要维修项目(MSI)选择; (2)MSI的功能、故障、影响和原因分析; (3)维修工作上层分析(确定影响类别); (4)维修工作下层分析(确定维修工作); (5)确定任务间隔; (6)评估与应用; (7)反馈。

大修航空发动机涡轮叶片的检修技术示范文本

大修航空发动机涡轮叶片的检修技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大修航空发动机涡轮叶片的检修技术示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测 等预处理,以及包括表面损伤修理、叶顶修复、热静压、 喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的 航空发动机上,涡轮叶片都采用了性能优异但价格十分昂 贵的镍基和钴基高温合金材料以及复杂的制造工艺,例 如,定向凝固叶片和单晶叶片。在维修车间采用先进的修 理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿 命,减少更换叶片,可获得可观的经济收益。为了有效提 高航空发动机的工作可靠性和经济性,涡轮叶片先进的修 理技术日益受到发动机用户和修理单位的重视,并获得了

广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。 1.2无损检测 在修理前,使用先进的检测仪器对叶片的叶型完整性

航空发动机试验测试技术

航空发动机试验测试技 术 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验,一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。(3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量)所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

汽车发动机维修技术毕业论文

汽车发动机维修技术毕业论文 目录 摘要 (1) 引言 (3) 第一章发动机总成大修 (4) 第一节发动机大修的条件 (4) 1.1.1 现代发动机大修送修标准 (4) 第二节发动机大修工艺 (6) 1.2.1发动机修理工艺流程 (6) 第三节发动机大修前的准备工作 (7) 1.3.1 清洗发动机外部 (7) 1.3.2 发动机从车架上的拆卸 (7) 第四节发动机总成的维修 (9) 1.4.1发动的解体 (9) 1.4.2 发动机部主要零件检查 (12) 第五节发动机大修验收标准 (22) 第二章发动机故障诊断与分析 (23) 第一节发动机故障诊断 (24) 2.1.1 故障成因 (24) 2.1.2 汽车行驶中发动机常见故障 (26) 第二节具体维修案例 (28)

2.2.1 发动机窜烧机油的故障现象 (28) 2.2.3 排除故障的措施和方法 (30) 第三章其他故障分析 (33) 第一节发动机失速故障 (33) 第二节发动机怠速不良故障 (35) 第三节加速不良故障 (38) 第四章检测与维修时的注意事项 (41) 第一节电控发动机维修要点 (41) 第二节电控燃油系统检查要点 (42) 致谢 (43) 参考文献 (44)

引言 随着汽车行业的发展,修车技术也在随着进步。从电子产品在汽车上的应用,到现代汽车诊断设备的使用、互联网在汽车维修资讯上的应用,以及维修管理软件在汽车维修企业发挥的作用等,处处体现现代汽车维修的高科技特征。汽车维修已不再是简单的零件修复,准确无误地诊断出故障所在,是现代汽车维修的最高境界。维修工的技术也在不断进步。但拥有一套理念的发动机大修工艺流程不是每个维修工所能做到的。它代表着精湛的修车技艺和丰富的理论知识。 因此我们不仅要熟悉传统的大修工艺和以零件修复为主的作业容还要精通跨入机电一体化、检测诊断和维修一条龙的汽车发动机维修技术。本文将从传统维修工艺以及现代维修检测两个方面简单的谈一下发动机的维修技术。 所谓的传统诊断,就是不用任何的表、设备,对车辆故障进行人工诊断的方法。在汽车维修中最常用的直接诊断方法有“看、闻、听、问、试”,这些方法在国汽车维修方面积累的经验比较丰富。高级轿车保有量虽正大幅度增加,但部分维修的仪器及检测设备尚不能监测到位,给车辆故障诊断带来很大困难,以至于造成误判。因此,充分利用成熟的维修经验也是非常必要的。虽然汽车发展机电一体化越来越多,汽车维修更多是靠专用的故障诊断仪器,但一些特殊故障仍然需要经验丰富的维修技术人员靠传统维修手段来判断故障,未来的汽车维修人员不仅仅需有外语基础,电脑常识等高科技知识,同时也应具备丰富的传统维修技术。

汽车发动机技术及检修习题集

汽车发动机技术及检修习题 项目一发动机总体结构认识 一、填空题: 1.汽油发动机由“两大机构”、“五大系统” 组成,它们是、、、、、、。 2、四冲程发动机一个工作循环曲轴转周,活塞在气缸内往复行程次,进、排气门各开闭次。 3、二冲程发动机一个工作循环曲轴转周,活塞在气缸内往复行程次。 4、四冲程发动机的工作循环包括__________、_______________、________________和 ____________________。 5、往复活塞式发动机依靠机构将活塞的运动转变为曲轴的_________________运动。 6、发动机的动力性指标有、等;经济性指标主要是。 7、发动机排量即发动机工作容积,其计算公式为。 8、发动机按所用燃料的种类不同可分为两大类即___________、____________ 二、选择题 1、四冲程汽油机和四冲程柴油机比较,汽油机的压缩比比柴油机的______。 A、大 B、小 C、相等 2、增大压缩比,压缩终了时缸内压力和温度_______。 A、下降 B、不变 C、升高 3、活塞往复_____个行程完成一个工作循环的称为四冲程发动机。 A、四 B、两 C、一 4、四冲程汽油机的进气行程中,进入气缸的是________。 A、纯空气 B、汽油 C、、混合气 5、四冲程发动机的一个工作循环中,曲轴转______,进、排气门各开启____次。 A、7200、一 B、7200、两 C、3600、一 6、四冲程发动机的有效行程是指_______。 A、压缩行程 B、作功行程 C、排气行程 7、燃油消耗率最低的负荷是_______。 A、发动机大负荷时 B、发动机中等负荷时 C、发动机小负荷时 8、活塞每走一个行程,相应于曲轴转角()。 A.180° B.360° C.540° D.720° 9、对于四冲程发动机来说,发动机每完成一个工作循环曲轴旋转()。

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

汽车发动机检修习试题库

习题库 汽车发动机检修习题库 一、填空题 1.汽车的工作能力是其、、工作可靠性及安全环保性能的总称。 2.汽车故障是指汽车中的或部分地或完全地丧失了汽车原设计规定功能,使可靠性下降的现象。 3.汽车故障率随时间变化分为三个时期:、 和。 4.汽车故障按造成的后果可分为:、、和致命故障。引起车轮不平衡的主要原因有哪些?引起车轮不平衡的主要原因有哪些? 5.汽车排放污染物主要是指、和。 6.根据GB3799—83《汽车发动机大修竣工技术条件》规定:在用发动机气缸压力不得低于标准值的汽油机各缸压力差应不超过各缸平均压力的。 7.捷达发动机气缸压力正常值为KPa,各缸压力差不大于 KPa 8.汽车故障诊断是指在汽车不解体的情况下,确定汽车的状况,查明及的汽车应用技术。 9.汽车维护分为、、,此外还有季节维护、走合期维护。 10.汽车故障诊断的基本方法有诊断法和诊断法二种。 11.空气流量计或连接线路出现故障时,会使ECU不能精确地控制,造成混合气或,使发动机运转不正常,排放超标。 12.现代汽车冷却液温度传感器基本上是采用热敏电阻。 13.氧传感器的种类有式和。

14.ECU给冷却液温度传感器和进气温度传感器提供电压。 15.氧传感器的输出电压一般在V之间。工作温度在℃ 16.氧传感器损坏,将造成增大、升高。 17.常用的曲轴位置传感器和凸轮轴位置传感器有式、式和光电式三种结构形式。 18.当曲轴位置传感器产生故障时,发动机不能,运转的发动机 将。 19.霍尔式曲轴位置传感器的检测项目有:、和 的检测。 20.电控发动机造成混合器过浓的原因有:、、 工作失常等。 21.进气温度传感器损坏后会出现、等故障。 22.点火时间过早时,手摇发动机,曲轴有现象;加速时有的声响,怠速时间运转不平稳,容易熄火。 23.桑塔纳LX轿车电子点火系统,采用了点火信号传感器。 24.桑塔纳2000GSi型轿车AJR发动机点火系统采用电子控制无分电器电子点火系。当出现故障码00513(发动机转速传感器无信号),发动机将运行中将会故障。 25.尼桑(Nissan)型轿车发动机点火系统属于子控制直接点火系统,每缸设有点火控制器和点火线圈。 26.无反馈信号,ECU停止向喷油器发出喷油指令。 27.在对汽油发动机油电路综合故障进行诊断时常采用、、的诊断原则。 28.电流表指针指示放电5~7A,但不作间歇摆动,说明低压电路。 29.对大众系列轿车电控系统进行故障检测时,使用和 检测仪。

汽车发动机检修

汽车发动机检修 1.测量发动机气缸间隙以及活塞环的二个间隙并正确安装 活塞连杆组? 准备工作:塞尺一把,棉纱若干,记录纸张一张。 (1)间隙测量 1)气缸间隙测量:将活塞从气缸上部倒放入气缸中,使其边缘处于活塞位于上止点时 第一道气环所处的位置上,用塞尺在垂直于活塞销的方向测量气缸壁与活塞外圆间的间隙值。 2)活塞环边间隙的测量:将活塞环反向放入环槽内,用塞尺测量活塞环上边缘与环槽 间的间隙; 3)活塞环开口间隙的测量:将活塞环平整放入气缸内活塞位于上止点时第一道气环所 处的位置,用塞尺其开口的间隙。 (2)活塞连杆组的正确安装 1)测量所有间隙,清洁气缸壁及活塞组,并涂以清洁润滑油; 2)注意识别拆卸时的定位记号,各缸不得错乱; 3)将活塞环的开口相互错开120°-180°,并避开做功侧压力方向和活塞销方向; 4)将要安装缸的连杆轴颈转到上止点位置,将活塞顶的安装方向记号朝向规定方向, 将活塞组从气缸上部轻轻推入气缸,并用专用工具将活塞环压入活塞环槽内,用木棒或橡胶棒轻轻推至连杆大端与连杆轴颈相抵,边转动曲轴边在活塞顶持续施加推力,直至到达下止点; 5)用规定力矩,分2-3次上紧连杆大端螺栓。 注意:可以一次安装同方向的二个活塞组。 1、测量曲轴主轴承间隙、连杆轴承间隙? 准备工作:适当量程的外径千分尺一把,内径百分表量具一组,棉纱及测量油若干,合适尺寸的套筒扳手,扭力扳手一把,记录纸张一张。 (1)主轴承间隙的测量:用外径千分尺,测量曲轴主轴颈外径(在轴线方向测量二个截面,每个截面测量相互垂直的的二个方向,取其最小值),用规定力矩上紧主轴承盖后,用内径百分表测量其内径(轴线方向取二个截面,每截面测量相

航空发动机叶片CAD技术综述

航空发动机叶片CAD技术综述

pressure and high load conditions, but also with h i g h e f f i c i e n c y,s m a l l s i z e a n d l o w w e i g h t c h a r a c t e r i s t i c s. This paper introduces the major aero-engine blades CAD technology. Key Words:Aero-engine, Blades, CAD 1.引言 航空发动机是飞机的“心脏”。航空发动机研制技术复杂,投资巨大,周期长。各国航空发动机行业在突破航空发动机设计技术、材料科学技术和制造技术的同时,广泛采用CAD技术,大力推进产品的信息化。航空发动机叶片是航空燃气涡轮发动机中的关键零件,其中的高压涡轮叶片更是被誉为“现代制造业皇冠上的明珠”,不仅因为其单个产品上万美元的价值,更因其集中体现了各项性能设计要求之间的矛盾。航空发动机叶片属于功能和结构都比较复杂 的产品,既要工作在高温、高压和高负荷的条件下,又要具有高效率、小体积和低重量的特点。因此,航空发动机叶片设计问题受到行业内的重

点关注。 2.国外航空发动机CAD技术简介 2.1 GE公司 20世纪60年代后期开始了CAD技术在航空发动机研发中的应用,1980年建立了飞机发动机部门的CIMS,使生产率提高、成本降低。1985年,在发动机设计优化技术基础上,着手开发了一个用于设计优化、自动化集成优化的软件平台Engineous,将Engineous与自主研发的涡轮设计软件和非设计状态分析系统TDOD、压气机设计软件CUS等集成,在压气机和涡轮的国内已开始有关这方面的研究开发工作,但没形成系列化产品。2000年海尔集团与哈尔滨工业大学,共同组建机器人技术有限公司。2002年哈尔滨工业大学机器人研究所成功研制出智能吸尘机器人。浙江大学早在1996年之前就开始了智能吸尘机器人的研究,在路径规划算法、多传感器信息融合等技术领域取得了一定的成果。其他一些国内知名大学和自动化研究所等科研单位也陆续涉足吸尘机器人领域并先后制造出了自己的试验样机。2.2 RR公司 20世纪60年代中期,开始在叶片的设计中

汽车发动机机械检修试题

发动机部分考试题 姓名分数 一、填空题(每空1分,共20分) 1、往复活塞式点燃发动机一般由、、、 、、和组成。 2、四冲程发动机曲轴转二周,活塞在气缸里往复行程次,进、排气门各开 闭次,气缸里热能转化为机械能一次。 3、汽油机燃料供给系一般由、、、 废气排出装置等装置组成。 4、活塞销与销座及连杆小头的配合有及二种形式。 5、过量空气系数α>1,则此混合气称为混合气;当α<0.4时,混合气 太浓,火焰不能传播,发动机熄火,此α值称为。 6、发动机的冷却方式一般有和两种。 7、现代汽车发动机多采用和相结合的综合润滑方式,以满足 不同零件和部位对润滑强度的要求。 二、选择题(每题1分,共15分) 1、曲轴上的平衡重一般设在。 A、曲轴前端 B、曲轴后端 C、曲柄上 D、都可以 2、顶置式气门的气门间隙的调整部位是在。 A、挺杆上 B、推杆上 C、摇臂上 D、视车型而定 3、四冲程六缸发动机,各同名凸轮之间的相对位置夹角应当是。 A、180° B、120° C、90° D、60° 4、汽油机工作过程中,气缸内温度达最高时在。 A、进气行程 B、压缩 C、做功 D、排气 5、电子燃油供给系统在怠速时燃油压力为 A、250kpa B、300kpa C、350kpa D、无法确定 6、气缸的磨损在圆周方向上形成不规则的椭圆,其长轴在。 A、和曲轴垂直的方向上 B、和曲轴平行的方向 C、和曲轴成45°角的方向上。 D、视发动机而定 7、机油细滤器上设置低压限制阀的作用是。 A、机油泵出油压力高于一定值时,关闭通往细滤器油道 B、机油泵出油压力低于一定值时,关闭通往细滤器油道 C、使进入机油细滤器的机油保证较高压力 D、使进入机油细滤器的机油保持较低压力 8、节温器中使阀门开闭的部件是。 A、阀座 B、石蜡感应体 C、支架 D、弹簧 9、发动机冷却系统中锈蚀物和水垢积存的后果是。 A、发动机温升慢 B、热容量减少 C、发动机过热 D、发动机怠速不稳 10、现在车用汽油机的怠速额定转速比过去有所提高,其目的是。 A、可相应提高发动机的额定转速,增加功率 B、减小燃油消耗量 C、可使发动机加快热起 D、可使怠速时使用较低混合气,减小尾气污染

航空发动机试验与测试技术的发展

航空发动机试验与测试技术的发展 郭昕,蒲秋洪,宋红星,黄明镜 (中国燃气涡轮研究院,成都610500) 摘要:试验与测试技术是航空发动机预研和工程发展阶段中的主要内容。通过对国内外航空发动机试验与测试技术现状与发展趋势的分析,提出了发展我国航空发动机试验与测试技术的方向。 关键词:航空发动机:试验与测试技术;发展 1引言 1903年,美国人莱特兄弟驾驶自制的活塞式发动机作动力的“飞行者1号”飞机,完成了人类首次有动力飞行。一百年前,人类实现了飞翔的梦想,一百年后,人类拥有了整个天空。 航空发动机是飞行器的动力,对飞行器的性能、可靠性、安全性至关重要。航空大国美国、俄罗斯、英国、法国等都十分重视航空发动机的试验工作,政府研究机构拥有许多大型试验设备,各公司的研究部门,一般也都有独立的试制车间和强大的试验室。新品研制强调走一步试验一步,从部件到整机要通过设计一试制—试验的几个循环才能达到实用阶段,甚至投入使用后仍在试验,使设计的薄弱环节充分暴露,并予以改进。根据统计,国外在研制发动机过程中,地面试验和飞行试验最少需50台发动机,多则上百台才能最后定型。其中地面试验要上万小时,最高达16000小时以上,飞行试验需5000小时以上。研制总费用中,设计占10%,制造占40%,而试验要占50%。 经过半个多世纪突飞猛进的发展,航空燃气轮机技术日见成熟,要求减少和简化各种试验考核项目的压力越来越大,希望将发动机试验从传统的试验——修改——试验过程转变为模型——仿真——试验——迭代的过程。但目前地面试验仍然是发动机研制中的主要内容,而且试验考核的要求越来越严格。值得注意的是,美国新一代军用发动机研制中,在高空台上的试验时数比以前有大幅度的上升。美国历史上投资最大(达50多亿美元)的发动机预研计划——IHPTET计划(综合高性能涡轮发动机技术计划)有一个突出特点,就是强化了新技术的试验验证,新技术的验证和综合贯穿于部件、核心机和技术验证机三个阶段,这是美国航空发动机技术发展的成功经验。可见,只有重视试验研究,航空发动机技术发展才有坚实的科学基础。 发动机测试技术是航空推进技术发展的支撑性技术,它随第一代发动机研制而产生,随需求牵引和技术进步的推动而发展,已经历了半个多世纪的发展历程,已从稳态测试、动态测试向着试验——仿真一体化方向发展。

(整理)(7)航空发动机叶片.

发动机叶片 一、 发动机与飞机 1. 发动机种类 1) 涡轮喷气发动机(WP )WP5、WP6、WP7、……WP13 2) 涡轮螺桨发动机(WJ )WJ5、WJ6、WJ7 3) 涡轮风扇发动机(WS )WS9、WS10、WS11 4) 涡轮轴发动机(WZ )WZ5、WZ6、WZ8、WZ9 5) 活塞发动机(HS )HS5、HS6、HS9 2. 发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 发动机工作原理及热处理过程

工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 飞机与发动机 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的 叶片完成对气体的

压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 1.叶片为什么一定要扭 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。 发动机叶片数量统计如下(以WJ6、WS11为例)表: 1.WJ6 压气机叶片数量见表1 表1 涡轮叶片数量见表2 表2

航空发动机维修研究

航空发动机维修研究 摘要随着社会经济的不断发展,社会对于交通运输的要求也在不断提高,人们越来越追求快节奏的生活,这使得飞机在现代生活中有着非常重要的作用。对于飞机来说,最重要的一个部件就是航空发动机,这可以说是飞机的核心。对航空发动机进行必要的检查和维修工作,能够更好地保证飞机的飞行安全。 关键词航空发动机;维修;具体措施 飞机在现代的交通运输中具有重要的作用,对于提高人们的生活质量,适应快节奏的生活方式来说具有不可替代的作用,然而,在飞机飞行的过程中,会经历各种影响,这些因素可能会对飞机的发动机造成一定的影响,这会影响飞机的安全飞行,所以对航空发动机进行维修是非常重要的。 1 航空发动机在维修的过程中存在的问题 1.1 对于航空发动机维修工作不重视 航空事业是当前社会中非常重要的一项事业,对于大众日常的生活,以及一些基本物资的运输来说都具有非常重要的作用。做好航空事业的发展能够更好地促进社会的进步,满足人们日益增长的物质文化需求。在航空事業中,飞机是最重要的交通运输工具,对于飞机来说,最重要的一个部分就是飞机的发动机,这是整个飞机安全飞行的必要保障。在长时间的飞行过程中,飞机的发动机会受到多方面因素的影响,出现一定的问题,这时对于飞机发动机的维修就非常重要了,但是由于当前一些航天发动机的相关管理人员对于航天发动机的维修工作并不是很重视,这严重影响了航天发动机的维修工作,这是航天发动机维修工作中的一个重要问题[1]。 1.2 航天发动机维修管理机制不完善 航天发动机对于飞机来说是非常重要的,一旦航天发动机出现问题,将会影响整个航天飞机的安全运行。在飞机运行的过程中,发动机无时无刻不在工作,长时间的工作也会对飞机的发动机造成一定的损害,所以对于航天发动机进行必要的维修是非常重要的。但是在当前的航天发动机维修的过程中,由于相关的维修管理机制不完善,不能在发动机出现故障的第一时间内做出准确的维修判断和必要的维修措施,这使得对于航天发动机的维修工作常常出现滞后的情况,这对于航天发动机的维修工作来说影响是非常大的。维修管理机制不完善是航天发动机维修工作中的一个重要的问题。 1.3 航天发动机维修人员的专业技能不强 航天发动机在飞机的安全运行中发挥着非常重要的作用,这是飞机安全运行的一个必要保证,只有航天发动机处在正常的工作状态,才能更好地保证飞机的

航空发动机试验测试及数据管理技术研究

航空发动机试验测试及数据管理技术研究 摘要:航空发动机作为航空技术的重要研究项目是一项比较复杂的技术工艺, 它不仅仅涉及到空气动力学、工程物理学等方面的知识,更加涉及到传热传质、 机械、电子、自动化等多种科学,是一门比较复杂的综合性学科。作为一名航空 作业人员,必须要掌握多种学科的专业知识,同时还要掌握最前沿的科学技术以 便更好地指导航天事业的发展进步。 关键词:航空发动机;数据管理;测试 我国航空发动机技术经过多年的发展,取得了巨大的进步,已经积累了大量 的试验经验和测试数据,但是新时代航空发动机对测试技术提出了更高的要求, 积极推动试验测试技术的发展势在必行。 1航空发动机试验测试技术发展现状 航空发动机测试技术是航空航天技术发展的重要保障组成部分,经过半个多 世纪的快速发展,航空发动机测试技术取得了巨大的进步。数字模拟和试验仿真 技术应用于航空发动机测试,减少了试验次数,保证试验质量的同时加快了研究 进度。测试技术正在从传统的试验、修改、试验的迭代过程到建模、仿真、实验、改进的过程转变,但是目前地面测试依然是航空发动机研发的主要方式。 随着光电检测、计算机技术、电磁感应技术、传感器技术的迅猛发展,更多 的新技术被应用到航空发动机测试中,大大促进了测试技术的升级。新技术让测 试手段多样化,让以往不能实现的测试项目变为可能,主要表现在激光、薄膜传 感器、红外、超声波和射线等手段加入到试验测试。依赖于集散式的数据采集技 术发展,动态测试、测试数据库管理和信号处理技术都取得了较大的发展。数据 采集功能的强大让发动机的各项参数更加直接快速的反馈到试验者手中,通过建 立完整的信息分析系统,形成交互的一体化网络,让发动机的性能特征直观的反 应出来。 2航空发动机试验测试技术的特点 发动机是航空动力装置的重要组成部分,对飞机运行的安全性及可靠性都有 着不可忽视的重要影响,各国航天在发展的同时都将其发动机作为重点项目进行 大量的数据研究与分析,则是希望可以通过简化发动机装置来进行航空飞行的操作,这样不仅仅可以降低成本,更能在一定程度上提升系统的安全性和可操作性。一定意义上来讲航空发动机是由进气道、压气机、燃烧室等部件组成的,是一个 相对比较复杂的动力系统。所以在进行试验测试的过程中,必须做好充足的准备,从其自身性能出发,要确保各部件都要符合技术要求。 (1)综合性。不言而喻,航空发动机是一项比较复杂的系统作业,同时也是一门综合性比较强的学科。它不仅仅涉及到专业的航空技术知识,更是对流动力学、热力学、机械学等方面的研究有着更高要求,作为一名航空作业人员必须对 其进行熟练掌握。能够运用多种技术方式进行测试技术的诊断,发现问题利用科 学有效的管理方式加以解决。 (2)测试参数多样。由于航空试验测试技术是一项比较复杂的作业,所以在进行此项测试的过程中,要针对其每项数值进行科学的诊断及梳理、记录。通过 试验测试结果显示的数据能够分辨出发动机的转速、压力、气流运速等方面的问题,而不是单一的进行数据统计。 (3)测试要求高。作为测试人员要事先对航空发动机的性能有所了解,能够从温度、转速、范围等方面进行判断,甚至能够对运行中的发动机进行压力值、

相关文档
最新文档