油气田水驱采油机理与效果分析
油田采油中的水驱、气驱和聚驱技术比较研究

油田采油中的水驱、气驱和聚驱技术比较研究摘要:油田开发中,采油技术的选择对于提高采收率和经济效益至关重要。
水驱、气驱和聚驱是常用的技术,它们各自具有特点和适用性。
本文将比较水驱、气驱和聚驱技术的原理和适用性,以帮助油田工程师和决策者更好地选择合适的采油方法。
关键词:油田采油;水驱;气驱;聚驱;比较一、原理与适用性水驱技术是通过注入水来增加油藏中的压力,从而推动原油向井口移动。
这种技术适用于具有一定渗透率和较高孔隙度的油藏。
水驱技术的优点是成本相对较低,操作简单,并且对环境影响较小。
缺点是水驱存在一些局限性,比如在高温油藏或含有高盐度水的油藏中效果不佳。
气驱技术是通过注入气体(通常是天然气)来增加油藏中的压力,推动原油向井口移动。
这种技术适用于低渗透率和较高黏度的油藏。
气驱技术的优点是可以提高采收率,减少水的使用量,同时还可以利用天然气资源。
缺点是成本较高,操作复杂,而且对环境的影响也比较大。
聚驱技术是通过注入聚合物来改变油藏的流动特性,从而增加原油的采收率。
聚驱技术适用于低渗透率和高黏度的油藏。
聚驱技术的优点是能够改善油藏的流动性,提高采收率,并且可以在较短的时间内实现投产。
缺点是成本较高,而且在一些油藏中可能会出现聚合物降解和沉积的问题。
二、驱替效率与采收率驱替效率是指驱替剂(水、气体或聚合物)与原油的接触面积,以及驱替剂能够将原油从孔隙中排出的能力。
水驱技术的驱替效率较高,因为水与原油的相溶性较好,可以迅速与原油接触并推动其移动。
气驱技术的驱替效率相对较低,因为气体与原油的相溶性较差,使得驱替剂与原油接触面积较小,难以完全将原油驱出。
聚驱技术的驱替效率介于水驱和气驱之间,因为聚合物可以改变油藏的流动性,增加原油与驱替剂的接触面积。
采收率是指从油藏中采出的有效原油量与总原油量之间的比例。
水驱技术通常能够实现较高的采收率,因为水作为驱替剂可以有效地将原油驱出,并且在水驱过程中还会发生油水混流和相渗现象,进一步提高采收率。
油气田开发中后期的增产技术方法分析

油气田开发中后期的增产技术方法分析油气田的开发是一个繁琐的过程,其中包括开发初期、生产中期和开发后期等不同阶段。
其中,开发后期是增产技术最为重要的一个阶段。
本文将介绍油气田开发中后期的增产技术方法。
一、井筒增产技术1、水力压裂水力压裂是一种常用的增产技术,主要是通过在井筒内注入液体,增加油气储层内部的压力,使油气从储层中流出。
通过控制注入液体的压力、流量等参数,可以达到有效的增产效果。
2、酸化处理酸化处理也是一种常用的井筒增产技术,主要是通过在井筒内注入酸性液体,使储层内的岩石发生化学反应,增加储层的通透性,从而使油气更容易流出。
3、人工提高采收率人工提高采收率是一种技术难度较大的井筒增产技术,主要是通过在井筒内安装人工装置,增加井筒中的油气产出,从而达到增产的效果。
二、地下储层增产技术1、水驱2、气驱3、热采热采是一种对储层热效应较大的地下储层增产技术,主要是通过向储层中注入热能,提高储层内的温度,从而使油气从储层中流出。
1、地面调节地面调节是一种常用的其他增产技术,主要是通过调节地面设备的参数,如提高压力、增加流量等,来达到增产的效果。
2、水热震荡水热震荡是一种较为新颖的其他增产技术,主要是通过使用水热震荡装置,在储层中产生高温高压环境,从而破坏油气储层内部的结构,促进油气的流出。
结论:综上所述,油气田开发中后期的增产技术涉及到众多方面,其中包括井筒增产技术、地下储层增产技术和其他增产技术等。
在实际应用中,需要根据具体情况来选择适当的增产技术,并结合多种技术进行综合应用,以达到最好的增产效果。
水下采油树在深海油气田开发中的应用

水下采油树在深海油气田开发中的应用摘要:在飞速发展的今天,人们越来越意识到陆地上油气资源的匮乏,越来越多的人将目光投向了油气资源丰富的海洋。
我国海洋疆域十分辽阔,同时其中蕴藏有丰富的油气资源。
尤其在我国南海,其油气蕴藏量约占我国陆地油气资源总量的三分之一,故在世界上享有“中国的波斯湾”之美誉。
但是,在各种不稳定因素的作用下我国在海洋上的油气开发并不尽如人意。
其中,科技因素的制约最为关键。
水下采油树技术作为深海采油气最为合理的方式一直以来被国外先进科研机构掌控着。
在笔者看来,深海油气田开发注定将以水下采油树技术为主导。
因此,我国想要在深海采油中取得突破必须攻克水下采油树这一难题。
在此,笔者通过调查整理介绍了水下采油树在深海油气田开发中的应用,希望能为我国水下采油树技术的进步提供一些灵感和思路。
关键词:水下采油树;油气田开发;发展趋势前言我们国家的海洋油气开发已有近五十年的历史了。
但是,开采的范围大部分还仅仅局限于近海区域,对于深海油气的开发不是很理想。
当前世界海洋油气开发领域大多数对深海的标准定义为三百米。
而我国超过深海标准的海域有近一千五百万平方千米,但是由于技术原因至今仍有很大一片区域并未勘察到位。
随着一个个技术难题的攻破,我国未来的深海油气田的开发事业必将面临一个鼎盛的时期。
1.水下采油树的种类和特点众所周知,在深海油气田开发过程中,水下设备是必不可少的。
这其中包括水下采油树、水下控制系统、原油输出管道、跨接管、水下分离设备等等。
其中又以水下采油树最为关键。
自从上世纪六十年代第一台水下采油树诞生始,至今已有大约五十年的历史。
水下采油树经过近五十年的研究发展,从开始时实用水深仅三十米到现在实用水深近三千米。
从不足到完善的过程中,水下采油树也产生了许多种类令水下采油树的实用性得到了最大的提升。
在世界油气开发领域把这些不同种类的水下采油树大致分为两大类。
1.1按照采油树工作方式来分由于世界各地的水域环境不尽相同,因此,人们研究出各种适用于不同环境的水下采油树。
大庆油田油藏水驱注水水质指标及分析

ICSQ/SY DQ0605-2006代替Q/SY DQ0605-2000大庆油田油藏水驱注水水质指标及分析方法Indexes and analytical method of injected water quality in reservoir water flooding in daqing oil field2006-05-30 发布2006-06-30 实施中国石油天然气股份有限公司大庆油田有限责任公司发布中国石油天然气股份有限公司企业标准大庆油田有限责任公司前言本标准代替Q/SY DQ0605-2000《大庆油田油藏水驱注水水质指标及分析方法》。
本标准与Q/SY DQ0605-2000相比主要变化如下:——修改了Q/SY DQ0605-2000中不含聚合物注入水水质控制指标;——修改了Q/SY DQ0605-2000中含聚合物注入水水质控制指标。
本标准内有关信息是保密的,其版权属于大庆油田有限责任公司(以下简称油田公司)所有。
未经油田公司质量安全环保部的许可,该标准的任何一部分均不得泄露给第三方,或复制、或储存于可检索系统,也不允许以任何形式或任何方法(电、机械复制、抄录)传播……。
标准使用的管理权属油田公司,用户分两类:a) 油田公司和所属单位在其管理、科研、生产和经营活动中有权使用本标准;b)承包商/分包商、制造厂/供方,以上述第一类组织的名义,为达到下述目的也可被授权使用本标准:——为项目做准备或被授权使用本标准;——确实为这些组织执行任务。
本标准的提供程序是在获得充分的保密保证后才予以提供,并且是永不更改的须知程序,被授权使用本标准的单位,有责任安全保管并保证标准不被用于油田公司之外的目的。
油田公司将寻访这些组织,以确认他们是如何执行这些要求的。
本标准由大庆油田有限责任公司开发部提出。
本标准由大庆油田有限责任公司批准。
本标准由大庆油田有限责任公司开发地质专业标准化技术委员会归口。
油田采油中的水驱与化学驱技术应用与效果评价

油田采油中的水驱与化学驱技术应用与效果评价中国石油与天然气有限公司长庆油田分公司第一采油厂侯市作业区3陕西省榆林市1宁夏银川2陕西省延安市37190001 75000127100003摘要:本论文主要探讨了油田采油中的水驱和化学驱技术的应用和效果评价。
水驱是一种常用的增产技术,通过注入水来推动原油流动并提高采收率。
然而,水驱存在一些限制,如水与油的不相溶性以及水的相对低粘度。
为克服这些问题,化学驱技术应运而生。
化学驱技术包括聚合物驱、表面活性剂驱和聚合物/表面活性剂驱等,它们通过改变油水界面张力和流体黏度来提高采收率。
本文通过文献综述分析了水驱和化学驱技术的应用情况,并评价了其效果。
结果表明,化学驱技术相比水驱技术具有更好的增产效果,但其应用受到成本和环境因素的限制。
因此,未来的研究应重点关注化学驱技术的优化和可持续发展。
关键词:油田采油、水驱、化学驱、效果评价、增产技术引言:随着全球能源需求的增长,油田采油技术的研究和应用日益受到关注。
在采油过程中,水驱和化学驱技术作为常用的增产手段备受关注。
水驱通过注入水来推动原油流动,而化学驱技术则利用化学物质改变流体特性以提高采收率。
本文旨在探讨水驱和化学驱技术的应用与效果评价。
通过综合分析其应用情况和效果,我们将揭示化学驱技术相对于传统的水驱技术在增产方面的优势,并探讨其限制和发展潜力。
这将为未来的研究和工程实践提供有益的指导和启示。
一水驱技术在油田采油中的应用及效果评价水驱技术作为一种常用的增产技术,在油田采油中发挥着重要的作用。
其应用主要通过注入水来推动原油流动,以提高采收率。
水驱技术的应用涵盖了各种油藏类型和开发阶段,如常规油藏、非常规油藏以及二次采油和三次采油等。
(一)水驱技术在常规油藏中应用广泛。
常规油藏通常由孔隙和裂缝组成,原油主要以自然驱动力为驱动力。
水驱通过注入水来改变油藏的物理特性,包括增加油藏压力和改变相对渗透率。
通过这种方式,水能够将原油推向井口,提高采收率。
油藏工程水驱

求:地质储量,画出水驱曲 o/ Boi =7934×10.17×0.26×0.837×0.86/1.22 =12543吨 基本水驱曲线 100000 甲型水驱曲线 10000
累积产水量
1000 100 10 0 2000 4000 累积产油量 6000 8000
与N及μo/μw有关,它们越大,A2越大
C De
cSwc
cS oi B2 2.303 N
B2与N有关,N越大,B2越小
• 甲型水驱曲线也可写成:
lg(Wp C) A2 2 Ro
cS oi 2 B2 N 2.303
•lg(Wp+C)~Np呈直线,随含水上升和Wp增加,C的影 响减小,中后期半对数图上可得直线。 C的确定 在研究数值范围内取Np1、Np3,然后计算其中点 由Np2查的Wp2(生产数据表 ) N p1 N p 3 N p2 求C值 2 2 W p1 W p 3 W p 2 C W p1 W p 3 2W p 2
N p S oi N
Np o Bo w 1 WOR expc S wc S oi o Bo w d N
取对数
cN p Soi o Bo w cSwc lgWOR lg do Bo w 2.303 2.303N
• 影响因素:相渗曲线:c,d,Swc,Sor;
非均质性越严重直线段出现越晚; 原油粘度越大直线段出现越晚
• 甲乙型水驱曲线比较
–甲型Np、Wp规律性较强,而WOR为瞬时 指标,变化多 –甲型变化缓慢,直线段出现晚,难判断 –两条曲线互用,可判断直线段出现时间
例:大庆油田511井组小井距注水开发实验区, 511井控制含油面积A=7934 m3,he=10.17 m, ф=0.26, soi=0.837,Swc=0.163, μo=0.7cp, Boi=1.122, Bw=1.0,γo=0.86, γw=1.0。其它的生 产数据见表。
水驱、气驱、聚合物驱等油田采收率提高方法研究与对比分析

水驱、气驱、聚合物驱等油田采收率提高方法研究与对比分析摘要:本研究旨在探讨水驱、气驱和聚合物驱等不同的油田采收率提高方法,并对它们进行对比分析。
石油开采是全球能源供应的重要来源,提高油田采收率对于能源保障至关重要。
水驱、气驱和聚合物驱是常用的增油技术,本文从机理、适用条件、经济效益等方面进行对比分析。
水驱适用于高渗透率油藏,气驱适用于高黏度油藏,而聚合物驱则适用于低渗透率和中等黏度油藏。
关键词:水驱、气驱、聚合物驱、增油技术、采收率提高引言:随着全球能源需求的不断增长,石油开采的重要性日益凸显。
在众多油田采收率提高方法中,水驱、气驱和聚合物驱等技术备受关注。
这些方法的选择对于不同类型的油藏具有重要意义。
本文旨在对水驱、气驱和聚合物驱等增油技术进行深入研究和对比分析。
我们将关注其机理、适用条件以及经济效益等方面,以期为石油开采领域的决策者和从业者提供宝贵的参考和指导。
在摘要和正文之间,本引言将为读者揭示研究的动机与重要性,为后续内容的阅读铺垫。
一水驱技术在油田采收率提高中的应用与机理分析水驱技术是一种广泛应用于油田采收率提高的有效方法。
其基本原理是通过注入水进入油藏,利用水的推进力和物理化学作用,推动原油向井筒运移,从而提高采收率。
本文将深入探讨水驱技术在油田开发中的应用和机理。
1 水驱技术的应用主要集中在高渗透率油藏。
高渗透率油藏由于孔隙结构良好,原油的渗流性较高,水驱的效果较为显著。
通过合理规划注水井和生产井的布局,形成合理的注采井组合,可以最大程度地提高水驱的效果。
此外,水驱技术也常用于较早期的油藏开发阶段,有助于维持油藏压力,促进原油的流动,从而提高采收率。
2 水驱技术的机理复杂多样。
首先,水的注入可以增加油藏的有效饱和度,使原本困滞在孔隙中的原油得以解吸和解吻合,从而释放出更多的原油。
其次,水的注入有助于原油的稀释,降低原油的粘度,从而减小原油流动阻力,促进油藏中原油的流动。
此外,水驱过程中,由于水和原油之间存在表面张力作用,形成细小的水滴包裹原油,进一步增加了原油的流动性。
低渗透油田注水采油开发技术研究

低渗透油田注水采油开发技术研究发布时间:2022-04-25T12:54:50.626Z 来源:《工程管理前沿》2022年第1期作者:席得猛[导读] 近年来,中、高品质易开发的中高渗油气资源在新增勘探储量中所占比例越来越少,席得猛天津市大港油田公司第三采油厂摘要:近年来,中、高品质易开发的中高渗油气资源在新增勘探储量中所占比例越来越少,低渗油气资源所占比例不断增大。
据统计,截至2017年,在新增探明油气储量中低渗储量所占例高达73.7%。
同时,随着现有储量开采程度的不断加大,以往较难开发的低渗透油藏油气资源在石油天然气开发中的重要程度不断加大。
根据美国能源信息署的预计,在2035年致密油产量将占世界原油总产量的45%以上,因此实现低渗透油藏的高效开发变得愈发重要。
本文主要分析低渗透油田注水采油开发技术。
关键词:低渗透油藏;渗吸采油;提高采收率;研究进展;综述引言低渗透油藏通常具有“三低两高”特征,即原始地层压力低、孔隙度低、渗透率低、毛管压力高、有效应力高,一般均需要进行油藏改造才能具有有效产能,如鄂尔多斯盆地的长庆油田、延长油田在新井投产初期均采取压裂造缝的方式。
同时,低渗透油藏普遍微裂缝发育,储层呈现基质-裂缝双重流动系统,在注水开发中表现出无水采油期短、见水后含水上升快等问题,特别是见水后基质中仍存有大量原油,采收率低,因此低渗透油藏的有效开发一直是一大难题。
渗吸采油是低渗透油藏开发中的一项重要机理,在油藏开发中起着十分重要的作用,特别是该类油藏中压裂造缝未波及区域,储层致密,启动压力高,难以建立有效的驱替系统,产油主要依靠储层基质-天然裂缝之间的油水渗吸交换。
因此,渗吸采油技术的研究对于低渗透油藏提高采收率有重要的指导意义。
1、渗吸采油技术渗吸采油是指通过多孔介质自发渗吸将基质油开采出来的方法,在这个过程中,动力为毛管力,阻力为原油移动时的黏滞力。
相比于中高渗储层,低渗储层由于其喉道半径微小(多小于1μm),渗吸过程中的毛管力更大,渗吸动力更强,因此渗吸作用不容忽视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油气田水驱采油机理与效果分析
水驱采油是一种常用的油田开发方法,通过注入水来提高油田
的开采效率。
本文将对油气田水驱采油的机理和效果进行分析,
以帮助读者更好地理解和应用这一技术。
机理分析
水驱采油的机理主要包括排水驱替、溶解驱替和体积膨胀驱替。
首先是排水驱替,当注入的水驱流进油层时,水会排挤油的存在,形成一个向外扩展的水体。
这种机理主要针对油层中孔隙连通性
较好的区域,并能有效地驱赶油向高渗透性区域或油井的采集区。
其次是溶解驱替,当注入的水与原有的油混合时,可以对油中
溶解的低熔点杂质进行分解,使其变得更易流动。
这样一来,在
注入大量水的情况下,由于溶解在油中的低熔点杂质减少,油的
粘度也会随之减小,从而提高了油的流动性。
最后是体积膨胀驱替,当水注入油层时,由于水的体积相对油
而言较大,它会扩大油层中的孔隙空间,从而增加了油与水之间
的接触面积。
同时,由于水的流动性较好,它可以迅速渗透到较
远的地方,从而增加了驱油效果。
效果分析
水驱采油的效果主要体现在两个方面,即提高产能和提高采收率。
首先,水驱采油可以有效提高油田的产能。
通过注入水,可以
把原本无法开采的残余油驱出来,从而增加了油井的产出量。
此外,水可以作为驱替剂,在驱足水量的情况下,能够明显降低沿
注水井半径的动用稀采油剂、减少有机胶的用量,降低采油成本。
其次,水驱采油还可以提高油田的采收率。
通过注入大量水,
水可以迅速扩大油层的面积,使得石油处于更加有利的采油环境中。
同时,水的溶解作用可以降低油的粘度,使得原本被困于孔
隙中的油能够更容易地被驱出。
因此,在水驱采油的过程中,采
收率可以得到明显的提高。
此外,水驱采油还具有一定的环保优势。
相比其他采油方法,
水驱采油不需要使用大量的化学药剂,对环境的污染较小。
而且,水作为一种可再生资源,可以回收再利用,减少了对水资源的消耗。
然而,水驱采油也存在着一些问题与挑战。
首先,注入的水与
原始油井之间的渗透性不均匀,导致驱油效果有所不同。
此外,
在长时间的注水过程中,随着岩石孔隙渗透性的下降,油的驱替
效果也会减弱。
因此,在实际应用中,需要合理安排注水井的位
置和注水压力,以提高采油效果。
另外,水驱采油的过程也有一定的时间周期,需要不断地注水和生产,以维持油井的产量。
此外,由于不同油田的地质条件和油层性质存在差异,应用水驱采油的效果也会有所不同。
因此,在实际操作中,需要根据具体的油气田情况进行合理的选择和调整。
综上所述,油气田水驱采油是一种常用的油田开发方法,通过注入水来提高油田的开采效率。
其机理主要包括排水驱替、溶解驱替和体积膨胀驱替。
水驱采油的效果主要表现在提高产能和提高采收率两方面。
然而,该方法也面临着一些挑战和问题。
在实际应用中,要根据具体的情况合理选择和调整水驱采油的方案,以取得最好的开采效果。