【典型题】高三数学下期末试题(附答案)(5)
新高三数学下期末试卷含答案

新高三数学下期末试卷含答案一、选择题1.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种2.函数()ln f x x x =的大致图像为 ( )A .B .C .D .3.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确4.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁5.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定6.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .3247.设0<a <1,则随机变量X 的分布列是Xa 1 P13 1313则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大8.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.259.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 10.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-11.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π12.在△ABC 中,AB=2,AC=3,1AB BC ⋅=u u u r u u u r则BC=______ A .3B .7C .2D .23二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.若过点()2,0M 且斜率为3的直线与抛物线()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =v u u u v,则a =____.15.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.16.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.17.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.18.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)19.若45100a b ==,则122()a b+=_____________.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.22.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC . 23.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,xm m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.24.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 25.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由. 26.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).2.A解析:A 【解析】 【分析】 【详解】∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方 ∴可以排除B 答案 考点:函数图像.3.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .4.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.5.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.6.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算7.D解析:D 【解析】 【分析】利用方差公式结合二次函数的单调性可得结论; 【详解】解:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<Q ,()D X ∴先减小后增大 故选:D .【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.8.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.9.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数10.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 11.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得3x =∴外接球的半径为3233R ==;∴三棱锥外接球的表面积为223164(33S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.12.A解析:A 【解析】 【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=u u u r u u u r Q|BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A 的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A 点坐标为因 解析:8【解析】 【分析】由直线方程为2)y x =-与准线:al x 4=-得出点B 坐标,再由BM MA u u u u v u u u v =可得,点M 为线段AB 的中点,由此求出点A 的坐标,代入抛物线方程得出a 的值.【详解】解:抛物线()2:0C y ax a =>的准线方程为:a l x 4=-过点()2,0M2)y x =-,联立方程组2)4y x a x ⎧=-⎪⎨=-⎪⎩,解得,交点B坐标为)(,)a a 844+-, 设A 点坐标为00(,)x y , 因为BM MA u u u u v u u u v=,所以点M 为线段AB 的中点,所以00()4428)402a x a y ⎧+-⎪=⎪⎪⎨+⎪+⎪=⎪⎩,解得(a A 44+,将)()a a 8A 444++代入抛物线方程,即))()2a 8aa 444+=+, 因为0a >, 解得8a =. 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.15.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】 【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。
最新高三数学下期末试题及答案

最新高三数学下期末试题及答案一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16 C .1112D .25243.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =c =( )A .3B .2C 2D .14.已知向量)3,1a =r ,b r 是不平行于x 轴的单位向量,且3a b ⋅=r r b =r( )A .31,22⎛⎫⎪⎪⎝⎭B .13,22⎛⎫⎪⎪⎝⎭ C .133,44⎛⎫⎪⎪⎝⎭D .()1,05.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 6.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨 D .t 的值是3.157.渐近线方程为0x y ±=的双曲线的离心率是( ) A .2B .1C .2D .28.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .9.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.2510.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与BB .B 与CC .A 与DD .C 与D11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 12.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m αP ,m n ⊥,则n α⊥; ②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42a A =,且C 为锐角,则ABC ∆面积的最大值为________.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.18.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.19.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.20.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .三、解答题21.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22xxf x =⋅的最大值和最小值. 23.如图:在ABC ∆中,10a =,4c =,5cos 5C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.24.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.25.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B .26.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可.【详解】 解:由()xln x f x =e ,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 3.B解析:B 【解析】1sin A ===cos A =,所以222122c c =+-,整理得2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.4.B解析:B 【解析】 【分析】设()(),0b x y y =≠r,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b r的坐标. 【详解】设(),b x y =r ,其中0y ≠,则a y b ⋅=+=r r由题意得2210x y y y ⎧+=+=≠⎪⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩1,22b ⎛= ⎝⎭r . 故选:B. 【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.5.B解析:B 【解析】 【分析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .7.C解析:C 【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c =则该双曲线的离心率为 e ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.8.D解析:D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.9.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.10.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.11.B解析:B 【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a \=,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B.12.A解析:A 【解析】 【分析】根据空间中点、线、面位置关系,逐项判断即可.【详解】①若m αP ,m n ⊥,则n 与α位置关系不确定;②若n αP ,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m P β,n β⊂,n αP 时,平面α,β平行; ④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题. 综上,为真命题的是②③④. 故选A 【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.二、填空题13.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.14.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .15.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主解析:4+【解析】 【分析】由4c =,a A =,利用正弦定理求得4C π=.,再由余弦定理可得2216a b =+,利用基本不等式可得(82ab ≤=+,从而利用三角形面积公式可得结果. 【详解】因为4c =,又sin sin c a C A==所以sin C =C 为锐角,可得4C π=.因为(2222162cos 2a b ab C a b ab =+-=+≥,所以(82ab ≤=+,当且仅当a b =时等号成立,即1sin 42ABC S ab C ab ∆==≤+即当a b ==时,ABC ∆面积的最大值为4+. 故答案为4+. 【点睛】本题主要考查余弦定理、正弦定理以及基本不等式的应用,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.16.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为解析:3【解析】 【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =, 因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭,故答案为42. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.17.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和 10【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+39110i =-+=+=10.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++18.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由220x y y --=⎧⎨=⎩,解得(2,0)B ,此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.19.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答解析:2【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC=,再由向量数量积的公式加以计算,可得AB AC ⋅u u u v u u u v的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt △ACD 中,1AD AB 12==, 可得cosA=11,cosA AD AB AC AB AC AB AC AB AC AC AC=∴⋅=⋅=⋅⋅=u u u u v u u u u v u u u u v u u u u v u u u u v u u u v u u u v =2. 故答案为2 【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.20.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.三、解答题21.(1)22:1,(1,1]4y C x x +=∈-;:23110l x y ++=;(27【分析】(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值. 【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+ ()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈-又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:2110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l的距离d ==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min d = 【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题. 22.最小值为14-,最大值为2. 【解析】 【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭.当23log ,2x = ()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础. 23.(1)4A π=;(2【解析】 【分析】(1)通过cos C 求出sin C 的值,利用正弦定理求出sin A 即可得角A ;(2)根据()sin sin B A C =+求出sin B 的值,由正弦定理求出边b ,最后在ACD ∆中由余弦定理即可得结果. 【详解】 (1)∵cos 5C =-,∴sin 5C ===. 由正弦定理sin sin a c A C=,即sin A =.得sin 2A =,∵cos 05C =-<,∴C 为钝角,A 为锐角, 故4A π=.(2)∵()B A C π=-+,∴()sin sin sin cos cos sin B A C A C A C =+=+252510⎛⎫=⨯-+⨯= ⎪ ⎪⎝⎭. 由正弦定理得sin sin b a B A=102=得b = 在ACD ∆中由余弦定理得:2222cos CD AD AC AD AC A =+-⋅⋅242222=+-⨯=,∴CD =. 【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.24.(Ⅰ)3;(Ⅱ;(Ⅲ【解析】 【分析】(Ⅰ)以B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴,建立坐标系,设异面直线AC 与11A B 所成角为α,算出11,AC A B u u u r u u u u r ,再利用cos α=11|cos ,|AC A B 〈〉u u u r u u u u r 计算即可;(Ⅱ)分别求出平面11AA C 的法向量m u r 与平面111B AC 的法向量n r,再利用向量的夹角公式算得cos ,m n 〈〉u r r即可;(Ⅲ)设(,,0)M a b ,由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u vu u u u v u u u u v ,进一步得到M 的坐标,再由模长公式计算BM 的长. 【详解】如图所示,建立空间直角坐标系,其中点B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴, 由题意,111(0,0,0),B A C A B C ,(Ⅰ)11((AC A B ==-u u u r u u u u r ,所以111111cos ,3||||AC A B AC A B AC A B ⋅〈〉===u u ru u u r u u u u r u u u r u u u u r ,设异面直线AC 与11A B 所成角为α,则cos α=11|cos ,|3AC A B 〈〉=u u u r u u u u r, 所以异面直线AC 与11A B所成角的余弦值为3. (Ⅱ)易知111(AA AC ==u u u r u u u u r,设平面11AA C 的法向量(,,)m x y z =,则11100m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u v v,即00⎧+=⎪⎨=⎪⎩,令x =z =,所以m =u r,同理,设平面111B AC 的法向量(,,)n x y z =r,则111100n A C n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u u v v ,即2250220x y z x ⎧--+=⎪⎨-=⎪⎩, 令5y =,则2z =,所以(0,5,2)n =r,所以2cos ,7||||77m n m n m n ⋅〈〉===⋅⋅u r r ur r , 设二面角111A AC B --的大小为θ, 则2235sin 1()7θ=-=, 所以二面角111A AC B --的正弦值为35. (Ⅲ)由N 为棱11B C 的中点,得2325,,222N ⎛⎫⎪⎝⎭, 设(,,0)M a b ,则2325,,222MN a b ⎛⎫=-- ⎪⎝⎭u u u u r ,由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u v u u u u v u u u u v ,即 2(22)022325(2)(2)5022a a b ⎧⎛⎫-⋅-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪-⋅-+-⋅-+⋅= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得2224a b ⎧=⎪⎪⎨⎪=⎪⎩,故22,,024M ⎛⎫⎪⎝⎭,因此22,,024BM ⎛⎫= ⎪⎝⎭u u u u r , 所以线段BM 的长为10||4BM =u u u u r .【点睛】本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查学生的空间想象能力、运算能力和推理论证能力. 25.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)结合几何体,因为,E G 分别是,BC SC 的中点,所以//EG SB .,再利用线面平行的判定定理证明.(2)由,F G 分别是,DC SC 的中点,得//FG SD .由线面平行的判定定理//FG 平面11BDD B .,再由(1)知,再利用面面平行的判定定理证明.【详解】 证明: (1)如图,连接SB ,,E G Q 分别是,BC SC 的中点,//EG SB ∴.又SB ⊂Q 平面11,BDD B EG ⊄平面11BDD B ,所以直线//EG 平面11BDD B .(2)连接,,SD F G Q 分别是,DC SC 的中点,//FG SD ∴.又∵SD ⊂平面11,BDD B FG ⊄平面11,BDD B//FG ∴平面11BDD B .又EG ⊂平面,EFG FG ⊂平面,EFG EG FG G ⋂=, ∴平面//EFG 平面11BDD B . 【点睛】本题主要考查了线面平行,面面平行的判断定定理,还考查了转化化归的能力,属于中档题. 26.(I )(4,),(22,)24ππ(II )1,2a b =-= 【解析】 【分析】 【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-=联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C交点的极坐标为(4,)24ππ(II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+=由参数方程可得122b ab y x =-+,所以1,12,1,222b aba b =-+==-=解得。
高三数学下学期期末考试试题 理含解析 试题

安平中学2021-2021学年下学期期末考试高三数学试题〔理〕本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,一共150分。
考试时间是是120分钟第一卷〔选择题〕一、选择题:本大题一一共12小题,每一小题5分,满分是60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是 A. (1,)2π B. (1,)2π-C. (1,0)D. (1,π)【答案】B 【解析】【详解】由题圆2sin ρθ=-,那么可化为直角坐标系下的方程,22sin ρρθ=-,222x y y +=-,2220x y y ++=,圆心坐标为〔0,-1〕,那么极坐标为1,2π⎛⎫- ⎪⎝⎭,应选B.考点:直角坐标与极坐标的互化. 【此处有视频,请去附件查看】2.假设一直线的参数方程为0012x x t y y ⎧=+⎪⎪⎨⎪=⎪⎩〔t 为参数〕,那么此直线的倾斜角为〔〕A. 60︒B. 120︒C. 30D. 150︒【答案】B 【解析】 【分析】消去参数t 转为普通方程,求得直线的斜率,进而求得倾斜角.【详解】消去参数t 00y y ++,故斜率为120,应选B. 【点睛】本小题主要考察直线的参数方程转化为普通方程,考察直线的斜率和倾斜角,属于根底题.3.函数|1||2|y x x =++-的最小值及获得最小值时x 的值分别是〔〕 A. 1,[1,2]x ∈-B. 3,0C. 3,[1,2]x ∈-D. 2,[]1,2x ∈【答案】C 【解析】【分析】利用绝对值不等式,求得函数的最小值,并求得对应x 的值.【详解】依题意12123y x x x x =++-≥++-=,当且仅当()()120x x +-≥,即12x -≤≤时等号成立,应选C.【点睛】本小题主要考察绝对值不等式,以及绝对值不等式等号成立的条件,属于根底题.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位,直线l 的参数方程是13x t y t =+⎧⎨=-⎩〔t 为参数〕,圆C 的极坐标方程是4cos ρθ=,那么直线l 被圆C 截得的弦长为〔 〕B.D.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的间隔 d=直线l 被圆C 截得的弦长为=【点睛】(1)此题主要考察参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握程度和分析推理计算才能.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.5.假设不等式24ax +<的解集为()1,3-,那么实数a 等于〔〕 A. 8 B. 2C. -4D. -2【答案】D 【解析】 【分析】根据绝对值不等式的解法化简24ax +<,结合其解集的情况求得a 的值.【详解】由24ax +<得424,62ax ax -<+<-<<.当0a >时6123aa ⎧-=-⎪⎪⎨⎪=⎪⎩,无解.当0a <时,2163aa⎧=-⎪⎪⎨⎪-=⎪⎩,解得2a =-,应选D.【点睛】本小题主要考察绝对值不等式的解法,考察分类讨论的数学思想方法,属于根底题.1cos {2sin x y θθ=-+=+,〔θ为参数〕的对称中心〔 〕A. 在直线2y x =上B. 在直线2y x =-上C. 在直线1y x =-上D. 在直线1y x =+上【答案】B 【解析】试题分析:参数方程所表示的曲线为圆心在,半径为1的圆,其对称中心为,逐个代入选项可知,点满足,应选B.考点:圆的参数方程,圆的对称性,点与直线的位置关系,容易题. 【此处有视频,请去附件查看】7.“2a =〞是“关于x 的不等式1+2x x a ++<的解集非空〞的〔 〕 A. 充要条件 B. 必要不充分条件 C. 充分不必要条件 D. 既不充分又不必要条件【答案】C 【解析】试题分析:解:因为()1+2121x x x x ++≥+-+=, 所以由不等式1+2x x a ++<的解集非空得:1a >所以,“2a =〞是“关于x 的不等式1+2x x a ++<的解集非空〞的充分不必要条件, 应选C.考点:1、绝对值不等式的性质;2、充要条件.8.过椭圆C :2cos 3x y θθ=⎧⎪⎨=⎪⎩〔θ为参数〕的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,那么11m n +的值是〔〕 A. 23B. 43C. 83D. 不能确定 【答案】B【分析】消去参数得到椭圆的普通方程,求得焦点坐标,写出直线l 的参数方程,代入椭圆的普通方程,写出韦达定理,由此求得11m n+的值. 【详解】消去参数得到椭圆的普通方程为22143x y +=,故焦点()1,0F ,设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩〔α为参数〕,代入椭圆方程并化简得()223sin 6cos 90t t αα++⋅-=.故1212226cos 9,03sin 3sin t t t t ααα+=-⋅=-<++〔12,t t 异号〕.故11m n m n mn ++=1212t t t t -===⋅43.应选B. 【点睛】本小题主要考察椭圆的参数方程化为普通方程,考察直线和椭圆的位置关系,考察利用直线参数的几何意义解题,考察化归与转化的数学思想方法,属于中档题.9.假设2a >,那么关于x 的不等式12x a -+>的解集为〔〕 A. {}3|x x a >- B. {}1|x x a >-C. ΦD. R【答案】D 【解析】 【分析】根据2a >求得2a -的取值范围,由此求得不等式的解集.【详解】原不等式可化为12x a ->-,由于2a >,故20a -<,根据绝对值的定义可知12x a ->-恒成立,故原不等式的解集为R .应选D.【点睛】本小题主要考察绝对值不等式的解法,考察不等式的运算,属于根底题.10.a ,b ,0c >,且1ab c ++=A. 3B.C. 18D. 9【答案】B【分析】先利用柯西不等式求得2的最大值,由此求得.【详解】由柯西不等式得:()2222222111⎡⎤≤++++⎢⎥⎣⎦()33318a b c=⨯+++=⎡⎤⎣⎦≤13a b c===时,等号成立,应选B.【点睛】本小题主要考察利用柯西不等式求最大值,属于根底题.11.点〔x,y〕满足曲线方程4{6xyθθ==〔θ为参数〕,那么yx的最小值是〔〕B.32D. 1【答案】D【解析】消去参数可得曲线的方程为:()()22462x y-+-=,其轨迹为圆,目的函数y yx x-=-表示圆上的点与坐标原点连线的斜率,如下图,数形结合可得:yx的最小值是1.此题选择D选项.点睛:(1)此题是线性规划的综合应用,考察的是非线性目的函数的最值的求法. (2)解决这类问题的关键是利用数形结合的思想方法,给目的函数赋于一定的几何意义.12.x 为实数,且|5||3|x x m -+-<有解,那么m 的取值范围是〔 〕 A. 1m B. m 1≥C. 2m >D. 2m ≥【答案】C 【解析】 【分析】求出|x ﹣5|+|x ﹣3|的最小值,只需m 大于最小值即可满足题意.【详解】53x x m -+-<有解,只需m 大于53x x -+-的最小值,532x x -+-≥,所以2m >,53x x m -+-<有解. 应选:C .【点睛】此题考察绝对值不等式的解法,考察计算才能,是根底题.第二卷〔非选择题〕二、填空题〔一共4题每一小题5分满分是20分〕 13.|a +b|<-c(a ,b ,c∈R ),给出以下不等式:①a<-b -c ;②a>-b +c ;③a<b -c ;④|a|<|b|-c ; ⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号). 【答案】①②④ 【解析】 【分析】先根据绝对值不等式的性质可得到c <a+b <﹣c ,进而可得到﹣b+c <a <﹣b ﹣c ,即可验证①②成立,③不成立,再结合|a+b|<﹣c ,与|a+b|≥|a|﹣|b|,可得到|a|﹣|b|<﹣c 即|a|<|b|﹣c 成立,进而可验证④成立,⑤不成立,从而可确定答案. 【详解】∵|a+b|<-c ,∴c<a +b <-c. ∴a<-b -c ,a >-b +c ,①②成立且③不成立. ∵|a|-|b|≤|a+b|<-c , ∴|a|<|b|-c ,④成立且⑤不成立.【点睛】此题主要考察不等式的根本性质.考察根底知识的综合运用.14.在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=与sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,那么曲线1C 和2C 交点的直角坐标为________. 【答案】()1,1 【解析】 【分析】联立两条曲线的极坐标方程,求得交点的极坐标,然后转化为直角坐标.【详解】由2sin cos sin 1ρθθρθ⎧=⎨=⎩,解得π4ρθ⎧=⎪⎨=⎪⎩,故ππcos 1,sin 144x y ρρ====,故交点的直角坐标为()1,1. 故答案为()1,1【点睛】本小题主要考察极坐标下两条曲线的交点坐标的求法,考察极坐标和直角坐标互化,属于根底题.15.不等式32x x +>-的解集是_____. 【答案】1|2x x ⎧⎫>-⎨⎬⎩⎭【解析】 【分析】利用两边平方的方法,求出不等式的解集.【详解】由32x x +>-两边平方并化简得105x >-,解得12x >-,故原不等式的解集为1|2x x ⎧⎫>-⎨⎬⎩⎭.故答案为1|2x x ⎧⎫>-⎨⎬⎩⎭【点睛】本小题主要考察含有绝对值的不等式的解法,属于根底题.16.238x y z ++=,那么222x y z ++获得最小值时,x ,y ,z 形成的点(,,)x y z =________.【答案】8124,,777⎛⎫ ⎪⎝⎭ 【解析】 【分析】利用柯西不等式求得222x y z ++的最小值,并求得此时,,x y z 的值.【详解】由于()()()22222222312364x y z x y z ++++≥++=,故222x y z ++6432147≥=.当且仅当8124,,777x y z ===时等号成立,故(,,)x y z =8124,,777⎛⎫⎪⎝⎭.故答案为8124,,777⎛⎫⎪⎝⎭【点睛】本小题主要考察利用柯西不等式求最值,并求等号成立的条件,属于根底题.三.解答题:〔解答题应写出必要的文字说明和演算步骤,17题10分,18-22每一小题12分〕17.在直角坐标系xOy 中,圆C 的参数方程为32cos 42sin x y αα=+⎧⎨=-+⎩〔α为参数〕.〔1〕以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; 〔2〕()2,0A -,()0,2B ,圆C 上任意一点(),M x y ,求ABM 面积的最大值.【答案】〔1〕26cos 8sin 210ρρθρθ-++=〔2〕9+【解析】 【分析】〔1〕消去参数α,将圆C 的参数方程,转化为普通方程,利用cos ,sin x y ρθρθ==求得圆C 的极坐标方程.〔2〕利用圆的参数方程以及点到直线的间隔 公式,求得M 到直线AB 的间隔 ,由此求得三角形ABM 的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【详解】解:〔1〕圆C 的参数方程为32cos 42sin x y αα=+⎧⎨=-+⎩〔α为参数〕,所以其普通方程为()()22344x y -++=,所以圆C 的极坐标方程为26cos 8sin 210ρρθρθ-++=. 〔2〕点(),M x y 到直线AB :20x y -+=的间隔d =故ABM 的面积1|||2cos 2sin 9|924S AB d πααα⎛⎫=⨯⨯=-+=-+ ⎪⎝⎭,所以ABM 面积的最大值为9+【点睛】本小题主要考察参数方程转化为普通方程,考察直角坐标方程转化为转化为极坐标方程,考察利用参数的方法求三角形面积的最值,考察点到直线间隔 公式,属于中档题.18.设函数()31f x x x =+--.〔1〕解不等式()0f x ≥; 〔2〕假设()21f x x m +-≥对任意的实数x 均成立,求m 的取值范围.【答案】〔1〕{|1}x x ≥-〔2〕4m ≤【解析】【分析】〔1〕利用零点分段法去绝对值,分类讨论求得不等式()0f x ≥的解集.或者者用两边平方的方法求得不等式的解集.〔2〕利用绝对值不等,求得()21f x x +-的最小值,由此求得m 的取值范围.【详解】〔1〕解:()0f x ≥等价于31x x +≥-,当1x >时,31x x +≥-等价于31x x +≥-,即31≥-,不等式恒成立,故1x >; 当31x -≤≤时,31x x +≥-等价于31x x +≥-,解得1x ≥-,故11x -≤≤; 当3x <-时,31x x +≥-等价于31x x --≥-,即31-≥,无解.综上,原不等式的解集为{|1}x x ≥-.又解:()0f x ≥等价于31x x +≥-,即()()2231x x +≥-,化简得88x ≥-,解得1x ≥-,即原不等式的解集为{|1}x x ≥-.〔2〕()()21312131314f x x x x x x x x x +-=+--+-=++-≥+--=, 当且仅当()()310x x +-≤等号成立要使()21f x x m +-≥对任意的实数x 均成立,那么()min |21|f x x m ⎡⎤⎣⎦+-≥,所以4m ≤.【点睛】本小题主要考察分类讨论法解绝对值不等式,考察含有绝对值函数的最值的求法,考察恒成立问题的求解策略,属于中档题.19.在极坐标系中,曲线1C :2cos ρθ=和曲线2C :cos 3ρθ=,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系.〔1〕求曲线1C 和曲线2C 的直角坐标方程; 〔2〕假设点P 是曲线1C 上一动点,过点P 作线段OP 的垂线交曲线2C 于点Q ,求线段PQ 长度的最小值.【答案】(1)1C 的直角坐标方程为22(1)1x y -+=,2C 的直角坐标方程为3x =.(2)【解析】【分析】〔1〕极坐标方程化为直角坐标方程可得1C 的直角坐标方程为()2211x y -+=,2C 的直角坐标方程为3x =.〔2〕由几何关系可得直线PQ 的参数方程为2x tcos y tsin θθ=+⎧⎨=⎩〔t 为参数〕,据此可得2AP cos θ=,1AQ cos θ=,结合均值不等式的结论可得当且仅当12cos cos θθ=时,线段PQ 长度获得最小值为【详解】〔1〕1C 的极坐标方程即22cos ρρθ=,那么其直角坐标方程为222x y x +=, 整理可得直角坐标方程为()2211x y -+=, 2C 的极坐标方程化为直角坐标方程可得其直角坐标方程为3x =.〔2〕设曲线1C 与x 轴异于原点的交点为A ,∵PQ OP ⊥,∴PQ 过点()2,0A ,设直线PQ 的参数方程为2x tcos y tsin θθ=+⎧⎨=⎩〔t 为参数〕, 代入1C 可得220t tcos θ+=,解得10t =或者22t cos θ=-, 可知22AP t cos θ==,代入2C 可得23tcos θ+=,解得1't cos θ=,可知1'AQ t cos θ==, 所以1222PQ AP AQ cos cos θθ=+=+≥, 当且仅当12cos cos θθ=时取等号, 所以线段PQ 长度的最小值为22.【点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y y x ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形尽量产生2ρ,cos ρθ,sin ρθ以便转化另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.20.函数()1f x x x =+-.(1)假设()1f x m ≥-恒成立,务实数m 的最大值;(2)记(1)中的m 最大值为M ,正实数a ,满足22a b M +=,证明: 2a b ab +≥.【答案】(1)2;(2)详见解析.【解析】【分析】〔1〕根据绝对值三解不等式求出f 〔x 〕的最小值为1,从而得出|m ﹣1|≤1,得出m 的范围; 〔2〕两边平方,使用作差法证明.【详解】(1)由()210101211x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩ 得()1min f x =,要使()1f x m ≥-恒成立,只要11m ≥-,即02x ≤≤,实数m 的最大值为2;(2)由(1)知222a b +=,又222a b ab +≥故1ab ≤, ()2222222424a b a b a b ab a b +-=++-()()222242121ab a b ab ab =+-=--+,01ab <≤,()()()222421210a b a b ab ab ∴+-=--+≥2a b ab ∴+≥.【点睛】此题考察了绝对值不等式的解法,不等式的证明,属于中档题.21.曲线C :2cos ρθ=,直线l :23324x t y t =-⎧⎪⎨=+⎪⎩〔t 是参数〕. 〔1〕写出曲线C 的参数方程,直线l 的普通方程;〔2〕过曲线C 上任一点P 作与l 夹角为45︒的直线,交l 于点A ,求PA 的最大值与最小值.【答案】〔1〕1cos sin x y θθ=+⎧⎨=⎩(θ为参数);34120x y +-=〔2〕最大值为5,最小值为5【解析】【分析】〔1〕将2cos ρθ=两边乘以ρ,转化为直角坐标方程,配成圆的HY 方程后写出圆C 的参数方程.消去直线参数方程的参数t ,求得直线l 的普通方程.〔2〕利用圆的参数方程,设出曲线上任意一点P 的坐标,并求得P 到直线l 的间隔 d .将PA 转为sin 45d PA ==︒,根据三角函数最值的求法,求得PA 的最大值与最小值. 【详解】解:曲线C :2cos ρθ=,可得22cos ρρθ=,所以222x y x +=,即:22(1)1x y -+=,曲线C 的参数方程,1cos sin x y θθ=+⎧⎨=⎩,θ为参数. 直线l :23324x t y t =-⎧⎪⎨=+⎪⎩〔t 是参数〕. 消去参数t ,可得:34120x y +-=.〔2〕曲线C 上任意一点1co ()s ,sin P θθ+到l 的间隔 为1|3cos 4sin 9|5d θθ=+-.那么()9sin 45d PA θϕ===+-︒,其中ϕ为锐角,且3tan 4ϕ=. 当sin()1θφ+=-时,PA. 当sin()1θφ+=时,PA获得最小值,最小值为5. 【点睛】本小题主要考察极坐标方程转为直角坐标方程,考察参数方程和普通方程互化,考察点到直线的间隔 公式,考察三角函数最值的求法,考察化归与转化的数学思想方法,属于中档题.22.函数()1||2f x x x a -=-+,0a >〔1〕假设1a =时,求不等式()1f x >的解集;〔2〕假设()f x 的图象与x 轴围成的三角形面积小于6,求a 的取值范围.【答案】〔1〕2|23x x ⎧⎫-<<-⎨⎬⎩⎭〔2〕()0,2【解析】【分析】〔1〕利用零点分段法分类讨论的数学思想,求得不等式()1f x >的解集.〔2〕先用零点分段法去绝对值,将()f x 转化为分段函数的形式,求得()f x 的图象与x 轴三个交点的坐标,由此求得所围成三角形面积的表达式,根据面积小于6列不等式,解不等式求得a 的取值范围. 【详解】解:〔1〕当1a =时,()1f x >,化为:|1|2|1|10x x --+->,①, 当1x ≤-时,①式化为:20x +>,解得:21x -≤<-,当11x -<<时,①式化为:320x -->,解得213x -<<-, 当1x ≥时,①式化为:40x -->,无解,∴()1f x >的解集是2|23x x ⎧⎫-<<-⎨⎬⎩⎭; 〔2〕由题设可得:21,()312,112,1x a x a f x x a a x x a x ++<-⎧⎪=-+--≤≤⎨⎪--->⎩∴函数()f x 的图象与x 轴围成的三角形的三个顶点分别为:,(20)1A a --,,()1B a a +-,12,03a C -⎛⎫ ⎪⎝⎭, ∴21442(1)(1)233ABC a S a a +=⨯⨯+=+△, 由题设可得:22(1)63a +<,解得:02a <<, 故a 的范围是()0,2.【点睛】本小题主要考察零点分段法解绝对值不等式,考察三角形的面积公式和一元二次不等式的的解法,属于中档题.。
最新高三数学下期末试题(带答案)

最新高三数学下期末试题(带答案)一、选择题1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2B .3C .5D .72.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈3.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .13⎡⎢⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦4.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-5.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件6.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .107.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM =A .4B .532C .2D .28.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)9.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的10.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .3212.sin 47sin17cos30cos17-o o ooA .3-B .12-C .12D .3 二、填空题13.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.14.设正数,a b 满足21a b +=,则11a b +的最小值为__________. 15.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC =u u u u v u u u v u u u v u u u v ,则AM AN ⋅u u u u v u u u v的取值范围是_________. 16.若9()ax x-的展开式中3x 的系数是84-,则a = .17.函数2()log 1f x x =-的定义域为________. 18.已知样本数据,,,的均值,则样本数据,,,的均值为 .19.已知向量a r 与b r 的夹角为60°,|a r |=2,|b r |=1,则|a r+2 b r |= ______ .20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==2CA CB CD BD ====.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.22.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.23.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.24.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型1个月2个月3个月4个月总计A20353510100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料?参考数据:6196iiy==∑61371i iix y==∑参考公式:回归直线方程ˆˆˆy bx a=+,其中()()()()1122211ˆ=n ni i i ii in ni ii ix x y y x y nxybx x x nx====---=--∑∑∑∑25.四棱锥P ABCD-中,底面ABCD是边长为2的菱形,3BADπ∠=,PAD∆是等边三角形,F为AD的中点,PD BF⊥.(1)求证:AD PB⊥;(2)若E在线段BC上,且14EC BC=,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求四面体D CEG-的体积.26.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:{1,2,6)M N ⋂=.故选B. 考点:集合的运算.2.D解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D . 点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.3.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
【典型题】高三数学下期末试卷(带答案)

【典型题】高三数学下期末试卷(带答案)一、选择题1.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈ B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈ 2.在二项式42n x x ⎛+ ⎪⎭的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16B .14C .512D .133.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种B .30种C .40种D .60种 4.已知平面向量a v ,b v 是非零向量,|a v |=2,a v ⊥(a v +2b v ),则向量b v 在向量a v方向上的投影为( )A .1B .-1C .2D .-25.函数()ln f x x x =的大致图像为 ( ) A . B .C .D .6.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( )A .只能是左端点的函数值()i f xB .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i f ξξ∈1[,]i i x x +)D .以上答案均正确7.函数y =2x sin2x 的图象可能是A .B .C .D .8.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 39.在ABC V 中,若 13,3,120AB BC C ==∠=o ,则AC =( )A .1B .2C .3D .410.水平放置的ABC V 的斜二测直观图如图所示,已知4B C ''=,3AC ''=,//'''B C y 轴,则ABC V 中AB 边上的中线的长度为( )A 73B 73C .5D .5211.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM =A .534B .532C .532D .13212.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .﹣2 C .6 D .2二、填空题13.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 .14.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC =u u u u v u u u v u u u v u u u v ,则AM AN ⋅u u u u v u u u v 的取值范围是_________. 15.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.16.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________. 17.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.18.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.19.锐角△ABC 中,若B =2A ,则b a的取值范围是__________. 20.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 三、解答题21.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.22.已知曲线C :(t 为参数), C :(为参数). (1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.在平面直角坐标系xOy 中,直线l 的参数方程为21x t y at =+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是22sin 4πρθ⎛⎫=+ ⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且7AB =,求实数a 的值.24.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,AC BD P =I ,11A C EF Q =I .求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.25.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP V ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP V 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.26.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+ (0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.2.C解析:C【解析】【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果【详解】因为n 前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82r rr r n n T C x r -+>∴=∴=⋅=Q L , 当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.3.A解析:A【解析】【分析】【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A 42=12种安排方法,甲在星期二有A 32=6种安排方法,甲在星期三有A 22=2种安排方法,总共有12+6+2=20种;故选A .4.B解析:B【解析】【分析】先根据向量垂直得到a r g (a r +2b r ),=0,化简得到a r g b r =﹣2,再根据投影的定义即可求出.【详解】 ∵平面向量a r ,b r 是非零向量,|a r |=2,a r ⊥(a r +2b r ), ∴a r g (a r +2b r ),=0,即()2·20a a b +=v v v即a r g b r =﹣2∴向量b r 在向量a r 方向上的投影为·22a b a -=v v v =﹣1, 故选B .【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.5.A解析:A【解析】【分析】【详解】∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方∴可以排除B 答案考点:函数图像.6.C解析:C【解析】【分析】【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i fξξ∈ []1,i i x x +),故选C . 7.D解析:D【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择. 详解:令()2sin 2x f x x =, 因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以()2sin 2xf x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 8.B解析:B【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.9.A解析:A【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.10.A解析:A【解析】【分析】根据斜二测画法的规则还原图形的边角关系再求解即可.【详解】由斜二测画法规则知AC BC ⊥,即ABC V 直角三角形,其中3AC =,8BC =,所以73AB =,所以AB 边上的中线的长度为732. 故选:A . 【点睛】 本题主要考查了斜二测画法前后的图形关系,属于基础题型.11.C解析:C【解析】试题分析:先求得M (2,32,3)点坐标,利用两点间距离公式计算得CM =53,故选C .考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用.点评:简单题,应用公式计算. 12.C解析:C【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可.解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素,当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素,当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素,当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素,故选C .点评:本题考查元素与集合的关系,基本知识的考查.二、填空题13.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以. 考点:复数的运算. 14.【解析】【分析】画出图形建立直角坐标系利用比例关系求出的坐标然后通过二次函数求出数量积的范围【详解】解:建立如图所示的直角坐标系则设则所以因为二次函数的对称轴为:所以时故答案为:【点睛】本题考查向量解析:[2]5, 【解析】【分析】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围.【详解】解:建立如图所示的直角坐标系,则(2,0)B ,(0,0)A , 13,2D ⎛⎫ ⎪ ⎪⎝⎭,设||||||||BM CN BC CD λ==u u u u r u u u r u u u r u u u r ,[]0,1λ∈,则(22M λ+,3)λ,5(22N λ-,3), 所以(22AM AN λ=+u u u u r u u u r g ,35)(22λλ-g ,22353)542544λλλλλλ=-+-+=--+, 因为[]0,1λ∈,二次函数的对称轴为:1λ=-,所以[]0,1λ∈时,[]2252,5λλ--+∈. 故答案为:[2]5,【点睛】本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力,属于中档题.15.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12【解析】【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a .【详解】因为222,cos ,sin x y x y ρρθρθ=+==,由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=, 111201 2.2a a a a -=∴=±>∴=+Q ,,,【点睛】 (1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.16.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的解析:4 【解析】 试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.17.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由220x y y --=⎧⎨=⎩,解得(2,0)B ,此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.18.【解析】【分析】先由题意得到必过抛物线的焦点设出直线的方程联立直线与抛物线方程表示出弦长再根据两平行线间的最小距离时最短进而可得出结果【详解】由抛物线的光学性质可得:必过抛物线的焦点当直线斜率存在时 解析:24y x =【解析】 【分析】先由题意得到PQ 必过抛物线的焦点,设出直线PQ 的方程,联立直线PQ 与抛物线方程,表示出弦长,再根据两平行线间的最小距离时,PQ 最短,进而可得出结果. 【详解】由抛物线的光学性质可得:PQ 必过抛物线的焦点(,0)2pF , 当直线PQ 斜率存在时,设PQ 的方程为()2py k x =-,1122(,),(,)P x y Q x y ,由2()22p y k x y px ⎧=-⎪⎨⎪=⎩得:222()24p k x px px -+=,整理得2222244)0(8k x k p p x k p -++=,所以21222k p p x x k ++=,2124p x x =, 所以2122222k PQ x x p p p k+=++=>; 当直线PQ 斜率不存在时,易得2PQ p =; 综上,当直线PQ 与x 轴垂直时,弦长最短,又因为两平行光线间的最小距离为4,PQ 最小时,两平行线间的距离最小;因此min 24PQ p ==,所求方程为24y x =.故答案为24y x = 【点睛】本题主要考查直线与抛物线位置关系,通常需要联立直线与抛物线方程,结合韦达定理、弦长公式等求解,属于常考题型.19.【解析】【分析】【详解】因为为锐角三角形所以所以所以所以所以解析:【解析】 【分析】 【详解】因为ABC ∆为锐角三角形,所以02202B A A B πππ⎧<=<⎪⎪⎨⎪<--<⎪⎩,所以0463A A πππ⎧<<⎪⎪⎨⎪<<⎪⎩,所以(,)64A ππ∈,所以sin 2cos sin b B A a A==,所以ba ∈. 20.【解析】试题分析:原式=考点:1指对数运算性质解析:278【解析】 试题分析:原式=344332542727log log 134588-⎡⎤⎛⎫+⨯=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 考点:1.指对数运算性质.三、解答题21.(1)见解析;(2)43 sin7α=【解析】试题分析:.(1)取AP中点M,易证PA⊥面DMB,所以PA BD⊥,(2)以,,MP MB MD所在直线分别为,,x y z轴建立空间直角坐标系,平面DPC的法向量()13,1,3n=--u v,设平面PCB的法向量2nu u v=()3,1,3-,121212•1cos,7n nn nn n==u v u u vu v u u vu v u u v,即43sinα=.试题解析:(1)证明:取AP中点M,连,DM BM,∵DA DP=,BA BP=∴PA DM⊥,PA BM⊥,∵DM BM M⋂=∴PA⊥面DMB,又∵BD⊂面DMB,∴PA BD⊥(2)∵DA DP=,BA BP=,DA DP⊥,060ABP∠=∴DAP∆是等腰三角形,ABP∆是等边三角形,∵2AB PB BD===,∴1DM=,3BM=.∴222BD MB MD=+,∴MD MB⊥以,,MP MB MD所在直线分别为,,x y z轴建立空间直角坐标系,则()1,0,0A-,()3,0B,()1,0,0P,()0,0,1D从而得()1,0,1DP=-u u u v,()3,0DC AB==u u u v u u u u u v,()1,3,0BP=-u u u v,()1,0,1BC AD==u u u v u u u v设平面DPC的法向量()1111,,n x y z=u v则11•0•0n DPn DC⎧=⎪⎨=⎪⎩u v u u u vu v u u u v,即111130x zx-=⎧⎪⎨+=⎪⎩,∴(13,1,3n=--u v,设平面PCB的法向量()2212,,n x y z=u u v,由22•0•0n BC n BP ⎧=⎪⎨=⎪⎩u u v u u u vu u v u u u v ,得2222030x z x y +=⎧⎪⎨-=⎪⎩,∴()23,1,3n =-u u v∴121212•1cos ,7n n n n n n ==u v u u vu v u u v uv u u v 设二面角D PC B --为α,∴21243sin 1cos ,n n α=-=u v u u v点睛:利用法向量求解空间二面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 22.(Ⅰ)为圆心是(,半径是1的圆.为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)【解析】 【分析】 【详解】 (1)为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴,长半轴长是8,短半轴长是3的椭圆. (2)当时,,故 的普通方程为,到的距离所以当时,取得最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.23.(1)l 的普通方程210ax y a +--=;C 的直角坐标方程是22220x y x y +--=;(2)3【解析】 【分析】(1)把直线l 的标准参数方程中的t 消掉即可得到直线l 的普通方程,由曲线C 的极坐标方程为ρ=2(θ4π+),展开得2222ρ=(ρsinθ+ρcosθ),利用x cos y sin ρθρθ=⎧⎨=⎩即可得出曲线C 的直角坐标方程; (2)先求得圆心C 到直线AB 的距离为d ,再用垂径定理即可求解.【详解】(1)由直线l 的参数方程为21x ty at=+⎧⎨=-⎩,所以普通方程为210ax y a +--=由曲线C的极坐标方程是4πρθ⎛⎫=+ ⎪⎝⎭,所以22sin 2cos 4πρθρθρθ⎛⎫=+=+ ⎪⎝⎭, 所以曲线C 的直角坐标方程是22220x y x y +--=(2)设AB 的中点为M ,圆心C 到直线AB 的距离为d,则MA =, 圆()()22:112C x y -+-=,则r =()1,1C ,12d MC ====,由点到直线距离公式,12d ===解得3a =±,所以实数a的值为3±.【点睛】本题考查了极坐标方程化为直角坐标方程、直线参数方程化为普通方程,考查了点到直线的距离公式,圆中垂径定理,考查了推理能力与计算能力,属于中档题. 24.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)由中位线定理可知//EF BD ,故四点共面(2)PQ 是平面11AAC C 与平面DBFE 的交线,可证R 是两平面公共点,故PQ 过R ,得证. 【详解】证明:(1)EF Q 是111D B C ∆的中位线,11//EF B D ∴.在正方体1AC 中,11//B D BD ,//EF BD ∴.,EF BD ∴确定一个平面,即D B F E ,,,四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α, 又设平面BDEF 为β.11,Q AC Q α∈∴∈Q .又Q EF ∈,Q β∴∈,则Q 是α与β的公共点,a PQ β∴⋂=.又11,AC R R AC β⋂=∴∈.R a ∴∈,且R β∈,则R PQ ∈,故P Q R ,,三点共线. 【点睛】本题主要考查了多点共面及多点共线问题,主要利用平面的基本性质解决,属于中档题. 25.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2).设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+.令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题. 26.(1)证明见解析;(2)35. 【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值. 【详解】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =I ,由线面垂直的判定定理可得:BC ⊥平面11A B E , 结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()1330,3,0,,0,0,3,3,02A B A C ⎛⎫- ⎪ ⎪⎝⎭, 由11AB A B =u u u r u u u u r 可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫= ⎪⎝⎭u u u r 设平面1A BC 的法向量为(),,m x y z =u r,则:()()13333,,,,33022223333,,022m A B x y z x y z m BC x y z x y u u u v v u u u v v ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()3,1m =u r ,333,344EF ⎛⎫= ⎪⎝⎭u u u r 此时4cos ,53552EF m EF m EF m⋅===⨯⨯u u u r u ru u u r u r u u u r u r , 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===u u u r u r .【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。
2020年高三数学下期末试题带答案

2020年高三数学下期末试题带答案一、选择题1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A .12B .13C .23D .342.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种4.已知非零向量a b r r ,满足2a b r r =,且b a b ⊥r r r (–),则a r 与b r的夹角为A .π6 B .π3 C .2π3 D .5π65.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-6.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件7.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .丁可以知道四人的成绩 8.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 9.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>10.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=11.已知向量()1,1m λ=+r ,()2,2n λ=+r ,若()()m n m n +⊥-r r r r,则λ=( ) A .4- B .3-C .2-D .1-12.设集合,,则=( )A .B .C .D .二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.16.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.17.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.18.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.19.若,满足约束条件则的最大值 .20.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30°,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________. 三、解答题21.已知直线352:{132x tly t=+=+(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cosρθ=.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为(5,3),直线l与曲线C 的交点为A,B,求MA MB⋅的值. 22.已知2256x≤且21log2x≥,求函数22()log log22x xf x=⋅的最大值和最小值.23.已知函数()2f x m x=--,m R∈,且()20f x+≥的解集为[]1,1-(1)求m的值;(2)若,,a b c∈R,且11123ma b c++=,求证239a b c++≥24.如图,在三棱柱111ABC A B C-中,H是正方形11AA B B的中心,122AA=,1C H⊥平面11AA B B,且15.C H=(Ⅰ)求异面直线AC与11A B所成角的余弦值;(Ⅱ)求二面角111A AC B--的正弦值;(Ⅲ)设N为棱11B C的中点,点M在平面11AA B B内,且MN⊥平面111A B C,求线段BM的长.25.已知函数()32f x x ax bx c=+++,过曲线()y f x=上的点()()1,1P f处的切线方程为31y x=+.(1)若函数()f x在2x=-处有极值,求()f x的解析式;(2)在(1)的条件下,求函数()y f x=在区间[]3,1-上的最大值.26.在直角坐标平面内,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A,B的极坐标分别为()π42,,5π224⎛⎫⎪⎝⎭,,曲线C的方程为rρ=(0r>).(1)求直线AB的直角坐标方程;(2)若直线AB和曲线C有且只有一个公共点,求r的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由题意知本题是一个古典概型概率的计算问题.从这4张卡片中随机抽取2张,总的方法数是246C =种,数学之和为偶数的有13,24++两种,所以所求概率为13,选B . 考点:古典概型.2.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==o .所以180454590A =--=o o o o . 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.3.B解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).4.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥r r r ,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r ,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.5.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.6.A解析:A 【解析】 【分析】当3λ=-时,两条直线是平行的,但是若两直线平行,则3λ=-或1λ=,从而可得两者之间的关系. 【详解】当3λ=-时,两条直线的方程分别为:6410x y ++=,3220x y +-=,此时两条直线平行;若两条直线平行,则()()2161λλλ⨯-=--,所以3λ=-或1λ=,经检验,两者均符合,综上,“3λ=-”是“直线()211x y λλ+-=与直线()614x y λ+-=平行” 的充分不必要条件,故选A. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.7.A解析:A 【解析】 【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果. 【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.8.B解析:B 【解析】 【分析】 【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义9.C解析:C 【解析】【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++23232324log log l 23og log 82>+⋅+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:2a b ab +≥和不等式222a b ab +≥的应用,属于中档题10.B解析:B 【解析】 【分析】根据渐近线的方程可求得,a b 的关系,再根据与椭圆221123x y +=有公共焦点求得c 即可.【详解】双曲线C 的渐近线方程为5y x =,可知5b a =①,椭圆221123x y +=的焦点坐标为(-3,0)和(3,0),所以a 2+b 2=9②,根据①②可知a 2=4,b 2=5. 故选:B. 【点睛】本题主要考查了双曲线与椭圆的基本量求法,属于基础题型.11.B解析:B 【解析】 【分析】 【详解】∵()()m n m n +⊥-r r r r ,∴()()0m n m n +⋅-=r r r r. ∴,即22(1)1[(2)4]0λλ++-++=,∴3λ=-,,故选B.【考点定位】 向量的坐标运算12.B解析:B 【解析】 试题分析:集合,故选B.考点:集合的交集运算.二、填空题13.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<< 由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<14.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率解析:13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率15.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立 15【解析】 【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程221 95x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,22P⎛-⎝⎭,所以1521512PFk==【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的解析:6 【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,1122,23BC C D BD ===,故16cos 422223C BD ∠==⨯⨯.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.17.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-. 故答案为1-.【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.18.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。
【典型题】高三数学下期末试题带答案(5)
【典型题】高三数学下期末试题带答案(5)一、选择题1.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( ) A .2i -+ B .2i -- C .12i + D .12i -+ 2.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .243.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .34.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈5.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( )A .49B .29C .12D .136.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A .2B .3C .22D .327.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元8.在ABC V 中,若 13,3,120AB BC C ==∠=o ,则AC =( )A .1B .2C .3D .4 9.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .210.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定 11.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( )Ax << B5x < C.2x <<D5x <<12.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<二、填空题13.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.14.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.15.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.16.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________. 17.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 18.已知向量a r与b r的夹角为60°,|a r|=2,|b r|=1,则|a r+2 b r|= ______ .19.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.20.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积.22.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 23.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值; (2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 24.△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值. 25.已知函数1(1)f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.26.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =3BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值;(Ⅲ)求直线CD 与平面ABD 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -, 所以向量OB uuu r对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.2.A解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.3.C解析:C 【解析】函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以有43332013222w k k k w w k w ππ=∴=>∴≥∴=≥Q 故选C4.D解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.5.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.6.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =,所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.7.D解析:D 【解析】 【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可. 【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D . 【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.8.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.9.D解析:D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.10.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.12.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<<Q{}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.二、填空题13.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立 解析:15【解析】 【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁. 【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方, 求得315,22P ⎛⎫- ⎪ ⎪⎝⎭,所以1521512PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.14.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A时取得最小值由解得代入计算所以的最小值为故答案为解析:-1【解析】【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y2=-+的最小值.【详解】画出约束条件10210x yx yx--≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y2=-+过点A时取得最小值,由{x0x y10=--=,解得()A0,1-,代入计算()z011=+-=-,所以1z x y2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.15.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =13FM MN =Q ∶∶KN KM ∴=∶又01404FN K a a --==-,FN KN K KM==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值16.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+3i =-+==.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++17.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列, 所以66(12)6312S --==--,故答案是63-. 点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.18.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模解析:【解析】【分析】【详解】 ∵平面向量a r 与b r 的夹角为060,21a b ==r r ,∴021cos601a b ⋅=⨯⨯=r r .∴2a b +====r r故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2) a =r 常用来求向量的模. 19.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】【分析】 由题意可得00b y x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率c e a =,可得2410e e --=,即可求解. 【详解】 由题意,双曲线的渐近线方程为b y x a =±,焦点为()1,0F c -,()2,0F c , 可得00b y x a=,① 又12MF MF ⊥,可得00001y y x c x c ⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,可得22b pa =,且2p c =,即有2224b ac c a ==-,即224ac 0c a --=由c e a=,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).20.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8【解析】考查类比的方法,11111222221111314283S hV S hV S hS h⋅⨯====,所以体积比为1∶8.三、解答题21.(Ⅰ)见解析(Ⅱ)111632132C A DEV-=⨯⨯⨯⨯=【解析】试题分析:(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF ∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为13•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF. 3分因为DF⊂平面A1CD,BC1不包含于平面A1CD, 4分所以BC1∥平面A1CD. 5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1. 8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D 10分所以三菱锥C﹣A1DE的体积为:==1. 12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积22.(Ⅰ)证明见解析;(Ⅱ)333+.【解析】【分析】【详解】试题分析:(Ⅰ)因为PH是四棱锥P-ABCD的高.所以AC ⊥PH,又AC ⊥BD,PH,BD 都在平面PHD 内,且PH I BD=H.所以AC ⊥平面PBD.故平面PAC ⊥平面PBD.(Ⅱ)因为ABCD 为等腰梯形,AB P CD,AC ⊥.所以因为∠APB=∠ADR=600所以,HD=HC=1.可得等腰梯形ABCD 的面积为S=12所以四棱锥的体积为V=13x ( 考点:本题主要考查立体几何中的垂直关系,体积的计算.点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算.在计算问题中,有“几何法”和“向量法”.利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程.本题(I )较为简单,(II )则体现了“一作、二证、三计算”的解题步骤.23.(1)1;(2)见解析【解析】【分析】(1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果.【详解】 (1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111 123m a b c ++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭ 23321112233b c a c a b a a b b c c =++++++++ 233233692233b c a c a b a a b b c c=++++++≥+=, 当且仅当2332 12233bc a c a b a a b b c c ======时,等号成立.所以239a b c ++≥.【点睛】本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题. 24.(Ⅰ)B=4π(Ⅱ)21+ 【解析】【分析】【详解】(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB ①在三角形ABC 中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC ②由①和②得sinBsinC=cosBsinC而C ∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2) S △ABC 12=ac sin B 2=, 由已知及余弦定理得:4=a 2+c 2﹣2ac cos4π≥2ac ﹣2ac 22⨯, 整理得:ac 22≤-,当且仅当a =c 时,等号成立, 则△ABC 面积的最大值为121222222⨯=-(22+2=1. 25.(Ⅰ)4,03⎛⎫-⎪⎝⎭;(Ⅱ)4m ≥ 【解析】 试题分析:(1)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由二次函数y=x 2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f (x )在x=﹣1处取得最大值m ﹣2,故有m ﹣2≥2,由此求得m 的范围.试题解析:(1)当5m =时,()()()()521311521x x f x x x x ⎧+<-⎪=-≤≤⎨⎪->⎩,由()2f x >得不等式的解集为3322x x ⎧⎫-<<⎨⎬⎩⎭.(2)由二次函数()222312y x x x =++=++,知函数在1x =-取得最小值2, 因为()()()()2121121m x x f x m x m x x ⎧+<-⎪=--≤≤⎨⎪->⎩,在1x =-处取得最大值2m -,所以要是二次函数223y x x =++与函数()y f x =的图象恒有公共点.只需22m -≥,即4m ≥.26.(Ⅰ)证明见解析;(Ⅱ)1326;(Ⅲ)34. 【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD ⊥平面ABC ,则AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD 所成的角.计算可得1132MN cos DMN DM ∠==.则异面直线BC 与MD 所成角的余弦值为1326. (Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD 所成的角.计算可得3CM sin CDM CD ∠==.即直线CD 与平面ABD 所成角的正弦值为3. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM 22=13AD AM +AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN 22=13AD AN +.在等腰三角形DMN 中,MN =1,可得1132cos MN DMN DM ∠==. 所以,异面直线BC 与MD 13.(Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD 点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.。
2019年高三数学下期末试题附答案
2019年高三数学下期末试题附答案一、选择题1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与c 所成的角的大小为( )A .120°B .90°C .60°D .30°2.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .143.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形 D .有一个内角为30°的等腰三角形4.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( )A .6B .8C .26D .425.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A 310 B .31010-C 433- D 343-6.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .167.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U8.已知函数()3sin 2cos 2[0,]2f xx x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]9.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .534B .532C .53 D .13 10.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .211.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .3212.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( ) A .1 B .2 C .3D .2二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.14.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.15.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC =u u u u v u u u v u u u v u u u v ,则AM AN ⋅u u u u v u u u v 的取值范围是_________. 16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.若,满足约束条件则的最大值 .18.计算:1726cos()sin 43ππ-+=_____. 19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.三、解答题21.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为25,求直线l 的普通方程. 22.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①;②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为5.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.25.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值. 26.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】 【分析】,b c αβ⊥⊥,直线,b c 的方向向量,b c r r分别是平面,αβ的法向量,根据二面角与法向量的关系,即可求解. 【详解】设直线,b c 的方向向量,b c r r,,b c αβ⊥⊥,所以,b c r r分别是平面,αβ的法向量,二面角l αβ--的大小为60°,,b c r r的夹角为060或0120,因为异面直线所的角为锐角或直角, 所以b 与c 所成的角为060. 故选:C. 【点睛】本题考查二面角与二面角平面的法向量的关系,属于基础题.2.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .3.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】 由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==,所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==. 所以45B C ==o .所以180454590A =--=o o o o . 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.4.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
【好题】高三数学下期末试题带答案
【好题】高三数学下期末试题带答案一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.已知在ABC V 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14-B .14C .23-D .233.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+4.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A .10B .11C .12D .155.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .106.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种7.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭8.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .2B .3 C .5 D .7 10.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =u u u v( )A .1123AB AD -u u uv u u u vB .1142AB AD +u u uv u u u vC .1132AB DA +u u uv u u u vD .1223AB AD -u u uv u u u v .11.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .12.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->二、填空题13.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .14.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.15.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC =u u u u v u u u v u u u v u u u v ,则AM AN ⋅u u u u v u u u v 的取值范围是_________. 16.已知样本数据,,,的均值,则样本数据,,,的均值为 .17.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)18.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.19.已知四棱锥S ABCD-的三视图如图所示,若该四棱锥的各个顶点都在球O的球面上,则球O的表面积等于_________.20.已知实数,x y满足不等式组201030 yx yx y-≤⎧⎪--≤⎨⎪+-≥⎩,则yx的取值范围为__________.三、解答题21.如图,四棱锥P ABCD-的底面ABCD是平行四边形,连接BD,其中DA DP=,BA BP=.(1)求证:PA BD⊥;(2)若DA DP⊥,060ABP∠=,2BA BP BD===,求二面角D PC B--的正弦值.22.如图,在直四棱柱1111ABCD A B C D-中,底面ABCD是矩形,1A D与1AD交于点E.124AA AB AD===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.23.如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,ABE 60∠=︒,G 为BE 的中点.(Ⅰ)求证:AG ⊥平面ADF ;(Ⅱ) 求AB 3=,BC 1=,求二面角D CA G --的余弦值.24.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩ (t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值. 25.已知函数1(1)f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.26.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx ====---=--∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e ,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.A解析:A 【解析】 【分析】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.3.A解析:A 【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB uuu r对应的复数为2i -+.故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.4.B解析:B 【解析】 【分析】 【详解】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类: 第一类:与信息0110有两个对应位置上的数字相同有246C =个;第二类:与信息0110有一个对应位置上的数字相同有14C 4=个;第三类:与信息0110没有位置上的数字相同有04C 1=个,由分类计数原理与信息0110至多有两个数字对应位置相同的共有64111++=个, 故选B .5.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9.【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.6.B解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).7.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.8.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】∵复数z 满足21ii z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.9.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。
2021年下半年高三数学期末考试试卷附答案解析
2021年下半年高三数学期末考试试卷高中数学考试时间:100分钟姓名:__________班级:__________考号:__________题号 一 二 三 总分 得分△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥ B .324k ≤≤ C .324k k ≥≤或 D .2k ≤2.曲线241x y -+=与直线4)2(+-=x k y 有两个交点时,实数K 的取值范围是:A 、]43,125(B 、),125(+∞C 、]43,31(D 、)125,0( 3.设 f (n)=n n n 212111+⋯⋯++++ (n ∈N *),则f (n+1)-f (n)等于( ) A 121+n B 221+n C 221121+++n n D 221121+-+n n4.函数()lg(31)f x x =-的定义域为( )A .RB .1(,)3-∞C .1[,)3+∞D .1(,)3+∞5.图中阴影部分可用哪一组二元一次不等式表示 ( )A .B .C .D .6.若向量a=(1,λ,2),b=(2,-1,2),a 、b 夹角的余弦值为89,则λ=( ) A .2 B .-2 C .-2或255 D .2或-2557.已知,,,那么下列不等关系一定正确的是 ( )A .B .C .D .8.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为A .π34B .π38C .π316 D .π3329.已知数列{}n a 满足的值为则若81n n n n 1n a 76a 1a 211a 221a 0a 2a ,)((=⎪⎪⎩⎪⎪⎨⎧<≤-<≤=+( ) A .76B .73C .75D .71⎩⎨⎧≥+--≥0221y x y ⎩⎨⎧≤+--≥0221y x y ⎪⎩⎪⎨⎧≥+--≥≤02210y x y x ⎪⎩⎪⎨⎧≤+--≥≤02210y x y x b a >d c >N n n ∈≥,2d b c a +>+bd ac >nnb a >cbd a >侧(左)视图正(主)视图俯视图226题图姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●10.P 在⊙O 外,PC 切⊙O 于C ,PAB 交⊙O 于A 、B ,则( )A.PCB B ∠=∠ B.PAC P ∠=∠ C.PCA B ∠=∠ D.PAC BCA ∠=∠二 、填空题(本大题共7小题,每小题5分,共35分)11.已知等比数列的首项,公比为,前项和为,若,则公比的取值范围是 .12.下左程序运行后输出的结果为_________, ______13.从6名短跑运动员中选4人参加4×100米接力,如果其中甲不能跑第一棒,乙不能跑第四棒,则共有____________多少种参赛方法(用数字作答) . 14.如图所示是一个由边长为1个单位的12个正方形组成的43⨯棋盘,规定每次只能沿正方形的边运动,且只能走一个单位,则从A 走到B 的最短路径的走法有 种15.函数5432()5101051f x x x x x x =-+-++的反函数1()f x -= .16.若向量b a ,的夹角为60°,=-⋅==)(,1||||b a a b a 则 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】高三数学下期末试题(附答案)(5)一、选择题1.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( )A .27B .11C .109D .362.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .193.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙4.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). A .2B .3C .5D .65.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)6.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( )A .1x <-或4x >B .0x …或2x -„C .0x <或2x >D .12x -„或3x …7.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直8.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .09.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>10.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .12± C .110± D .322± 11.函数()()2ln 1f x x x=+-的一个零点所在的区间是( ) A .()0,1B .()1,2C .()2,3D .()3,412.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.若三点1(2,3),(3,2),(,)2A B C m--共线,则m的值为.15.事件,,A B C为独立事件,若()()()111,,688P A B P B C P A B C⋅=⋅=⋅⋅=,则()P B=_____.16.在ABC△中,角A,B,C的对边分别为a,b,c,若cos1cos2cos1cos2b C Cc B B+=+,C 是锐角,且27a=,1cos3A=,则ABC△的面积为______.17.已知1OA=u u u r,3OB=u u u r,0OA OB•=u u u r u u u r,点C在AOB∠内,且AOC30∠=o,设OC mOA nOB=+u u u r u u u r u u u r,(,)m n R∈,则mn=__________.18.已知实数,x y满足不等式组201030yx yx y-≤⎧⎪--≤⎨⎪+-≥⎩,则yx的取值范围为__________.19.若x,y满足约束条件22010x yx yy--≤⎧⎪-+≥⎨⎪≤⎩,则32z x y=+的最大值为_____________.20.如图,圆C(圆心为C)的一条弦AB的长为2,则AB AC⋅u u u r u u u r=______.三、解答题21.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明: BC1//平面A1CD;(Ⅱ)设AA1= AC=CB=2,2,求三棱锥C一A1DE的体积.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.23.△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.24.已知数列{n a }的前n 项和Sn =n 2-5n (n∈N +).(1)求数列{n a }的通项公式; (2)求数列{12nn a +}的前n 项和Tn . 25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.26.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由秦九韶算法可得()())((())532231? 02311,f x x x x x x x x x x =++++=+++++0ν1∴=1ν=1303⨯+= 2ν33211=⨯+= 3ν113336=⨯+=故答案选D2.D解析:D 【解析】掷骰子共有36个结果,而落在圆x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41369=. 故选D3.A解析:A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.5.B解析:B 【解析】 【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点. 【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点()2,0.故选B 【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.6.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x ≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x …,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件; 故选C . 【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.7.D解析:D 【解析】解:利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D8.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v ,由题意可知:2211OM ==u u u u v ,12cos1201OM ON ou u u u v u u u v ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v .本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.9.C解析:C 【解析】 【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例.选项A ,当c =0时,由a >b ,不能推出ac 2>bc 2,故错误; 选项B ,当a =﹣1,b =﹣2时,显然有a >b ,但a 2<b 2,故错误; 选项C ,当a >b 时,必有a 3>b 3,故正确;选项D ,当a =﹣2,b =﹣1时,显然有a 2>b 2,但却有a <b ,故错误. 故选:C . 【点睛】本题考查命题真假的判断,涉及不等式的性质,属基础题.10.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r ,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 11.B解析:B 【解析】 【分析】先求出(1)(2)0,f f <根据零点存在性定理得解. 【详解】由题得()21ln 2=ln 2201f =--<, ()22ln3=ln3102f =-->,所以(1)(2)0,f f <所以函数()()2ln 1f x x x=+-的一个零点所在的区间是()1,2. 故选B 【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.解析:B 【解析】 【分析】本题首先可以根据两个事件能否同时发生来判断出它们是不是互斥事件,然后通过两个事件是否包含了所有的可能事件来判断它们是不是对立事件,最后通过两个事件是否可能出现来判断两个事件是否是不可能事件,最后即可得出结果., 【详解】因为事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,所以它们是互斥事件, 因为事件“甲分得红牌”与事件“乙分得红牌”不包含所有的可能事件,所以它们不是对立事件,所以它们是互斥但不对立事件,故选B . 【点睛】本题考查了事件的关系,互斥事件是指不可能同时发生的事件,而对立事件是指概率之和为1的互斥事件,不可能事件是指不可能发生的事件,考查推理能力,是简单题.二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.15.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题解析:12【解析】【分析】【详解】分析:根据独立事件的关系列出方程,解出()P B .详解:设()()()P A a,P B b,P C c ===,因为()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以111a ,b ,324c === 所以()1P B 2=点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.16.【解析】【分析】由及三角变换可得故于是得到或再根据可得从而然后根据余弦定理可求出于是可得所求三角形的面积【详解】由得∵∴∴又为三角形的内角∴或又∴于是由余弦定理得即解得故∴故答案为【点睛】正余弦定理解析:【解析】【分析】 由cos 1cos2cos 1cos2b C C c B B +=+及三角变换可得sin cos sin cos B C C B=,故sin2sin2B C =,于是得到B C =或2B C π+=,再根据1cos 3A =可得B C =,从而b c =,然后根据余弦定理可求出b c ==【详解】 由cos 1cos2cos 1cos2b C C c B B +=+,得22sin cos 2cos sin cos 2cos B C C C B B=, ∵cos 0,cos 0C B ≠≠, ∴sin cos sin cos B C C B=,∴sin2sin2B C =,又,B C 为三角形的内角,∴B C =或2B C π+=, 又1cos 3A =, ∴BC =,于是b c =. 由余弦定理得2222cos ,a b c b A =+-即(222223b b b =+-,解得b =,故c =∴11sin 22ABC S bc A ∆===故答案为.【点睛】正余弦定理常与三角变换结合在一起考查,此类问题一般以三角形为载体,解题时要注意合理利用相关公式和三角形三角的关系进行求解,考查综合运用知识解决问题的能力,属于中档题.17.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3【解析】 因为30AOC ∠=o,所以cos cos30OC OA AOC OC OA⋅∠===⋅o u u u r u u u r u u u r u u u r,从而有22=u u u r u u u r u u u r.因为1,0OA OB OA OB ==⋅=u u u r u u u r u u u r u u u r2=,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3m n = 18.【解析】【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单 解析:1,22⎡⎤⎢⎥⎣⎦【解析】【分析】 作出可行域,y x表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩„„…表示的平面区域ABC V (包括边界),所以y x 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题. 19.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数 解析:6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z 的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B , 此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.20.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答解析:2【解析】【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC= ,再由向量数量积的公式加以计算,可得AB AC ⋅u u u v u u u v 的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt △ACD 中,1AD AB 12==, 可得cosA=11,cosA AD AB AC AB AC AB AC AB AC AC AC =∴⋅=⋅=⋅⋅=u u u u v u u u u v u u u u v u u u u v u u u u v u u u v u u u v =2. 故答案为2【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.三、解答题21.(Ⅰ)见解析(Ⅱ)111632132C A DE V -=⨯⨯⨯⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分所以三菱锥C ﹣A 1DE 的体积为:==1. 12分 考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积22.(1)证明见解析;(2)69. 【解析】【分析】(1)证明1AA CD ⊥,CD AD ⊥,推出CD ⊥平面11AA D D ,得到CD AE ⊥,证明AE ED ⊥,即可证明AE ⊥平面ECD ;(2)建立坐标系,求出平面的法向量,利用空间向量的数量积求解直线1A C 与平面EAC 所成角的正弦值.【详解】(1)证明:∵四棱柱1111ABCD A B C D -是直四棱柱,∴1AA ⊥平面ABCD ,而CD ⊂平面ABCD ,则1AA CD ⊥,又CD AD ⊥,1AA AD A =I ,∴CD ⊥平面11AA D D ,因为平面11AA D D ,∴CD AE ⊥,∵1AA AD ⊥,1AA AD =,∴11AA D D 是正方形,∴AE ED ⊥,又CD ED D =I ,∴AE ⊥平面ECD .(2)解:建立如图所示的坐标系,1A D 与1AD 交于点E ,124AA AD AB ===,则()()()()10,0,0,0,0,4,2,4,0,0,4,0A A C D ,∴()0,2,2E ,∴()()()12,4,4,2,4,0,0,2,2A C AC AE =-==u u u u r u u u r u u u r ,设平面EAC 的法向量为(),,n x y z =r ,则·0·0n AC n AE ⎧=⎨=⎩u u u v v u u u v v ,即240220x y y z +=⎧⎨+=⎩, 不妨取()2,1,1n =--r ,则直线1A C 与平面EAC 所成角的正弦值为4446=63666n AC n AC-+-==r u u u r g r u u u r g . 【点睛】本题主要考查直线与平面所成角的求法,考查直线与平面垂直的判断和性质,考查推理能力与计算能力,属于中档题.23.(Ⅰ)B=4π(Ⅱ)21+ 【解析】【分析】【详解】(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB ①在三角形ABC 中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC ②由①和②得sinBsinC=cosBsinC而C ∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2) S △ABC 12=ac sin B 24=ac , 由已知及余弦定理得:4=a 2+c 2﹣2ac cos4π≥2ac ﹣2ac 22⨯, 整理得:ac 22≤-,当且仅当a =c 时,等号成立, 则△ABC 面积的最大值为121222222⨯=-(22+2=1. 24.(1)26()n a n n N +=-∈;(2)112n n n T -=--【解析】【分析】(1)运用数列的递推式:11,1,1n nn S n a S S n -=⎧=⎨->⎩,计算可得数列{n a }的通项公式;(2)结合(1)求得1322n n n a n +-=,运用错位相减法,结合等比数列的求和公式,即可得到数列{12n n a +}的前n 项和n T . 【详解】(1)因为11,1,1n n n S n a S S n -=⎧=⎨->⎩,()25n S n n n N +=-∈ 所以114a S ==-, 1n >时,()()22 515126n a n n n n n =---+-=- 1n =也适合,所以()+26N n a n n =-∈(2)因为1322n n n a n +-=, 所以12121432222n n n n n T -----=++⋅⋅⋅++ 2311214322222n n n n n T +----=++⋅⋅⋅++ 两式作差得:1211211322222n n n n T +--=++⋅⋅⋅+- 化简得1111222n n n T +-=--, 所以112n nn T -=--. 【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.25.(1);(2);(3). 【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是,根据独立重复试验次发生次的概率公式可得结果;(3)随机变量的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在的频率为:;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于60分的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量的所有可能取值为0,1,2,的分布列为:012的数学期望.26.(1)证明见解析;(2)1 12.【解析】【分析】(1)连接PF,BD由三线合一可得AD⊥BF,AD⊥PF,故而AD⊥平面PBF,于是AD⊥PB;(2)先证明PF⊥平面ABCD,再作PF的平行线,根据相似找到G,再利用等积转化求体积.【详解】连接PF,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD , ∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面G ED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积111311223382312D CEG G CED CED V V S GH PF V --==⋅=⨯⨯⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.。