单闭环直流调速系统

合集下载

单闭环直流调速系统

单闭环直流调速系统

单闭环直流调速系统是一种常见的控制系统,用于控制直流电机的转速。

以下是单闭环直流调速系统的基本组成和工作原理:
基本组成:
1. 直流电机:负责将电能转换为机械能。

2. 编码器或传感器:用于测量电机的实际转速。

3. 控制器:通常使用PID控制器,根据实际转速和设定转速之间的误差进行调节。

4. 功率放大器:将控制器输出的信号放大后送至电机,控制电机的转速。

工作原理:
1. 测量阶段:编码器或传感器测量电机的实际转速,并将这个信息反馈给控制器。

2. 比较阶段:控制器将实际转速与设定的目标转速进行比较,计算出误差值。

3. 控制阶段:根据误差值,控制器通过PID算法计算出控制信号,控制电机的转速。

4. 执行阶段:功率放大器根据控制信号控制电机的转速,使实际转速逐渐接近设定转速。

调速过程:
-如果实际转速低于设定转速,控制器会增加电机的供电,使电机加速。

-如果实际转速高于设定转速,控制器会减小电机的供电,使电机减速。

-控制器通过不断地调整电机的供电,使得实际转速稳定在设定的目标转速附近。

通过单闭环直流调速系统,可以实现对直流电机转速的精确控制,广泛应用于工业生产中的传动系统、自动化设备等领域。

直流调速系统单闭环

直流调速系统单闭环

单闭环直流调速系统 -- 有静差系统
结论: 1. 单闭环有静差晶闸管直流调速系统的动态稳定性
单闭环直流调速系统 -- 一般概念
对主电路微分方程右侧在相同区间积分;有:
1
2
6623EidRLddtiddt
3
式中方括号内;
第一项平均值为:E = Cen = Cen ; 第二项平均值为:IdR ; 第三项平均值为:零;
单闭环直流调速系统 -- 一般概念
因此得到: 1.17U2cosCenIdR n1.17U2cosIdR
(1K) (1K)
1K
单闭环直流调速系统 -- 有静差系统
闭环系统特征方程即为:
T m T T ss3 T m (T T s)s2 T m T ss 1 0 1 K 1 K 1 K
应用劳斯稳定判据可以得到系统的动态稳定条件:
KTm(TTs )Ts2 TTs
式中右侧即为系统临界放大系数 Kcr ;
nminnmin nN(1s)
单闭环直流调速系统 -- 有静差系统
单闭环直流调速系统 -- 有静差系统
在假设忽略各种非线性因素等条件下;系统中各环节 的稳态关系为:
➢ 电压比较器 UnUn *Un
➢ 放大器 UcKpUn
➢ 晶闸管触发整流装置 ➢ 调速系统开环机械特性
➢ 测速发电机
Ud0KsUc nUd0 IdR
Id(s)
1 R (1)
Ud0(s)E(s) Ts1
单闭环直流调速系统 -- 有静差系统
电动机轴上转矩与转速之间的关系符合电气传动系统
运动方程:
GD 2 dn
T e T L C m I d C m I dL 375 dt
GD 2 R 1 dn I d I dL 375 C m R dt

单闭环直流调速系统

单闭环直流调速系统

① 闭环静特性比开环机械特性硬得多。负载电流相等时
nb
nk 1 K
sk s ② 闭环系统的静差率要比开环小得多。理想空载转速相等时, b 1 K
③ 闭环系统可比开环有更大的调速范围。静差率相等时, Db 1 K Dk ④ 闭环系统比开环系统的抗干扰性能好。
3、如右图所示,设电机开始工 作于A点,当负载电流增大时, 开环和闭环系统工作的原理是不 同的: (1)开环系统,给定不变,电枢电 压就不变,电流增加,工作点将 沿最下面那条机械特性向下移动
(2)而对于闭环调速系统,给定不变,电流增加时,系统有维持转速不 下降的趋势,通过调节,电枢电压升高,工作点将移至B、C或D。 ABCD所在直线就是闭环系统的在该给定电压下的一条静特性曲线。
U d Id R n Ce
由上述四式不难得出
R n Id Ce 1 K Ce 1 K
该式称为系统的静特性方程。
* K p KsU n
K
K p K s Ce
称为系统的开环放大系数。
静特性与机械特性的比较-1
1、机械特性调速系统对开环而言;静特性是对闭环系统而言的。两者 都表示电机转速与负载电流之间的关系,即n=f(Id)。 2、一条机械特性曲线对应于一个不变的电枢电压;而一条静特性曲线 对应于 一个不变的给定电压。
Ud Id R U d↓→ n ↓→ U n ↓→ U↑→ U ct↑→ U d↑→ n↑ Ce
3、单闭环调速系统的静特性
闭环调速稳定工作时,电机转速与负载电流之间的关系称为闭 环调速系统的静特性。 由稳态结构图可知
* U U n Un
U ct K p U
U d K sU ct
当然,转速上升,转速反馈电压会升高,但其升值小于 给定电压增值,电压差总体上是增大的,转速是上升的。

单闭环直流调速系统

单闭环直流调速系统
• 然而静差率和机械特性硬度又有区别。如图1-2所 示 , a 和 b 为 调 压 调 速 系 统 的 机 械特 性 , 两 者 机 械 特 性 硬 度 相 同 , 即 额 定 转 速 降 落 Δn a = Δn b =10 r/ m in; 但 它 们 的 静 差 率 却 不相 同 , 其 原 因 是 理 想 空 载 转 速不同。
模块一 单闭环直流调速系统
• 项目一 单闭环直流调速系统的概念 和性能指标
• 项目二 转速负反馈有静差直流调速 系统
• 项目二 转速负反馈有静差直流调速 系统
返回
项目一 单闭环直流调速系统的 概念和性能指标
• 任务一 直流调速系统的基本概念
• 直流电动机调速系统在电力拖动调速系统中占据很重 要 的 地 位 , 由 于 直 流 电 动 机 具 有 良好 的 运 行 和 控 制 特 性,并且直流调速系统的理论和实践都很成熟,因此 在 许 多 工 业 领 域 得 到广 泛 的 应 用 , 如 挖 掘 、 轧 钢 、 造 纸、纺织等诸多领域。
上一页 下一页 返回
项目一 单闭环直流调速系统的 概念和性能指标
• 2. 抗 扰 性 能 指 标 • 当控制系统在稳定运行过程中受到电动机负载变化、
电 网 电 压 波 动 等 干 扰 因 素 的 影 响时 , 会 引 起 输 出 量 的 变 化,经历一段动态过程后,系统总能达到新的稳态。 这 一 恢 复 过 程 就是 系 统 的 抗 扰 过 程 。 一 般 以 系 统 稳 定 运 行 中 突 加 负 载 的 阶 跃 扰 动 后 的 过 渡 过 程 作 为 典 型 的 抗扰 过 程 , 如 图 1 -4 所 示 。 • ( 1) 动 态 降 落 Δn max %。 系 统 稳 定 运 行 时 , 突 加 一 个 扰 动 量 后 引 起 的 最 大 转 速 降 落 Δn max称 为 动 态 降 落 , 用 输 出 量 的 原 稳 态 值 n∞1的 百 分 数 来 表 示 。 当 输 出 量 在 动 态 降 落 后 又 恢 复 到新 的 稳 态 值 n∞2时 , 偏 差 ( n • ∞1- n∞2) 表 示 系 统 在 该 扰 动 作 用 下 的 稳 态 降 落 , 一 般 动 态 降 落都 大 于 稳 态 降 落 。

单闭环直流调速系统介绍课件

单闭环直流调速系统介绍课件

智能化:引入 人工智能技术, 实现系统的自 适应控制和自 学习能力
网络化:通过 互联网和物联 网技术,实现 远程监控和故 障诊断
集成化:将多 个子系统集成 为一个整体, 提高系统的集 成度和可靠性
节能和环保的发展趋势
01
提高能源利用率:通过优化控制策略和算法,降低能耗,提高能源利用率
02
减少污染排放:采用环保材料和工艺,减少生产过程中的污染排放
单闭环直流调速 系统介绍课件
目录
01. 单闭环直流调速系统的基本 概念
02. 单闭环直流调速系统的控制 方式
03. 单闭环直流调速系统的应用 领域
04. 单闭环直流调速系统的发展 趋势
1
单闭环直流调速 系统的基本概念
直流调速系统的组成
01
整流器:将交流 电转换为直流电
02
滤波器:去除直 流电中的交流成
04
应用场合:适用于对转速要求不高,但对响应速度要求较高的场合
电流控制方式
STEP1
STEP2
STEP3
STEP4
电压控制方式: 通过控制电压 来调节电流, 实现调速
电流控制方式: 通过控制电流 来调节电压, 实现调速
速度控制方式: 通过控制速度 来调节电流, 实现调速
位置控制方式: 通过控制位置 来调节电流, 实现调速
网络化:实现远程监控 和控制,提高系统的可 维护性和可扩展性
谢谢
速度控制方式
1
电压控制方式:通过调节直流电源的输出电压来控制电机的转速
2
电流控制方式:通过调节直流电源的输出电流来控制电机的转速
3
转速控制方式:通过调节电机的转速来控制电机的转速
4
位置控制方式:通过调节电机的位置来控制电机的转速

单闭环直流调速系统的动态分析

单闭环直流调速系统的动态分析
通过深入分析系统的动态特性,发现潜在的性能瓶颈和问题,提出针对性的优化措施,提高系统的整 体性能和稳定性。
促进工业自动化技术的发展
对单闭环直流调速系统的深入研究,有助于推动工业自动化技术的进步,提升我国工业的国际竞争力 。
单闭环直流调速系统
02
概述
系统组成和工作原理
系统组成
单闭环直流调速系统主要由转速控制器、功率放大器和直流电机等组成。
结论与展望
06
研究成果总结
01 建立了单闭环直流调速系统的数学模型,并 对其动态性能进行了深入分析。
02
提出了基于PI调节器的控制策略,有效提高 了系统的动态响应速度和稳定性。
03
通过实验验证了所提控制策略的有效性,并 与其他方法进行了对比分析。
04
分析了系统在不同工况下的性能表现,为实 际应用提供了理论依据。
数据存储
将处理后的数据妥善保存,以便后续仿真模型建立与 验证使用。
仿真模型建立与验证
数学模型建立
根据单闭环直流调速系统的原理,建立系统的数学模型, 如传递函数、状态方程等。
01
仿真软件选择
选择合适的仿真软件,如Simulink、 Matlab等,建立仿真模型。
02
03
模型验证
将实验数据代入仿真模型中进行验证, 比较仿真结果与实验结果的差异,评 估模型的准确性和可靠性。
直流电机调速的重要性
直流电机调速在工业自动化控制系统 中具有重要作用,能够实现精确的速 度控制和快速响应,提高生产效率和 产品质量。
目的和意义
研究单闭环直流调速系统的动态性能
通过对单闭环直流调速系统的动态分析,了解其响应速度、稳定性、抗干扰能力等方面的性能表现, 为实际应用提供理论依据。

实验三-单闭环不可逆直流调速系统实验

实验三-单闭环不可逆直流调速系统实验

实验三-单闭环不可逆直流调速系统实验一、实验目的本实验旨在通过实验研究单闭环不可逆直流调速系统的基本原理、调速特性和调速方法,掌握闭环调速的基本思想和方法,熟悉DC电机的调速控制原理和方法。

二、实验原理在单闭环不可逆直流调速系统中,电机的速度调节采用PID控制方式,通过控制电机的电源电压来实现调速。

具体的原理如下:1.电机的动作原理:当电枢通电后,电枢周围会产生一个磁场,同时在电枢内产生一个磁场,这两个磁场互相作用产生力矩,从而将电枢带动转动。

2.电机的调速控制:通过改变电机的电源电压来实现对电机的调速控制,电源电压越高,电机的转速越快,电源电压越低,电机的转速越慢。

而电源电压的改变通常是通过PWM调制实现的。

3.PID算法:PID控制算法采用比例、积分、微分三种控制信号结合的方式实现对电机转速的控制。

比例控制用于实时调整电机转速,积分控制用于修正电机转速下降过程中的偏差,微分控制用于提高系统的动态响应速度。

三、实验步骤1.将实验电路图搭建好,并连接好电源、电机、PWM信号发生器等模块。

2.对电机进行标定:通过对电机的空载转速和负载转速进行测量,确定电机传动系数和最大负载系数。

3.进行调速实验:通过修改PWM信号发生器的占空比来改变输入电压,从而实现对电机速度的控制。

同时通过示波器和万用表实时对电流、转速、电压等参数进行测量与记录。

4.使用PID算法对电机进行调速控制,对比比例控制、积分控制、微分控制和PID控制四种方法的效果和优缺点。

四、实验结果与分析实验中我们对电机的标定得到了电机的传动系数约为0.0134,最大负载系数为0.39。

在进行调速实验时,我们可以明显地感受到PWM信号发生器占空比的改变会对电机的转速产生影响。

同时通过测量和记录不同占空比下的电流、转速、电压等参数,我们可以得到调速系统的调速特性曲线。

通过加入PID算法,我们可以明显地感受到PID控制的稳定性和动态性,相比其他三种控制方法,PID控制能够更快速地达到稳定状态,同时产生的超调也更小。

单闭环直流调速系统课程设计

单闭环直流调速系统课程设计

《单闭环直流调速系统课程设计》摘要:本课程设计旨在深入研究单闭环直流调速系统的原理、设计方法和实现技术。

通过对系统的理论分析和实际设计,掌握直流调速系统的基本特性和性能指标的优化方法。

课程设计包括系统的方案选择、参数计算、硬件电路设计、软件编程以及系统调试与性能测试等环节。

通过本次课程设计,培养学生的工程实践能力、创新思维和解决实际问题的能力,为今后从事相关领域的工作打下坚实的基础。

一、概述直流调速系统在工业生产、交通运输、电力电子等领域具有广泛的应用。

它能够实现对直流电动机转速的精确控制,满足不同工况下对转速稳定性和调速精度的要求。

单闭环直流调速系统是一种常见的调速系统结构,具有简单可靠、性能稳定等优点。

本课程设计将围绕单闭环直流调速系统展开,深入探讨其设计与实现的相关技术。

二、单闭环直流调速系统的工作原理单闭环直流调速系统主要由直流电动机、转速反馈环节、放大器、触发器和晶闸管整流装置等组成。

其工作原理如下:转速反馈环节将直流电动机的实际转速转换为电信号反馈到放大器输入端,与给定转速信号进行比较,得到偏差信号。

放大器对偏差信号进行放大处理后,输出触发脉冲信号控制晶闸管整流装置的导通和关断,从而改变直流电动机的电枢电压,实现对电动机转速的调节。

通过转速反馈环节的作用,系统能够使电动机的实际转速跟随给定转速变化,保持系统的稳定性和良好的调速性能。

三、系统方案的选择在进行单闭环直流调速系统课程设计时,首先需要进行系统方案的选择。

根据设计要求和实际应用场景,可以选择不同的调速方案。

常见的方案有转速负反馈单闭环调速系统、电流负反馈单闭环调速系统等。

转速负反馈单闭环调速系统具有结构简单、稳定性好、调速范围广等优点,适用于大多数调速控制场合;电流负反馈单闭环调速系统则能够提高系统的动态性能,适用于对动态响应要求较高的系统。

在本课程设计中,选择转速负反馈单闭环调速系统作为设计方案。

四、系统参数的计算系统参数的计算是单闭环直流调速系统设计的重要环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七单元 晶闸管直流调速系统第二节单闭环直流调速系统一.转速负反馈宜流调速系统转速负反馈直流调速系统的原理如图17-40所示。

转速负反馈直流调速系统由转速给左、转速调节器ASR 、触发器CF 、晶闸管变流器U 、 测速发电机TG 等组成。

直流测速发电机输出电压与电动机转速成正比。

经分圧器分圧取出与转速n 成正 比的转速反馈电压Ufn 0转速给定电压Ugn 与Ufn 比较,其偏差电压A U=Ugn-Ufn 送转速调节器ASR 输入 端。

ASR 输出电圧作为触发器移相控制电压Uc,从而控制晶闸管变流器输出电压Udo 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统.1. 转速负反馈调速系统工作原理及其静特性设系统在负载T L 时,电动机以给定转速nl 稳定运行,此时电枢电流为Idl,对应 转速反馈电圧为Ufnl,晶闸管变流器输出电压为Udi 。

当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下 降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,A U=Ugn-Ufn 加。

转速调节器ASR 输出电压Uc 增加,使控制角a 减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为:T L t — Id t — ld (R 》+Rd ) t I -*Ufn I U t — Uc t -* a | —Ud t -*n t 。

图17-41所示为闭坏系统静特性和开环机械特性的关系。

n亠 =H o + A//图17—41闭环系统静特性和开环机械特性的关系.图中①②③④曲线是不同Ud之下的开环机械特性。

假设当负载电流为Idl时,电动机运行在曲线①机械特性的A点上。

当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由丁•电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至&点,转速只能相应下降。

但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电圧Ufn就相应减小,使偏差电压△ U增加,通过转速调肖器ASR自动调节,提高晶闸管变流器的输出电压UdO 由UdOl变为UdO2,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳左在曲线②机械特性的B点上。

同理随着负载电流增加为Id3, Id4,经过转速负反馈闭环系统自动调Vf作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C, D点上。

将A, B, C, D点连接起来的ABCD直线就是闭环系统的静特性。

由图可见,静特性的硬度比开环机械特性硬,转速降要小。

闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。

当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着UdOl升高为UdO2,转速n再回升到B点稳龙运行,整个动态过程不是沿着静特性AB直线变化的。

2.转速负反馈有静差调速系统及其静特性分析对调速系统来说,转速给左电压不变时,除了上而分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。

对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。

也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量伽转速)的影响都有强烈的抑制作用"但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。

为了使系统有较高的调速精度,必须提高转速给左电源和转速检测装苣的精度。

在图17-40所示的转速负反馈调速系统中,当转速调节器ASR采用比例调节器时,则该系统对于给定量Ugn来说,是有静差调速系统。

这种调速系统在稳态时,反馈量与给定量不相等,存在偏差△U, AU =Ugn-Ufn o因为这种调速系统是依靠偏差△ U#0为前提工作的,是通过偏差AU的变化来进行调卩的,因此系统的反馈量只能减小偏差△U的变化而不能消除偏差,即偏差AU始终存在,不能为零。

假如偏差△U=0,则转速调ii器(比例调节器)ASR的输出电压Uc=KpA U=0,晶闸管变流器输岀电压Ud0=0,电动机也将不可能运行,系统无法正常运行。

为了分析方便,假泄系统中所有环节都是工作在线性范用内,也就是说各环何如调节放大器、触发器及晶闸管变流器、测速发电机等)的输入输出关系都是线性的,并且假左晶闸管-电动机系统的电动机全部工作在电流连续段,即它的开环机械特性全是连续段。

对于图17-40所示的转速负反馈单闭环调速系统来说,各环卩的静态(稳态防程式如下:转速调节器采用比例放大器:Uc=Kp(Ug… — UfJ^KpAU式中Kp一一放大器的电压放大倍数。

触发器和晶闸管变流器:UdouKuUc式中Udo——晶闸管变流器的空载输出电圧:UC——触发器的移相控制电压(即转速调节器输出电压);Ku——晶闸管变流器的电压放大倍数。

晶闸管一电动机系统:C e<P测速发电机:Ufn^Kfn死式中Kfn—一测速发电机的反馈系数。

从上述四个关系式中消去中间变量并整理后,即可求得转速负反馈单闭环调速系统的静特性方程为:n C e0(l + K) C e0(l + K)Id ~ n°b式中K一一闭环系统的开环放大系数,K=KpKuKfn / (Ce 4)):nOb—一闭环系统的理想空载转速;A nb ---闭环系统的静态速降。

3.开环系统和闭环系统的比较在图1740所示的转速负反馈单闭环调速系统中.当断开转速反馈回路时,系统即为开环系统,其机械特性为:©Ku% a"C e0 一丽I产弧-△%式中nok—一开环系统的理想空载转速;、Ank一一开环系统的静态速降。

由以上分析可知,开环系统和闭环系统相比较有以下几方面的特点:(1)在转速给定电压Ugn相同时,开环系统的理想空载转速nOK为闭环系统的理想空載转速nOb的(1+K)倍。

这是由于闭环系统的转速反馈电压Ufn抵消大部分的转速给定电压Ugn,使加在转速调节放大器ASR输入端的电压(U=Ugn-Ufn)很小的缘故。

(2)闭环系统静特性比开环系统机械特性硬,在相同负载电流条件下,闭环系统的静态转速降△ nb仅为开环系统静态转速降△ nk的1 / (1+K)倍。

(3)当闭环系统的理想空载转速nOb和开环系统的理想空载转速nOk相同时,此时闭环系统的静差率Sb ( S厂如)仅为开环系统的静差率Sk(二=也)的1 / (1+K)倍, % %系统闭环后静差率可显箸减小。

(4)当系统静差率S要求一左时,闭环系统可大大提高调速范囤Do开环系统:D 尸弘黑s)闭环系统:W册可当开环系统和闭环系统电动机的最髙转速都为ne,而最低静差率的要求相同时,闭环系统的调速范围可达开环系统调速范围的(1+K)倍。

(5)闭环系统中,一方面转速紧紧跟随转速给泄电压变化,另一方而对包围在闭环系统前向通道中各种扰动(如负载变化、交流电压波动、电动机励磁电流变化等)的影响有强烈的抑制作用。

4.转速负反馈无静差调速系统如前所述,当转速负反馈调速系统中转速调节器采用比例调节器时,系统是依靠偏差为前提而工作的,这是有静差的调速系统。

当转速负反馈调速系统中转速调巧器采用积分调巧器或比例枳分调节器时,由于积分调卩器或比例积分调节器具有积分控制作用,不仅能依靠AU本身,还能依靠偏差△ U的积累进行调节。

当系统给左量和反馈量一出现,AU就进行调节,以消除偏差直到△U=0,但其积分仍存在,有相应的输出(不像比例调右器^AU为零时,英输出也为零),从而使调速系统在稳态时无静差,这就是无静差的调速系统,所以转速调节器采用积分调节器或比例积分器的调速系统是无静差系统。

虽然采用积分调卩器的调速系统是无静差系统,使系统在稳态时没有静差,但它的动态响应速度很慢。

当实际转速n偏离给左转速时,在转速调右器ASR(积分调节器)的输人端虽然立即产生偏差信号AU,但是转速调肖器ASR(积分调节器)的输岀电压Uc不是迅速地紧跟输入信号的变化而变化,而是随时间线性增加(或减小),它的动态响应速度很慢。

因而实际应用中转速调节器ASR很少采用积分调节器,都是采用比例枳分调节器。

图17-42为转速调肖器ASR采用比例枳分调肖器的单闭环转速负反馈无静差调速系统。

由前而分析可知,比例积分调节器的输出由比例和积分两部分组成。

比例部分能迅速反映调节作用,而积分部分则能最后消除静态偏差。

比例积分调肖器的等效放大倍数在静态与当突加输入电压Ui的瞬间,电容C相当于短路,等于反馈回路只有动态过程中是不同的。

反馈电阻Rf的情况,此时相当于比例调肖器动态等效放大倍数Rf/Rl 比较小;而在稳态(静态)时,电容相当于开路,调节器相当于开路,等效放大倍数很大,近似等于运算放大器的开环放大倍数(诃〜IO*),可以图17-42采用比例枳分调节器的单闭环转速负反懺无静差调速系统使系统做到基本无静差。

由于系统是无静差调速系统,系统的静特性很硬,静态转速降△ 20,因而没有必要进行静特性计算。

下而详细分析负载变化时系统的调节过程。

稳态时,对应于转速给左电压Ugn 及负载转矩T LI , 电动机稳定转速为nl,电动机的电流为Idl 。

此时转速 反馈电压为Ufnl,转速凋节器ASR (比例积分凋节器)的输 入偏差电压△U=Ugnl -Ufnl=O,(即 Ugnl=Ufnl),而 ASR 的 输出电压Uc 由于积分作用保持在Ucl,使晶闸管变流器 输出电压为Udi,以维持电动机在转速给定nl 下运转。

当负载转矩在某一瞬间突然由TL1增加到TL2,负载转 矩大于电动机的电磁转矩而造成电动机转速开始下降, 于是转速偏离给左值nl 而产生转速偏差An,使转速调 i'j 器ASR 输入偏差电压△ U=Ugnl-Ufnl>0.于是通过转 速调节器ASR (比例积分调节器)产生调右作用而消除偏 差。

为了分析方便起见,先分别考虑转速调右器ASR 的 "比例”与"积分”两部分的调节作用,然后再叠加起来 分析总的调节过程。

首先考虑ASR 转速调节器的比例部分的调节作用。

当AU 〉。

后,比例部分立即输出KpAU,相应使晶闸管 变流器输岀电压增加△Udi, △ Udi 的大小与转速偏差△ n 成正比,如图I7-43C 所示的曲线①。

相关文档
最新文档