医学图像处理技术综述

合集下载

图像处理技术综述

图像处理技术综述

图像处理技术综述图像处理是指对数字图像进行计算机处理的一系列技术。

其目的是识别、理解和改善图像的质量、更好地表示图像中的信息。

图像处理技术通过对图像进行数字处理,对图像进行增强、去燥、去模糊、变形、特征提取等操作,使得图像可以被更好地利用。

图像处理技术的应用广泛,包括医学、航空航天、军事、计算机视觉、娱乐等诸多领域。

下面将简要介绍图像处理技术的几个关键方面。

图像增强图像增强是一种通过对图像进行计算机处理来提高其质量的技术。

增强可以包括调整图像的亮度、对比度或色彩饱和度,或应用锐化技术。

增强可以明显提高图像的质量,以便于人类或计算机视觉系统更好地分析图像。

图像去燥图像去燥是通过对图像进行滤波以减少噪声的技术。

噪声可能是由于图像传感器、图像采集过程或图像处理造成的。

去噪可以提高图像质量,使得信息更加清晰。

图像去模糊是通过计算从模糊的图像中恢复尽可能多的信息的技术。

模糊可能是由于摄像机移动、光照不足、散焦模糊等造成的。

去模糊可以使得模糊的图像清晰化,以便于人类或计算机视觉系统更好地分析图像。

图像变形图像变形是一种改变图像形状、大小、方向等的技术。

变形技术可以用于图像增强、建模、图像贴合等应用中。

特征提取特征提取是从图像中提取关键信息的技术。

这些信息可以包括对象形状、边缘、纹理、颜色等。

经过特征提取处理的图像可以更好地用于对象检测、跟踪、分类等应用。

特征提取是计算机视觉领域中广泛应用的一项技术。

总之,图像处理技术在很多应用领域中都具有重要的作用。

随着计算机技术的发展,图像处理技术的应用将会越来越广泛,对于提高人们的生活质量、推动人类社会进步都将有着重要的意义。

生物医学工程中的图像处理技术综述

生物医学工程中的图像处理技术综述

生物医学工程中的图像处理技术综述生物医学工程 (Biomedical Engineering) 是一门结合生物学和工程学原理的跨学科领域,其目标是开发新的技术和解决医学问题。

图像处理技术在生物医学工程中起到了至关重要的作用,能够帮助医学专业人士分析和解释医学图像数据,从而改善诊断、监控和治疗过程。

医学图像处理技术是一种针对医学图像数据进行数字处理和分析的技术。

医学图像数据主要包括CT扫描、MRI扫描、X光成像、超声成像和核磁共振成像等。

这些图像数据包含着丰富的信息,但由于其复杂性和噪音等因素,需要通过图像处理技术进行预处理和分析。

预处理是图像处理的重要环节之一,它主要通过去除图像中的噪音、增强图像的对比度和清晰度、校正图像的畸变等方式来提高图像的质量。

常见的预处理方法包括滤波、边缘检测、直方图均衡化等。

滤波可以去除图像中的高频噪音,例如使用中值滤波器可以减少图像中的椒盐噪声。

边缘检测可以帮助医学专业人士找到图像中的物体边缘,从而更好地理解图像的结构。

直方图均衡化能够增强图像的对比度,使图像更易于观察和分析。

图像分割是生物医学工程中另一个重要的任务,其目标是将图像中的目标区域从背景中分离出来。

常见的图像分割方法包括阈值分割、区域生长、边缘检测等。

阈值分割是将图像中灰度值超过或低于某个阈值的像素分类到不同的区域,从而实现目标分割。

区域生长是从一个种子点开始,逐步生长出与种子点相连的像素,直至满足预定义的停止条件。

边缘检测可以找到图像中物体的边缘,帮助医学专业人士更好地分割图像。

除了预处理和图像分割,图像特征提取也是生物医学工程中的重要任务之一。

图像特征是从图像中提取的可区分目标的属性或特性,可以帮助医学专业人士区分不同的组织或病变。

常见的图像特征包括形状、纹理、颜色等。

形状特征描述了物体的几何形状,例如面积、周长、圆度等。

纹理特征描述了物体的细节信息,例如灰度共生矩阵、Gabor滤波器等。

颜色特征描述了物体的颜色属性,可以通过颜色直方图、颜色矩本等方式进行提取。

医学图像分割方法综述

医学图像分割方法综述
缺点: 需要人工交互以获得种子点;对噪声敏感,导致抽取出的 区域有空洞。
原理: 分裂合并的思想将图像先看成一个区域,然后区域不断被 分裂为四个矩形区域,直到每个区域内部都是相似的。研究重 点是分裂和合并规划的设计。
缺点: 分裂技术破坏区域边界。
example
• 在想要分割的部分选择一个或者多个种子 • 相邻像素就会以某种算法进行检测 • 将符合检测条件的像素加入到区域中 • 逐渐生长为满足约束条件的目标区域
途径: 先用基于区域的分裂合并方法分割图像,然后用边界信息对区 域间的轮廓进行优化;先在梯度幅值图像中检测屋脊点和波谷点, 通 过最大梯度路径连接奇异点获得初始图像分割,然后采用区域合并技 术获得最终结果等
其它分割方法
基于模糊理论:图像分割问题是典型的结构不良问题,而模糊集理论具 有描述不良问题的能力。基于模糊理论的图像分割方法包括模糊阈值 分割方法、模糊聚类分割方法和模糊连接度分割方法等。
优点:实现简单,对不同类灰度值或其他特征相差很大 时,能有效分 割。常做医学图像的预处理。
缺点: 不适应多通道和特征值相差不大的图像;对噪声和灰度不均匀 很敏感;阈值选取困难。
直方图
• 图像区域由灰度值区分开
基于阈值的图像分割
阈值:
选择灰度值作为阈值
g m in和g m a x
遍历整幅图像检测像素是否在此区域内
分类: 形变模型包括形变轮廓(deformable contour) 模型(又称 snake或active contour ),三维形变表面(deformable surface )模型。
形变轮廓模型: 使轮廓曲线在外能和内能的作用下向物体边 缘靠近,外力推动轮廓运动,而内力保持轮廓的光滑性。
基于阈值的图像分割

图像处理技术综述

图像处理技术综述

图像处理技术综述图像处理技术是应用于计算机视觉、计算机图形学、人工智能等领域的一种技术,用于改善或增强图像的质量、可视性、信息含量或拟合特定需求。

在当今信息技术快速发展的时代,图像处理技术已被越来越广泛地应用于医学、军事、安全监控、遥感、交通、广告等领域。

一、图像处理的基本流程1、获取图像首先需要获得图像,其方式很多。

例如,用专业摄像机或手机或扫描仪捕获图像。

另外,从互联网或其他共享资源中获取的图像也可以作为处理对象。

2、预处理图像在采集到图像数据后,需要对图像进行预处理。

这主要是为了去除噪声和畸变,以便更好地处理图像数据。

一些常见的操作包括滤波、均衡化、归一化和旋转等。

3、分割图像将图像分成若干个区域,通过分析这些区域来获取有用的信息。

分割可以基于颜色、亮度、纹理、图像特征、形状等进行。

4、提取特征提取图像中的特征是使用智能算法和其他技术来描述图像中重要的信息。

这些特征可以是纹理、边缘、角点或其他模式,并且可以用来判断图片是否满足特定要求。

5、抽取结构信息对于一些需要对图像进行量化和分析的应用,可以从图像中提取出具有代表性的结构信息。

应用某些算法,通过获取的特征和结构信息来分析图像。

根据分析的结果,可以识别物体、建立模型、人机交互等等。

图像滤波是一种常用的基本方法,它主要用于去除图像中的噪声。

常见的滤波方法有平均滤波、高斯滤波、中值滤波等。

图像增强技术是指通过算法将低质量的图像improved以获得更高质量的图像,例如提高对比度、清晰度、亮度等。

图像压缩是将数字图像压缩到尽可能小的空间,使其更容易存储和传输。

最常用的压缩方式是JPEG和PNG。

图像分割是将图像分割成不同的部分,每个部分对应相应的特征,这些部分组成面向目标识别和跟踪的区域。

常用而有效的算法包括K均值聚类、分水岭算法等。

特征提取是将图像中的信息抽象化作为特定可识别模式。

从图像中提取特征通常需要使用泛函分析和模式识别技术。

6、目标识别目标识别即在图像中找到和辨识特定目标,它应用于许多领域,例如医疗图像识别、移动机器人、军事目标等重要领域。

医学图像处理技术综述

医学图像处理技术综述

2009年第1期福建电脑医学图像处理技术综述周贤善(长江大学计算机科学学院湖北荆州434023)【摘要】:医学影像已成为医学技术中发展最快的领域之一,临床医生在医学图象处理技术的帮助下,对人体内部病变部位的观察更直接、更清晰,确诊率也更高。

本文对图像分割、图像配准和图像融合等医学图像处理技术的现状和发展进行了综述。

【关键词】:医学图像处理;图像分割;图像配准;图像融合0、引言医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像模式主要分为X-射线成像(X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。

在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。

利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。

医学图像处理技术包括很多方面,本文主要从图像分割、图像配准、图像融合技术方面进行介绍。

1、图像分割医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。

目前,主要以各种细胞、组织与器官的图像作为处理的对象。

传统的图像分割技术有基于区域的分割方法和基于边界的分割方法,前者依赖于图像的空间局部特征,如灰度、纹理及其它象素统计特性的均匀性等,后者主要是利用梯度信息确定目标的边界。

结合特定的理论工具,图象分割技术有了更进一步的发展。

比如基于三维可视化系统结合FastMarching 算法和Watershed变换的医学图象分割方法,能得到快速、准确的分割结果[1]。

近年来,随着其它新兴学科的发展,产生了一些全新的图像分割技术。

如基于统计学的方法、基于模糊理论的方法、基于神经网络的方法、基于小波分析的方法、基于模型的snake模型(动态轮廓模型)、组合优化模型等方法。

多层次医学图像配准与分割技术综述

多层次医学图像配准与分割技术综述

多层次医学图像配准与分割技术综述一、引言医学图像处理是医学领域中具有重要价值的核心技术之一。

在医学诊断、手术规划、治疗效果评估等方面,医学图像配准与分割技术已被广泛应用。

随着医学图像采集技术和存储设备的不断发展,逐渐形成了多层次医学图像数据,使得多层次医学图像配准与分割技术的研究成为医学图像处理领域的重要方向。

本综述将介绍多层次医学图像配准与分割技术的研究现状和发展趋势。

二、多层次医学图像配准技术1. 刚性配准技术对于同一患者所得到的多个医学图像,在进行医疗诊断分析时需要将不同图像上的相应结构对齐,这就需要配准技术。

刚性配准属于传统的医学图像配准方法。

刚性包括平移、旋转、缩放三个自由度,即3*3矩阵,可以保持原有图像图像的形状不变。

常用的刚性配准方法有基于特征点的配准、基于灰度直方图的配准和基于归一化互相关系数的配准等。

2. 非刚性配准技术随着科技的发展,非刚性配准技术的研究得到了极大的发展。

相比于刚性配准,非刚性配准有更高的自由度,能够更好的解决医学图像形变出现的问题。

非刚性配准技术涵盖了形变模型配准、基于图像弹性力学的配准和基于变形网格模型的配准等。

三、多层次医学图像分割技术多层次医学图像分割技术是指将医学图像划分成一系列像素或区域的过程,其中,每个像素或区域可以被赋予一个特定的标记。

精确的分割结果对于医学图像的诊断和治疗非常重要。

常用的多层次医学图像分割技术有如下几种:1. 基于像素的分割技术基于像素的方法最早应用于医学图像分割。

这种方法通过计算每个像素与周围像素的差异性,将像素划分为不同的类别,从而实现图像的分割。

像素为基础的方法有阈值分割、区域生长、边界检测等。

2. 基于边缘的分割技术基于边缘的分割方法也很早被应用于医学图像处理领域。

这种方法通过分析图像中的边缘信息,将边缘与背景之间判别出来。

它不但可以处理二维图像,而且还可以处理三维体积数据。

基于边缘的方法包括边缘检测、轮廓检测和基于水平卷积的分割方法等。

医学图像处理技术综述

医学图像处理技术综述

医学图像处理技术综述一、背景介绍医学图像处理技术是指将医学图像数据进行数字化,并通过计算机技术对其进行处理、分析和展示的一种技术。

自20世纪60年代开始,医学图像处理技术就已经开始应用于医学领域,如今已成为医学领域研究和临床诊断中不可或缺的重要技术之一。

二、医学图像处理技术的分类医学图像处理技术主要可分为预处理、分割、配准、重建、识别与分析等几个方面。

下面将一一进行介绍。

1. 预处理预处理是医学图像处理技术中非常重要的一个环节。

预处理主要是针对图像进行预处理,以提高图像的质量和精度。

常见的预处理方法包括滤波、增强、去噪等。

滤波是对图像进行平滑处理,以去除图像中的噪声。

滤波方法较多,如均值滤波、高斯滤波、中值滤波等。

而图像增强则是对图像进行亮度、对比度、色彩等方面进行调整,以增强图像的信息内容。

常见的增强方法包括直方图均衡化、Wiener滤波等。

2. 分割分割是指对医学图像中代表不同组织和器官的像素进行区分,以便对不同的组织或器官进行分析和诊断。

常见的分割方法包括阈值分割、区域生长方法等。

阈值分割是指在图像中设定阈值,将像素根据其灰度值的高低分为不同的区域。

而区域生长方法则是根据像素之间的相似性,将图像分为多个区域。

3. 配准配准是指将不同的医学图像进行对齐,以实现不同图像之间的比较和分析。

常见的配准方法包括刚体变换、非刚体变换、弹性变形等。

刚体变换是指通过旋转、平移、缩放等变换方式,将不同图像进行对齐。

而非刚体变换和弹性变形则更适合对不同形状、尺寸差异较大的图像进行对齐。

4. 重建重建是指将2D的医学图像转化为3D的模型,以更好地进行分析和诊断。

常见的重建方法包括层次重建、投影重建等。

层次重建是通过对2D图像进行横向和纵向的重叠拼接,将其重建为3D模型。

而投影重建则是通过CT等技术,将多个2D图像进行堆叠并投影,最终重建为3D模型。

5. 识别和分析医学图像处理技术的最终目的是对不同的组织和器官进行诊断和分析。

医学图像处理技术——CT和MRI图像的3D重建与分割技术

医学图像处理技术——CT和MRI图像的3D重建与分割技术

医学图像处理技术——CT和MRI图像的3D重建与分割技术在现代医学诊断中,医学图像处理技术已经成为必不可少的一部分。

医学图像处理技术可以通过对成像设备(如CT和MRI)获取的大量图像数据进行处理和分析,获取患者疾病的详细信息,从而为诊断和治疗提供关键的支持。

其中,CT和MRI图像的3D重建与分割技术是医学图像处理技术中的两个关键环节。

下面,本文将从技术原理、应用场景以及未来发展方向等方面综述CT和MRI图像的3D重建与分割技术。

技术原理3D重建技术是指将一系列二维图像数据通过一定的算法处理,从而还原成完整的三维模型。

而CT和MRI图像的3D重建主要是通过体素(voxel)的形式来完成的。

体素是三维空间(x、y、z)中的一个像素点,在体素极度密集的情况下,所构成的形状就趋近于真实的物体,可以达到较为真实的3D重建效果。

而3D分割技术,从字面上就能看出它的意义:将三维图像数据进行分离,实现对不同组织、不同器官、不同病变区域的有针对性的处理和分析。

在医学诊断中,正确、精准的分割技术能够提高治疗的效果,减少治疗的负担。

目前,基于深度学习(Deep Learning)和卷积神经网络(CNN)的3D分割技术也逐渐成为热点研究领域。

应用场景那么,在实际的医学诊断中,CT和MRI图像的3D重建与分割技术究竟能够发挥哪些作用呢?俯视全图,观察整体结构。

在医学图像处理中,仅能识别单张图片只能了解一部分结构,而通过多张CT和MRI图像,可以将一个器官或组织等的完整结构进行重建。

其中,3D重建技术能够快速准确重建三维模型,并依照组织器官分割的方式清晰地展示出图像结构的全貌。

指引精细区域,精准定位病灶。

在医学诊断中,CT和MRI图像的3D分割技术能够将患病组织和健康组织分隔开,帮忙医生更准确地定位病灶,促进后续治疗方案的制定和落实。

再者,对于某些难以定位的病灶,3D分割技术能够将其清晰可见,并辅以医生对其周围环境的分析,达到如实、精准、科学的治疗效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、医学图像处理技术综述1摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。

在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。

关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析1.引言近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。

20 世纪70 年代初,X-CT 的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。

计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。

各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。

在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。

至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。

因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。

此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。

本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。

2.医学图像三维可视化技术2.1三维可视化概述医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。

从CT/MRI或超声等成像系统获得二维断层图像,然后需要将图像格式转化成计算机方便处理的格式。

通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。

采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。

经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。

根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

2.2关键技术:图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。

图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。

快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。

在实际应用中有聚类法、统计学模型、弹性模型、区域生长、神经网络等适用于医学图像分割的具体方法。

由于可以对同一部位用不同的成像仪器多次成像,或用同一台仪器多次成像,这样产生了多模态图像。

多模态图像提供的信息经常相互覆盖和具有互补性,为了综合使用多种成像模式以提供更全面的信息,需要对各个模态的原始图像进行配准和数据融合,其整个过程称为数据整合。

整合的第一步是将多个医学图像的信息转换到一个公共的坐标框架内的研究,使多幅图像在空间域中达到几何位置的完全对应,称为三维医学图像的配准问题。

建立配准关系后,将多个图像的数据合成表示的过程,称为融合。

在医学应用中,不同模态的图像还提供了不互相覆盖的结构互补信息,比如,当CT提供的是骨信息,MRI提供的关于软组织的信息,所以可以用逻辑运算的方法来实现它们图像的合成。

当分割归类或数据整合结束后,对体数据进行体绘制。

体绘制一般分为直接体绘制和间接体绘制,由于三维医学图像数据量很大,采用直接体绘制方法,计算量过重,特别在远程应用和交互操作中,所以一般多采用间接体绘制。

在图形工作站上可以进行直接体绘制,近来随着计算机硬件快速发展,新的算法,如三维纹理映射技术,考虑了计算机图形硬件的特定功能及体绘制过程中的各种优化方法,从而大大地提高了直接体绘制的速度。

体绘制根据所用的投影算法不同加以分类,分为以对象空间为序的算法(又称为体素投影法)和以图像空间为序的算法!又称为光线投射法",一般来说,体素投影法绘制的速度比光线投射法快。

由于三维医学图像的绘制目的在于看见内部组织的细节,真实感并不是最重要的,所以在医学应用中的绘制要突出特定诊断所需要的信息,而忽略无关信息。

另外,高度的可交互性是三维医学图像绘制的另一个要求,即要求一些常见操作,如旋转,放大,移动,具有很好的实时性,或至少是在一个可以忍受的响应时间内完成。

这意味着在医学图像绘制中,绘制时间短的可视化方法更为实用。

未来的三维可视化技术将与虚拟现实技术相结合,不仅仅是获得体数据的工具,更主要的是能创造一个虚拟环境。

3.医学图像分割医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。

目前,主要以各种细胞、组织与器官的图像作为处理的对象,图像分割技术主要基于以下几种理论方法。

3.1 基于统计学的方法统计方法是近年来比较流行的医学图像分割方法。

从统计学出发的图像分割方法把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,观察到的图像是对实际物体做了某种变换并加入噪声的结果,因而要正确分割图像,从统计学的角度来看,就是要找出以最大的概率得到该图像的物体组合。

用吉布斯(Gibbs)分布表示的Markov随机场(MRF)模型,能够简单地通过势能形式表示图像像素之间的相互关系,因此周刚慧等结合人脑MR图像的空间关系定义Markov 随机场的能量形式,然后通过最大后验概率(MAP)方法估计Markov随机场的参数,并通过迭代方法求解。

层次MRF采用基于直方图的DAEM算法估计标准有限正交混合(SFNM)参数的全局最优值,并基于MRF先验参数的实际意义,采用一种近似的方法来简化这些参数的估计。

林亚忠等采用的混合金字塔Gibbs随机场模型,有效地解决了传统最大后验估计计算量庞大和Gibbs 随机场模型参数无监督及估计难等问题,使分割结果更为可靠。

3.2基于模糊集理论的方法医学图像一般较为复杂,有许多不确定性和不精确性,也即模糊性。

所以有人将模糊理论引入到图像处理与分析中,其中包括用模糊理论来解决分割问题。

基于模糊理论的图形分割方法包括模糊阈值分割方法、模糊聚类分割方法等。

模糊阈值分割技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数,用该函数表示目标像素之间的关系。

这种方法的难点在于隶属函数的选择。

模糊C均值聚类分割方法通过优化表示图像像素点与C各类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。

Venkateswarlu等[改进计算过程,提出了一种快速的聚类算法。

3.2.1基于模糊理论的方法模糊分割技术是在模糊集合理论基础上发展起来的,它可以很好地处理MR图像内在的模糊性和不确定性,而且对噪声不敏感。

模糊分割技术主要有模糊阈值、模糊聚类、模糊边缘检测等。

在各种模糊分割技术中,近年来模糊聚类技术,特别是模糊C-均值(FCM)聚类技术的应用最为广泛。

FCM是一种非监督模糊聚类后的标定过程,非常适合存在不确定性和模糊性特点的MR图像。

然而,FCM 算法本质上是一种局部搜索寻优技术,它的迭代过程采用爬山技术来寻找最优解,因此容易陷入局部极小值,而得不到全局最优解。

近年来相继出现了许多改进的FCM分割算法,其中快速模糊分割(FFCM)是最近模糊分割的研究热点。

FFCM算法对传统FCM算法的初始化进行了改进,用K-均值聚类的结果作为模糊聚类中心的初值,通过减少FCM的迭代次数来提高模糊聚类的速度。

它实际上是两次寻优的迭代过程,首先由K-均值聚类得到聚类中心的次最优解,再由FCM进行模糊聚类,最终得到图像的最优模糊分割。

3. 2.2 基于神经网络的方法按拓扑机构来分,神经网络技术可分为前向神经网络、反馈神经网络和自组织映射神经网络。

目前已有各种类型的神经网络应用于医学图像分割,如江宝钏等利用MRI多回波性,采用有指导的BP神经网络作为分类器,对脑部MR图像进行自动分割。

而Ahmed和Farag则是用自组织Kohenen网络对CT/MRI脑切片图像进行分割和标注,并将具有几何不变性的图像特征以模式的形式输入到Kohenen 网络,进行无指导的体素聚类,以得到感兴趣区域。

模糊神经网络(FNN)分割技术越来越多地得到学者们的青睐,黄永锋等提出了一种基于FNN的颅脑MRI半自动分割技术,仅对神经网络处理前和处理后的数据进行模糊化和去模糊化,其分割结果表明FNN分割技术的抗噪和抗模糊能力更强。

3. 2. 3 基于小波分析的分割方法小波变换是近年来得到广泛应用的一种数学工具,由于它具有良好的时一频局部化特征、尺度变化特征和方向特征,因此在图像处理上得到了广泛的应用。

小波变换和分析作为一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测,典型的有如Mallat小波模极大值边缘检测算法[63.3基于知识的方法基于知识的分割方法主要包括两方面的内容:(1)知识的获取,即归纳提取相关知识,建立知识库;(2)知识的应用,即有效地利用知识实现图像的自动分割。

其知识来源主要有:(1)临床知识,即某种疾病的症状及它们所处的位置;(2)解剖学知识,即某器官的解剖学和形态学信息,及其几何学与拓扑学的关系,这种知识通常用图谱表示;(3)成像知识,这类知识与成像方法和具体设备有关;(4)统计知识,如M I的质子密度(PD)、T1和T2统计数据。

Costin等提出了一种基于知识的模糊分割技术,首先对图像进行模糊化处理,然后利用相应的知识对各组织进行模糊边缘检测。

而谢逢等则提出了一种基于知识的人脑三维医学图像分割显示的方法。

首先,以框架为主要表示方法,建立完整的人脑三维知识模型,包含脑组织几何形态、生理功能、图像灰度三方面的信息;然后,采用“智能光线跟踪”方法,在模型知识指导下直接从体积数据中提取并显示各组织器官的表面。

3.4基于模型的方法该方法根据图像的先验知识建立模型,有动态轮廓模型(Active Contour Model,又称Snake)、组合优化模型等,其中Snake最为常用。

Snake算法的能量函数采用积分运算,具有较好的抗噪性,对目标的局部模糊也不敏感,但其结果常依赖于参数初始化,不具有足够的拓扑适应性,因此很多学者将Snake与其它方法结合起来使用,如王蓓等利用图像的先验知识与Snake结合的方法,避开图像的一些局部极小点,克服了Snake方法的一些不足。

相关文档
最新文档