第4讲 晶体三极管mm.
《晶体三极管》课件

晶体三极管的分类
有两种主要的晶体三极管 类型:PNP和NPN。
2. 晶体三极管的工作原理
1
简单电路
晶体三极管可以作为放大器、开关和振荡器在各种电路中发挥作用。
2
放大器电路
晶体三极管可以放大信号的幅度,使其更适合其他电路的输入。
3
开关电路
晶体三极管可以控制电流的通断,用于构建开关电路。
3. 晶体三极管的应用
5. 晶体三极管的优缺点
1 优点
小巧、高频响应、低功耗、可靠性高、成 本低。
2 缺点
温度敏感、容易受到噪声干扰、容易烧毁。
6. 结论
总结
晶体三极管是一种重要的电子元器件,广泛应用于各种电路和电子设备中。
展望
随着科技的发展,晶体三极管不断改进,将在更广泛的领域发挥作用。
《晶体三极管》PPT课件
晶体三极管是电子学中重要的元器件之一,本课件将介绍晶体三极管的结构、 工作原理、应用、特性以及优缺点,帮助您全面了解晶体三极管。
1. 介绍晶体三极管
ห้องสมุดไป่ตู้
什么是晶体三极管?
晶体三极管是一种半导体 器件,可用作放大,开关 和振荡器。
晶体三极管的结构
晶体三极管由三个不同掺 杂的半导体区域构成:发 射区,基区和集电区。
放大器
晶体三极管可用于构建各类放 大器,如音频放大器、射频放 大器等。
开关
晶体三极管可以用于构建数字 电路和模拟电路中的开关。
振荡器
晶体三极管可以作为振荡器的 关键元件,产生无线电频率信 号。
4. 晶体三极管的特性
基本参数
• 电流放大倍数 • 最大可承受电压 • 最大可承受功率
变化规律
• 输入特性曲线 • 输出特性曲线 • 电流-电压关系
晶体三极管及其应用全解

I CBO
IB
I BN
IE
(动画2-1)
① 发射区向基区注入多子
I CN
电子, 形成发射极电流 IE。
②电子到达基区后 (基区空穴运动因浓度低而忽略)
多数向 BC 结方向扩散形成 ICN。
少数与空穴复合,形成 IBN 。
基区空 穴来源
基极电源提供(IB) 集电区少子漂移(ICBO)
即:
IBN IB + ICBO IB = IBN – ICBO
2
4
10 µA IB = 0 6 u8CE /V
第14页/共57页
(3) 饱和区 uCE u BE uCB = uCE u BE 0 条件:两个结正偏 特点:IC IB
临界饱和时:uCE = uBE 深度饱和时:
iC / mA 4饱
3和 区
放大区
2
1
ICEO
O
截止区
2
4
50 µA 40 µA 30 µA 20 µA 10 µA IB = 0 6 u8CE /V
iC T2 > T1
O
iiiBBB===
00 0uCE
温度每升高 1C, (0.5 1)%。
输出特性曲线间距增大。
第17页/共57页
三、晶体三极管的工作状态
三种工作状态
判断导通还是截止:
以 NPN为 例: UBE > U(th) 则导通 UBE < U(th) 则截止
状态
放大
饱和 临界 截止
电流关系
基极 B
base
P — 基区
N
发射结 — 发射区
发射极 E emitter
C
B NPN 型 E
三极管

Q点的影响因素有很多,如电源波动、偏
置电阻的变化、管子的更换、元件的老化等等,
不过最主要的影响则是环境温度的变化。三极
管是一个对温度非常敏感的器件,随温度的变 化,三极管参数会受到影响,具体表现在以下 几个方面。
• 1.温度升高,三极管的反向电流增大
• 2.温度升高,三极管的电流放大系数β增大
• 3.温度升高,相同基极电流IB下,UBE减小,
2.2 共射放大电路
一、 放大的概念
电子学中放大的目的是将微弱的变化信号放大成
较大的信号。这里所讲的主要是电压放大电路。
电压放大电路可以用有输入口和输出口的四端网
络表示,如图。
ui
Au
uo
1、放大体现了信号对能量的控制作用,放大的信
号是变化量。
2、放大电路的负载所获得的随信号变化的能量要
比信号本身所给出的能量大得多,这个多出的
②电感视为短路
共射电路的直流通路
用图解法分析放大器的静态工作点
直流负载线 UCE=UCC–ICRC
U CC RC
ICQ
IC Q
IB UCE
与IB所决 定的那一 条输出特 性曲线的 交点就是 Q点
UCEQ UCC
2、动态分析
计算动态参数Au、Ri、Ro时必须依据交流通路。 交流通路:是指ui单独作用(UCC=0)时,电路 中交流分量流过的通路。 画交流通路时有两个要点:
有以下两种。
IC
IB A RB
V
mA C
B E
UBE
RC USC V
UC(1)输入特性曲线
它是指一定集电极和发射极电压UCE下,三极管 的基极电流IB与发射结电压UBE之间的关系曲线。实 验测得三极管的输入特性曲线如下图所示。
晶体三极管的工作原理详解

PN 结的本质:在 P 型半导体和 N 型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为 PN 结。
1、切入点:要想很自然地说明问题,就要选择恰当地切入点。
讲三极管的原理我们从二极管的原理入手讲起。
二极管的结构与原理都很简单,内部一个 PN 结具有单向导电性,如示意图B。
很明显图示二极管处于反偏状态, PN 结截止。
我们要特殊注意这里的截止状态,实际上 PN 结截止时,总是会有很小的漏电流存在,也就是说 PN 结总是存在着现象, PN 结的单向导电性并非百分之百。
为什么会浮现这种现象呢?这主要是因为PN 结反偏时,能够正向导电的多数载流子被拉向电源,使PN 结变厚,多数载流子不能再通过 PN 结承担起载流导电的功能。
所以,此时漏电流的形成主要靠的是少数载流子,是少数载流子在起导电作用。
反偏时,少数载流子在电源的作用下能够很容易地反向穿过 PN 结形成漏电流。
漏电流之所以很小,是因为少数载流子的数量太少。
很明显,此时漏电流的大小主要取决于少数载流子的数量。
如果要想人为地增加漏电流,只要想办法增加反偏时少数载流子的数量即可。
所以,如图B漏电流就会人为地增加。
其实,光敏二极管的原理就是如此。
光敏二极管与普通光敏二极管一样,它的 PN 结具有单向导电性。
因此,光敏二极管工作时应加之反向电压,如图所示。
当无光照时,电路中也有很小的反向饱和漏电流,普通为1×10-8 —1×10-9A(称为暗电流),此时相当于光敏二极管截止;光敏二极管工作在反偏状态,因为光照可以增加少数载流子的数量,于是光照就会导致反向漏电流的改变,人们就是利用这样的道理制作出了光敏二极管。
既然此时漏电流的增加是人为的,那末漏电流的增加部份也就很容易能够实现人为地控制。
2、强调一个结论:讲到这里,一定要重点地说明 PN 结正、反偏时,多数载流子和少数载流子所充当的角色及其性质。
为什么呢?这就导致了以上我们所说的结论:反偏时少数载流子反向通过 PN 结是很容易的,甚至比正偏时多数载流子正向通过 PN 结还要容易。
晶体三极管的结构、特性与参数

一、三极管的结构类型与工作原理半导体三极管又称为晶体管、三极管、双极型晶体管、BJT 。
它由2个背靠背的PN结组成,分为NPN型、PNP型。
由制造的材料又分为硅三极管、锗三极管。
NPN型三极管:c:collector 集电极;b:base 基极;e:emitter 发射极采用平面管制造工艺,在N+型底层上形成两个PN结。
工艺特点:三个区,二个结,引出三根电极杂质浓度(e区掺杂浓度最高,b区较高,c 区最低);面积大小( c区最大,e区大,b区窄)。
PNP型三极管:在P+型底层上形成两个PN结。
NPN管的工作原理:为使NPN管正常放大时的条件:射结正偏(VBE>0),集电结反偏(VCB>0)。
发射区向基区大量发射电子(多子),进入基区的电子成为基区的少子,其中小部分与基区的多子( 空穴)复合,形成IB电流,绝大部分继续向集电结扩散并达到集电结边缘。
因集电结反偏,这些少子将非常容易漂移到集电区,形成集电集电流的一部分ICN。
而基区和集电区本身的少子也要漂移到对方,形成反向饱和电流ICBO。
,,晶体管的四种工作状态:1、发射结正偏,集电结反偏:放大工作状态用在模拟电子电路2、发射结反偏,集电结反偏:截止工作状态3、发射结正偏,集电结正偏:饱和工作状态用在开关电路中4、发射结反偏,集电结正偏:倒置工作状态较少应用三种基本组态:集电极不能作为输入端,基极不能作为输出端。
1、共基组态(CB)输入:发射极端:基极公共(此处接地) 。
输出:集电极。
VBE>0,发射结正偏,VCB>0(∵VCC>VBB),集电结反偏。
所以三极管工作在放大状态。
发射极组态(CE):共集电极组态(CC):共基组态时电流关系(放大状态):,,称为共基极直流电流放大系数,0.98~0.998。
ICBO称为集电结反向饱和电流,其值很小,常可忽略。
其中穿透电流,。
当时,称为共射极直流电流放大系数, 穿透电流ICEO ,其值较小,也常可忽略。
所以有和之间的关系:共集组态时电流关系(放大状态):无论哪种组态,输入电流对输出电流都具有控制作用,因此三极管是一种电流控制器件(CCCS)。
晶体三极管_结构及放大原理

晶体三极管又称晶体管、双极型晶体管;在晶体管中有两类不同的载流子参与导电。
一、晶体管的结构和类型
1.晶体管的结构
在同一个硅片上制造出三个掺杂区域,并形成两个PN结,就形成三极管。
2.晶体管的类型
基极为P的称为NPN型,基极为N的称为PNP型。
二、晶体管的电流放大作用
晶体管的放大状态的外部条件:发射结正偏且集电结反偏。
发射结正偏:发射区的载流子可以扩散到基区
集电结反偏:基区的非平衡少子(从发射区扩散到基区的载流子)可以漂移到集电区。
如果发射结正偏,集电结也正偏,出现的情况将是发射区的载流子扩散到基区,同时集电区的载流子也漂移到基区。
1.晶体管内部载流子运动
①发射结正偏:发射区载流子向基区扩散,基区空穴向发射区漂移
②集电极反偏,非平衡少子运动:从发射区过来的载流子到达基区后,称为非平衡少子(基区是P带正电,载流子是电子,所以是非平衡少子;基区空穴虽然是多子,但是数量比较少),一方面与基区的空穴复合(少量);另一方面,由于集电极反偏,会产生非平衡少子的漂移运动,非平衡少子从基区漂移到集电极,从而产生漂移电流。
由于集电极面积非常大,所以可以产生比较大的漂移电流(到达基区的载流子,由于集电极反偏,所以对基区的非平衡少子有吸引,集电极带正电,非平衡少子带负电)
③集电极反偏,少子漂移电流:由于集电结反偏,处于基区的少子(电子)会漂移运到到集电区;集电区的少子(空穴)会漂移运动到基区
2.晶体管中的电流分关系
三、共射电路放大系数
1.直流放大系数:放大系数:I c=(1+β)I B
2.交流放大系数:直流电流放大系数可以代替交流电流放大系数
四、结语
希望本文对大家能够有所帮助。
晶体三极管详细说明

晶体三极管晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
目录[隐藏]∙ 1 工作原理∙ 2 主要作用∙ 3 主要参数∙ 4 特性曲线∙ 5 产品检测∙ 6 工作状态∙7 产品分类∙8 主要类别∙9 基极判别∙10 判断口诀∙11 基本放大电路∙12 判断好坏∙13 主要特点∙14 判断故障∙15 注意事项∙16 产品展示∙17 相关词条18 参考资料晶体三极管-工作原理晶体三极管晶体三极管(以下简称三极管)按材料分有两种:储管和硅管。
而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
NPN管它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN 结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β=△Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
模拟电子技术1.3晶体三极管.ppt

∴输入特性曲线不再明显右移
而基本重合。 对于小功率管,可用的任何 一条UCE>1曲线来近似UCE>1 的所有曲线。
共射接法输入特性曲线
2、输出特性曲线
iC f (uCE ) iB常数
①UCE增大 集电结电场增强,收集基区非平衡少子的能力增强, 电流iC随UCE增大而增大。
③U(BR)CEO:基极开路时集、射间的击穿电压。
几个击穿电压在大小上有如下关系:
U(BR)CBO>U(BR)CEO>U(BR) EBO
例1:在一个单管放大电路中,电源电压为30V,已知三只管子的 参数如下表,请选用一只管子,并简述理由。
晶体管参数
T1
T2
T3
ICBO/μA
0.01
0.1
0.05
UCEO/V
IC
IB
输入交流信号时,共射交流电流放大系数β
在近似分析中,
iC
iB
共基直流电流放大系数
I CN
IE
共基交流电流放大系数α
ic
iE
在近似分析中,
例:现测得放大电路中两只管子的两个电极的电流如下图所 示,分别求出另一电极的电流,标出其实际方向,并在圆圈 中画出管子,且分别求出电流放大系数β。
VBB 1V , Rb 500 ,T工作在何种状态?
IB 0.6mA, IC 30mA,UCE 18V U B
从外部看: I E I B IC IE发射极电流最大
C IC B
IB E IE
NPN型三极管
C
B
IC
IB E IE
PNP型三极管
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (1)截止区;其特征是发射结电压小于开启电压 UON, 且集电结反向偏置。即对于共射电路,Ube小于UON且uCE 大于Ube。此时 IB=0,而ic小于ICEO。小功率硅管的ICEO 在 1µ A 以下,锗管的 ICEO 小于几十微安。因此在近似分 析中可以认为晶体管截止时的。
• ( 2 )放大区:其特征是发射结正向偏置( UBE 大于发 射结开启电压 UON )且集电结反向偏置,即 uCE>uBE 。 IC =ß IB,表现出电流控制作用。 • (3)饱和区:其特征是发射结与集电结均处于正向偏 置,即对于共射电路ube>UON 且uce<uBE 。不存在电流放 大作用。Ic随uCE增大。
穿透电流
集电结反向电流
为什么基极开路集电极回 路会有穿透电流?
三、晶体管的共射输入特性和输出特性
• 1.测试电路简介
mA
RC
VCC
V
RB VBB
A
b c
V
e
NPN三极管的共射极放大电路
2.输入特性
iB f (u BE ) U CE
为什么像PN结的伏安特性?
相当于两个二极管并联。
为什么UCE增大曲线右移?
,所以
I E (1 ) I B
要使三极管能放大电流,必须使发射结正 偏,集电结反偏。
• 电流分配:
IE=IB+IC
IE-扩散运动形成的电流 IB-复合运动形成的电流 IC-漂移运动形成的电流
直流电流 放大系数
IC IB
iC iB
交流电流放大系数
I CEO (1 ) I CBO
第四讲
晶体三极管
第四讲 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
双极型三极管
• 晶体三极管中有电子和空穴参与导电,故称之为双极 型晶体管(BJT),又称半导体三极管。 1.分类
按材料分:硅管、锗管 按结构分:NPN型、PNP型 按频率分:高频管、低频管 按功率分:小功率、大功率 2.内部结构和放大的条件
eP
VC< VB<VE
发射结压降: |UBE| = 0.7(0.6)V (硅管) |UBE| = 0.2(0.3)V (锗管)
与基极电位相差|UBE|的电极为发射极。
由三个电极的电位关系确定管型。
四、温度对晶体管特性的影响
• 由于半导体材料的热敏性,晶体管的参数几乎都与温 度有关。对于电子电路,如果不能解决温度稳定性问 题,将不能使其实用,因此了解温度对晶体管参数的 影响是非常必要的。 • 一.温度对ICBO的影响
EC
E
ICE 与IBE 之比称为电流放大倍数
I CE I C I CBO IC I BE I B I CBO IB
I C I B (1 )I CBO I B I CEO
式中ICEO 称为穿透电流,其物理意义是,当基极开 路(IB=0)时,在集电极电源VCC作用下的集电极与 发射极之间形成的电流,而 ICB0 是发射极开路时, 集电结的反向饱和电流。一般情况下 I B I CBO , 1
VCES 0.3V 很小,相当于 开关闭和
点
可
变
举例说明
根据给出的各电极电位确定 放大管的管型和管脚。
C
7.5
3.5
3.2 E
1、识别管脚
B
2、判断管型
7.5>3.5>3.2
VC>VB>VE
NPN型锗管。
放大条件:发射结正偏、集电结反偏 cN cP bN bP
eN
VC> VB> VE 基极电位的大小处于中间。
NPN型硅三极管三种工作状态的特点
工作状态 偏 置 情 况 截 止
放
大
饱
和
工
发射结和集电 结均反偏
发射结正偏集 电结反偏
发射结和集电 结均正偏
作 特
集电极 电流 管压降 c、e等 效内阻
ic 0 VCEO VCC 很大,相当于 开关断开
ic = iB
ic=ics
VCC RC
VCE = VCC -icRC
对应于一个IB就有一条iC随uCE变化的曲线。
为什么uCE较小时iC随uCE变 化很大?因这时集电结电场较 弱,不能全部收集全部非平衡 少子。为什么进入放大状态曲 线几乎是横轴的平行线?此时 集电结电场足以收集大部分非 平衡少子,收集能力已不能明 显提高。
iC iBFra bibliotek放大区 截止区
iC iB
内部结构:基区很薄且掺杂少,发射区掺杂高, 集电区面积大。 外部条件:所加电源的极性应使发射结正偏、 集电结反偏。
一、晶体管的结构和符号
为什么有孔?
小功率管
中功率管
大功率管
多子浓度高
多子浓度很 低,且很薄 面积大
晶体管有三个极、三个区、两个PN结。
二、晶体管的放大原理及各级 电流关系
(发射结正偏) uBE U on 放大的条件 (集电结反偏) uCB 0,即 uCE uBE
U CE 常量
β是常数吗?什么是理想晶体管?什么情况下 ?
晶体管的三个工作区域
状态 截止 放大 饱和
uBE <Uon ≥ Uon ≥ Uon
iC ICEO βiB <βiB
uCE VCC ≥ uBE ≤ uBE
晶体管工作在放大状态时,输出回路的电流 iC几乎仅仅 决定于输入回路的电流 iB,即可将输出回路等效为电流 iB 控制的电流源iC 。
少数载 流子的 运动 因集电区面积大,在外电场作用下大 部分扩散到基区的电子漂移到集电区 因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合 因发射区多子浓度高使大量 电子从发射区扩散到基区
基区空穴 的扩散
扩散运动形成发射极电流IE,复合运动形成基极 电流IB,漂移运动形成集电极电流IC。
IC=ICE+ICBOICE
因发射区注入基区的非平衡少子一部分 越过基区和集电结形成电流iC
为什么UCE增大到一定值曲线右移 就不明显了?因集电结的电场已足够
强,非平衡少子都已收集到集电区
对于小功率晶体管,UCE大于1V的一条输入特性曲线 可以取代UCE大于1V的所有输入特性曲线。
3. 输出特性
饱和区
iC f (uCE ) I B
集电结反偏,有 少子形成的反向 电流ICBO。 B
C
ICBO
RB EB
ICE N P IBE N IE
E
从基区扩散 来的电子作 为集电结的 少子,漂移 EC 进入集电结 而被收集, 形成ICE。
IC=ICE+ICBO ICE C
IB=IBE-ICBOIBE
B
ICBO
RB EB
IB
ICE N P IBE N IE