生活中的优化问题举例(1)

合集下载

数学:1.4《生活中的优化问题举例》教案(1)(新人教A版选修2-2)

数学:1.4《生活中的优化问题举例》教案(1)(新人教A版选修2-2)

§1.4生活中的优化问题举例(2课时)教学目标:1. 使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。

2. 提高将实际问题转化为数学问题的能力。

教学重点:利用导数解决生活中的一些优化问题。

教学难点:利用导数解决生活中的一些优化问题。

教学过程:一.创设情景生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题。

二.新课讲授导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。

再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具。

利用导数解决优化问题的基本思路:三.典例分析例1.汽油的使用效率何时最高我们知道,汽油的消耗量w (单位:L )与汽车的速度v (单位:km/h )之间有一定的关系,汽油的消耗量w 是汽车速度v 的函数.根据你的生活经验,思考下面两个问题:(1) 是不是汽车的速度越快,汽车的消耗量越大?(2) “汽油的使用率最高”的含义是什么?分析:研究汽油的使用效率(单位:L/m )就是研究秋游消耗量与汽车行驶路程的比值.如果用G 表示每千米平均的汽油消耗量,那么w G s=,其中,w 表示汽油消耗量(单位:L ),s 表示汽油行驶的路程(单位:km ).这样,求“每千米路程的汽油消耗量最少”,就是求G 的最小值的问题通过大量的统计数据,并对数据进行分析、研究,人们发现,汽车在行驶过程中,汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间有如图所示的函数关系()g f v =。

生活中的优化问题举例

生活中的优化问题举例

利用导数解决优化问题的基本思路:
建立数学模型
优化问题
用函数表示的数学问题
解决数学模型
作答
优化问题解决方案
用导数解决数学问题
这是一个典型的数学建模过程
解决优化问题的一般步骤:
(1)审题 (2)建模
(3)解模
(4)回归
温馨提示:用导数解决实际问题,要特
别注意在实际问题中变量的取值范围.
课堂小结
解决优化问题的步骤:
' 当x∈(0,16)时, S x > 0; 当x∈(16,+∞) 时, S' x < 0; .因此,x=16是函数S(x)的 极小值点,也是最小值点.所以,当版心 高为16dm,宽为8dm时,能使四周空白 面积最小.
例2.饮料瓶大小对饮料公司利润的影响
某制造商制造并出售球形瓶装的某种饮料.瓶子的 制造成本是 0.8πr 2 分,其中r(单位:cm)是瓶子的半 径.已知每售出1 mL的饮料,制造商可获利0.2分,且制 造商能制作的瓶子的最大半径为6 cm.那么瓶子半径多 大时,能使每瓶饮料的利润最大和最小?
解:由于瓶子的半径为r,所以每瓶饮料的利润是
y =f
r = 0.2
4 πr 3 - 0.8πr 2 3
r3 2 = 0.8π - r , 0 < r ≤ 6. 3

f'
r
= 0.8π r 2 - 2r = 0
r 0.当r 0,2时, 当r 2,6时, f ' r 0.
0 < x < 2.5
令 V ' = 12x 2 - 52x + 40 = 0
4 x - 1 3x - 10 = 0 10 得: x1 = 1, x 2 = (舍去) 3 '

(新课标人教A版)选修1-1数学同步课件:3-4《生活中的优化问题举例》

(新课标人教A版)选修1-1数学同步课件:3-4《生活中的优化问题举例》

(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数
关系式; (2)为获最大日盈利,该厂的日产量应定为多少件?
[解析] (1)由意可知次品率 p=日产次品数/日产量,
每天生产 x 件,次品数为 xp,正品数为 x(1-p). 3x 因为次品率 p= ,当每天 x 件时, 4x+32
3x 3x 有 x· 件次品,有 x1-4x+32 件正品. 4x+32
a 时, y ′≤ 0 ; v ∈ b
a 时,y′≥0.所以 , c b
ab 当 v= b 时,全程运输成本 y 最小.
ab ②若 >c,v∈(0,c],此时 y′<0,即 y 在(0,c] b 上为减函数. 所以当 v=c 时,y 最小. 综上可知,为使全程运输成本 y 最小. ab ab ab 当 b ≤c 时,行驶速度 v= b ;当 b >c 时,行 驶速度 v=c.
答:当箱子的高为10cm,底面边长为40cm时,箱子的
体积最大,最大容积为16000cm3.
[点评] 在解决实际应用问题中,如果函数在区间内 只有一个极值点,那么只需根据实际意义判定是最大值还 是最小值.不必再与端点的函数值进行比较.
已知矩形的两个顶点位于x轴上,另两个顶点位于抛物 线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的 长和宽. [解析] 如图所示,设出AD的长,进而求出AB,表示
[例3] 某汽车生产企业上年度生产一品牌汽车的投入
成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆,
本年度为适应市场需求,计划提高产品档次,适当增加投 入成本,若每辆车投入成本增加的比例为x(0<x<1),则出 厂价相应提高的比例为0.7x,年销售量也相应增加.已知 年利润=(每辆车的出厂价-每辆车的投入成本)×年销售

生活中的优化问题举例图文

生活中的优化问题举例图文

安排休息时间
总结词
合理安排休息时间是优化健康管理的重要环节,有助于 恢复身体机能和缓解压力。
详细描述
保证充足的睡眠时间,合理安排工作和休息时间,采用 适当的放松方式,如冥想、瑜伽等,有助于恢复身体机 能和缓解压力。
总结词
创造良好的睡眠环境,保持规律的睡眠习惯,有助于提 高睡眠质量。
详细描述
保持安静、黑暗、舒适的睡眠环境,避免睡前过度兴奋 或刺激,保持规律的睡眠习惯,有助于提高睡眠质量。
自身能力范围。
制定工作计划
01
分解任务
将工作目标分解为具体的任务, 明确任务的责任人、完成时间和 所需资源。
安排时间
02
Байду номын сангаас
03
调整计划
根据任务的紧急性和重要性,合 理安排工作时间,确保任务按时 完成。
在执行过程中,根据实际情况及 时调整工作计划,以适应变化和 应对突发情况。
安排工作时间
避免过度劳累
总结词
结合日常生活和工作,灵活安排运动时间和场地,有助于 提高运动计划的可行性和持久性。
详细描述
根据个人生活和工作情况,灵活安排运动时间和场地,将 运动融入日常生活和工作中,有助于提高运动计划的可行 性和持久性。
总结词
注意运动安全,遵循正确的运动姿势和技巧,预防运动损 伤。
详细描述
在运动前进行适当的热身活动,遵循正确的运动姿势和技 巧,避免过度运动和损伤,注意运动安全。
总结词
学会放松自己,缓解压力和焦虑情绪。
详细描述
通过冥想、瑜伽、深呼吸等放松技巧来缓解压力和焦虑 情绪,学会放松自己。
THANKS
感谢观看
生活中的优化问题举例
contents

3.4生活中的优化问题举例(1)

3.4生活中的优化问题举例(1)

1dm
512 2x 8, x 0 x
128 解:设版心的高为xcm,则宽为 x dm,
2dm
此时四周空白面积为:
128 s ( x) ( x 4)( 2) 128 x 512 2x 8, x 0 x
128dm2
1dm
x + 4
求导数,有
令s '( x) 2
S '( x) 2
512 , 2 x
512 0, 解得,x=16 (x=-16舍去) 2 x 128 128 于是宽为 8 x 16 当x (0,16)时, s '( x) 0; 当x (16, )时, s '( x) 0;
因此,x=16是函数s(x)的极小值点,也是最小值点。 答:当版心高为16dm,宽为8dm时,能使四周空白面积最小。
解:设容器高为xcm,则底面边长为(30-2x)cm, 则得容器的容积V是x的函数, V(x)=(30-2x)2·x (0<x<15)
=4x3-120x2+900x. ∴V′(x)=12x2-240x+900, 令V′(x)=0,得x=5,或x=15(舍去) 当0<x<5时,V′(x)>0,当5<x<15时,V′(x)<0.
∴f ′(x)=12x2-240x+900, 令f ′(x)=0,得x=5,或x=15(舍去) 当0<x<5时,f ′(x)>0, 当5<x<15时,f ′(x)<0.
∴当x=5时,f (x)取极大值,这个极大值就是f (x)的
最大值. 注意:区间(0,30)为开区间,f (x)无最小值.
512 8, x (0, ) 的最小值。 2)求函数 f ( x) 2 x x 512 8, x (0, ) 解: f ( x) 2 x x 512 令f '( x) 2 2 0, 得:x 16( x 0) x

1.4生活中的优化问题举例

1.4生活中的优化问题举例

练习1、 一条长为l的铁丝截成两段,分别弯成两个 正方形,要使两个正方形的面积和最小, 两段铁丝的长度分别是多少?
解:设两段铁丝的长度分别为x,l-x,
其中0<x<l 则两个正方形面积和为
S
=
s1
+ s2
=( x)2 4
+( l
- x)2 4
=
1 (2x2 16
-
2lx
+
l2
)
S 1 (4x 2l) 1 (2x l)
生活中经常遇到求利润最大、用料 最省、效率最高等问题,这些问题称 为优化问题,优化问题有时也称为最 值问题.解决这些问题具有非常重要 的现实意义.
通过前面的学习,我们知道,导数是求函 数最大(小)值的有力工具,本节我们运 用导数,解决一些生活中的优化问题。
类型一:求面积、容积的最大问题
例1、海报版面尺寸的设计: 学校或班级举行活动,通常需要张贴海报进行宣传,
解:设版心的高为xdm,则版心的
1dm
m
宽 128 dm,此时四周空白面积为 2dm x
S( x) ( x 4)(128 2) 128 x
2x 512 8 ( x 0) x
S
'(
x
)
2
512 x2
2dm
S(
x)
2
x
512 x
8,S
'(
x)
2
512 x2
令S '(x) 0可解得x 1(6 x -16舍去)
V(x)=x2h=(60x2-x3)/2(0<x<60).

V(x)= 60x - 3 x2 = 0 2
,解得x=0(舍去),x=40.且

导数在生活中的优化问题举例含答案

生活中的优化问题举例1、如图所示,设铁路50=AB ,C B 、之间的距离为10, 现将货物从A 运往C ,已知单位距离铁路费用为2,公路 费用为4,问在在AB 上何处修筑公路至C ,可使运费由A 至C 最省?2、一艘轮船在航行中的燃料费和它的速度的立方成正比,已知速度为10海里/小时,燃料费每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?3、已知B A 、两地相距200km ,一条船从A 地逆水到B 地,水速为h km /8,船在静水中的速度为()08/v v h vkm ≤<,若船每小时的燃料费与其在静水中的速度的平方成正比,当h km v /12=时,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度为多少?4、已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线24x y -=在x 轴上方的曲线上,求这个矩形面积最大时的边长。

5、扇形AOB 中,半径2,1π=∠=AOB OA ,在OA 的延长线上有一动点C ,过C 点作CD 与弧AB 相切于点E ,且与过点B 所作的OB 的垂线交于点D ,问当点C在什么位置时,直角梯形OCDB 的面积最小?6、从长为32cm 、宽为20cm 的矩形薄铁板的四角剪去边长相等的正方形,做一个无盖的箱子,问剪去的正方形边长为多少时,箱子容积最大?最大容积是多少?7、某集团为了获得更大的利益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t (百万元),可增加销售额约为t t 52+-(百万元)()50≤≤t(1)、若该公司将当年广告费的投入控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)、现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x 百万元,可增加的销售额约为x x x 33123++-(百万元);请设计一个资金分配方案,使公司由此获得的收益最大。

1.4生活中的优化问题(带答案)

1。

4生活中的优化问题举例1.要制做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为() A。

错误!cm B.错误!cm C.错误!cm D.错误!cm [答案] D2.用总长为6m的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为()A.0.5m B.1m C.0。

8m D.1.5m[答案] A[解析]设容器底面相邻两边长分别为3x m、4x m,则高为错误!=错误!(m),容积V=3x·4x·错误!=18x2-84x3错误!,V′=36x-252x2,由V′=0得x=1或x=0(舍去).x∈错误!时,V′〉0,x∈错误!时,V′<0,7所以在x=错误!处,V有最大值,此时高为0。

5m。

3.内接于半径为R的球且体积最大的圆锥的高为()A.R B.2R C.错误!R D.错误!R[答案] C[解析]设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2, ∴V=错误!πr2h=错误!h(2Rh-h2)=错误!πRh2-错误!h3,V′=错误!πRh-πh2。

令V′=0得h=错误!R.当0<h〈错误!R时,V′〉0;当错误!<h〈2R时,V′〈0。

因此当h=错误!R时,圆锥体积最大.4.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f(x)=错误!x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B.错误!C.-1 D.-8[答案] C[解析]瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.5.某厂生产某种产品x件的总成本:C(x)=1 200+错误!x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.[答案]25[解析]设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=错误!。

1.4生活中的优化问题举例课件人教新课标

2.利用导数解决生活中优化问题的一般步骤是什么? 剖析:利用导数解决生活中优化问题的一般步骤如下:
重难聚焦
名师点拨1.在求实际问题的最大(小)值时,一定要考虑实际问题的 意义,不符合实际意义的值应舍去. 2.在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的 情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知 道这就是最大(小)值. 3.在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用 函数关系表示,还应确定出函数关系中自变量的定义区间.
题型一
题型二
题型三
题型四
典例透析
利润最大问题 【例3】 某分公司经销某品牌产品,每件产品的成本为3元,并且每 件产品需向总公司交a(3≤a≤5)元的管理费,估计当每件产品的售 价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L(单位:万元)与每件产品的售价x的函数关 系式; (2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出 L的最大值Q(a). 分析:(1)利用题中等量关系找出L与x的函数关系式;(2)求出(1)中函 数关系式的导函数,再利用导数求最值.
当x=140时,y=175,即当x=140,y=175时,S取得最小值24 500. 故当广告的高为140 cm,宽为175 cm时,可使矩形广告的面积最小.
题型一
题型二
题型三
题型四
典例透析
典例透析
题型一
题型二
题型三
题型四
解:(1)隔热层厚度为 x cm,
由题意知每年能源消耗费用为 C(x)= 3xk+5, 再由 C(0)=8,得 k=40,因此 C(x)= 3x4+05. 而建造费用为 C1(x)=6x.

生活中的优化问题举例

A.6 h B.8 h C.10 h D.12 h
解析:设将这批货物全部运到最快需 t 小时,依题意 t =4v00+16·2vv02=4v00+1460v0≥8.当且仅当4v00=1460v0,即 v= 100 km/h 时,最快需 8 小时,故选 B.
答案:B
4.一房地产公司有 50 套公寓要出租,当月租金定为 1000 元时,公寓会全部租出去,当月租金每增加 50 元,就会多 一套租不出去,而租出去的公寓每月需花费 100 元维修费, 则房租定为________元时可获得最大收入.
因此乙方取得最大利润的年产量 t=(10s00)2(吨).
(2)设甲方净收入为 v 元,则 v=st-0.002t2.
将 t=(10s00)2 代入上式,得到甲方净收入 v 与赔付价格 s 之间的函 数关系式 v=10s002-2×1s40003.
又 v′=-10s0202+8×1s50003=10002×s85000-s3,令 v′=0, 得 s=20. 当 s<20 时,v′>0;当 s>20 时,v′<0,所以 s=20 时,v 取得 最大值.
(3)MP(x)=-30x2+60x+3275=-30(x-1)2+3305.所 以,当 x≥1 时,MP(x)单调递减,所以单调减区间为[1,19], 且 x∈N*,单调递减的实际意义是:随着产量的增加,每艘 船的利润与前一艘比较,利润在减少.
费用最省问题 例 2 某单位用木料制作如图所示的框架,框架的下部 是边长分别为 x、y(单位:m)的矩形,上部是等腰直角三角 形,要求框架围成的总面积为 8 m2,问 x、y 分别为多少时 用料最省(精确到 0.001 m)?
因此甲方向乙方要求赔付价格 s=20(元/吨)时,获最大净收入.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 生活中的优化问题(一)
教学目标:掌握利用导数求函数最大值和最小值的方法.会求
一些实际问题(一般指单峰函数)的最大值和最小值.-------面积、容积最大(最小)问题
教学重点:利用导数求函数最值的方法.用导数方法求函数最值的方法步骤
教学难点:对最值的理解及与极值概念的区别与联系.求一些
实际问题的最大值与最小值
教学过程:
例 1 在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 解:设箱底边长为x cm ,则箱高,260x h -=
箱子容积h x x V 2)(=26032x x -=(0<x <60).
22360)('x x x V -=,02
360)('2=-=x x x V 令 解得 0=x (不合题意,舍去) ,40=x 并求得 .00016)40(=V 由题意知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值.
答:当x =40 cm 时,箱子容积最大,最大容积是16 000cm 3.
在实际问题中,有时会遇到函数在区间内只有一个点使
f '(x)=0 的情形,若函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.
这里所说的也适用于开区间或者无穷区间.
求最大(最小)值应用题的一般方法:
⑴分析问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式;
⑵确定函数的定义域,并求出极值点;
⑶比较各极值与定义域端点函数的大小,结合实际,确定最值或最值点.
练习
1.把长为60 cm的铁丝围成矩形,长、宽、高各为多少时,面积最大?
2.把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之和最小?
变为:围成一个正方形与一个圆,怎样分法,能使面积之和最小?
练习2.用总长为14.8 m的钢条制作一个长方形容器的框架,如果所制作容器的底面的一边比另一边长0.5 m,那么高为多少时容器的容积最大?并求出它的最大容积.
例2.教材P34的例1。

课后作业。

相关文档
最新文档