脱硫系统优化运行探讨

合集下载

脱硫系统运行优化措施

脱硫系统运行优化措施

脱硫系统运行优化措施引言脱硫系统是处理燃煤电厂烟气中二氧化硫(SO2)的关键设备,其运行效果直接影响到环境保护和发电效益。

为了提高脱硫系统的运行效率,减少二氧化硫的排放,需要采取一系列优化措施。

本文将介绍几种常见的脱硫系统运行优化措施,包括操作优化、设备维护和管理措施。

操作优化1. 确定合适的石灰石添加量在脱硫过程中,石灰石是常用的脱硫剂。

合适的石灰石添加量可以确保脱硫效果的最大化。

通过系统监测和实时调整,确定合适的石灰石添加量,使得脱硫剂的利用率达到最高。

2. 控制脱硫塔内循环液流量脱硫塔内的循环液对于脱硫效果至关重要。

适当控制循环液流量可以确保脱硫剂和污染物的充分接触,提高脱硫效率。

通过调整循环液泵的转速或阀门的开度,控制循环液流量,达到最佳的脱硫效果。

3. 优化反应器温度反应器温度是脱硫过程中影响反应速率的重要因素。

适当提高反应器温度可以加快脱硫反应速率,提高脱硫效果。

然而,过高的温度可能导致脱硫剂的降解和设备的损坏。

因此,需要根据煤质和脱硫塔的实际情况,确定合适的反应器温度。

设备维护1. 定期清洗除尘器脱硫系统中的除尘器起到了去除烟气中颗粒物的重要作用。

定期清洗除尘器可以确保其正常运行,避免堵塞和漏风的问题。

清洗除尘器时,应该使用合适的清洗剂,避免对设备造成腐蚀或损伤。

2. 维护喷嘴和搅拌器脱硫系统中的喷嘴和搅拌器对循环液的均匀分布和颗粒物的悬浮起着重要作用。

定期检查和维护喷嘴和搅拌器,确保其正常工作。

如果出现堵塞或损坏,应及时更换或修复。

3. 检查管道和阀门脱硫系统中的管道和阀门的正常运行对脱硫效果至关重要。

定期检查管道和阀门,发现问题及时修复或更换,避免漏气或漏液的情况发生。

管理措施1. 建立严格的操作规程对脱硫系统的操作者进行培训,并建立严格的操作规程。

操作人员应按照规程进行操作,保证系统的正常运行。

同时,应加强对操作人员的监督和管理,及时发现并纠正操作不当的问题。

2. 制定系统监测计划建立完善的系统监测计划,对脱硫系统的运行状况进行实时监测。

石灰石-石膏湿法烟气脱硫脱水系统运行优化

石灰石-石膏湿法烟气脱硫脱水系统运行优化

石灰石-石膏湿法烟气脱硫脱水系统运行优化石灰石-石膏湿法烟气脱硫脱水系统是烟气脱硫脱水技术中常见的一种方法,对于工业生产中排放的烟气进行净化处理具有重要意义。

系统的运行优化对于提高处理效率、降低能耗、保障环境安全同样至关重要。

本文将对石灰石-石膏湿法烟气脱硫脱水系统运行优化进行探讨,并提出相关建议和解决方案。

一、系统结构与工作原理石灰石-石膏湿法烟气脱硫脱水系统主要由烟气脱硫脱水装置、石灰石浆液制备系统、脱水系统、石膏脱水再生系统等部分组成。

其工作原理是将排放的烟气经过脱硫塔,利用石灰石浆液中的Ca(OH)2与SO2反应生成CaSO3、CaSO4等沉淀物,并将烟气中的SO2、NOx 等有害物质吸收、氧化、转化成固体废物,然后通过脱水系统将脱硫脱水产生的石膏脱水,达到排放标准后进行再生利用。

二、系统运行优化1. 设备优化石灰石-石膏湿法烟气脱硫脱水系统中的关键设备包括脱硫塔、搅拌器、脱水设备等,对于这些设备的工作状态进行优化是系统运行优化的重要环节。

首先要做好设备的定期维护保养工作,保证设备的正常运行和使用寿命。

其次是对设备进行技术改造和升级,采用先进的技术手段完善设备功能,提高设备的稳定性和耐久性。

还要加强对设备运行数据的监测和分析,及时发现并处理设备运行中的问题,保障系统的平稳运行。

2. 工艺优化石灰石-石膏湿法烟气脱硫脱水系统的工艺优化主要包括石灰石浆液制备、脱硫反应、石膏脱水等环节。

在石灰石浆液制备过程中,应注意石灰石粉末与水的比例、搅拌速度、搅拌时间等参数的调整,以保证制备出浆液的浓度和稳定性。

在脱硫反应过程中,应根据烟气中SO2、NOx的含量和流速等参数,调整脱硫塔中浆液的供应量和分布方式,实现对有害物质的高效吸收和转化。

在石膏脱水环节,应根据脱水设备的特性,合理控制脱水速度和温度,提高脱水效率和质量。

3. 能耗优化石灰石-石膏湿法烟气脱硫脱水系统的运行中涉及大量的能源消耗,包括水泵、搅拌器、脱水设备等设备的驱动能耗,石灰石浆液制备、脱硫反应、石膏脱水等过程中的能量消耗等。

烟气循环流化床脱硫系统运行优化研究

烟气循环流化床脱硫系统运行优化研究
从 吸收塔顶部 侧 向排 入 布袋除尘 器进行 烟气 的二次 除尘 。经 除尘 后 的净烟气 经增压 风机升 压后排 入 炯
C H2S 2CS 31 2+/ 2 40 ) O- aO・/ H0 1 H0 + 2 2
Ca O3 12 H2 S ・ / 0+ 1202 / =CA S04 12 H2 ・ / 0
作者简介 : 平 ( 9 6 ) , 刘 17 一 男 陕两神木人 , , 事发电厂脱硫除灰运行管理方面的T作 。 本科 从
K ION H 科 技 综 述 。 I EJZ GS U
÷薯 _| 。
| __ ; _
尘 器进 行 气 固分 离 。脱 硫 布袋 除尘 器共 设 有4 灰 个
二 氧 化 硫 浓 度 ≤4 0mg m 。脱 硫 后 粉 尘 浓 度 ≤ o / N
5 m /m , 系统设 计 参数见 表 l 0 gN 3其 。
表 1 2 l 0MW 机 组脱 硫 除 尘 系统 主 要 设 计参 数 x 1
性能和设计数据 吸收剂摩尔比C // lmo ) aS( ・ l mo 。
1 脱 硫 系统
由1 2 锅炉 产 生 的高 温烟 气经 炉膛 、水平 烟 、号 道、 尾部烟 道进入 电除尘 器除尘 后 , 烟气 从引 风机后 水 平 主烟道 引 , 过烟 气 烟箱 , 经 汇入 1 条脱 硫 系 统 主炯 道 , 从底 部进 入脱硫 吸收塔 , 烟气在 吸收塔 内经
2 运 行 调 整 、 化 的 主 要 内容 优
降低 生石 灰粉 耗量是 发 电公 司主要 从调 整优 化消化 系统 、 木 脱硫 灰循 环及外 排 灰系统 、 吸收塔 系统 的运行 人手 , 并 且严 格 控制 生石 灰 粉 的 品质 , 以达 到控 制 生 石灰

工程脱硫系统优化方案

工程脱硫系统优化方案

工程脱硫系统优化方案一、工程脱硫系统概述工程脱硫系统主要是通过化学吸收法和干法脱硫技术来实现对排放废气中二氧化硫的去除。

化学吸收法是指采用氧化钙、氧化钠或海水等吸收剂将废气中的二氧化硫转化为硫酸盐等物质,再通过化学反应或物理方法将其与吸收剂分离。

而干法脱硫技术则是利用吸附剂或稀土催化剂直接吸附或氧化废气中的二氧化硫,达到脱硫的目的。

工程脱硫系统的主要成分包括废气收集系统、脱硫反应器、吸收液循环系统、气液分离系统和尾气处理系统等。

二、工程脱硫系统优化方案1. 优化脱硫反应器结构脱硫反应器是工程脱硫系统的核心设备,其结构设计对脱硫效率和稳定性影响很大。

传统的脱硫反应器通常采用填料式结构,通过填充物与废气和吸收液进行接触反应,但这种结构存在填充物损耗大、压降增大、清洗困难等问题。

因此,可以采用板式和灌注式反应器结构来替代传统的填料式反应器,这种结构能够有效提高废气和吸收液的接触效率,降低压降,减少清洗和更换成本,从而提高脱硫效率和降低运营成本。

2. 优化吸收剂配比和循环系统吸收剂的类型和配比对脱硫系统的效率和运行成本有着重要影响。

传统的工程脱硫系统大多采用氧化钙或氢氧化钠等碱性吸收剂,其缺点是对二氧化硫的吸收效率低、生成的废渣处理成本高、吸收液循环损失大等。

因此,可采用新型吸收剂如氨水、海水等具有高效吸收、废渣易处理和低损耗的特点,通过合理配比和改进循环系统,可有效降低脱硫成本,提高环保效果。

3. 优化气体预处理和吸收液处理系统工程脱硫系统的稳定运行离不开气体预处理和吸收液的有效处理。

气体预处理主要包括除尘、除湿等工艺,能有效保护脱硫反应器和延长设备寿命。

此外,应加强对吸收液的处理,包括浓缩、脱水、稳定化等过程,以提高吸收液的循环利用率和降低处理成本。

4. 采用先进的监测与控制技术工程脱硫系统的优化还需要依靠先进的监测与控制技术,以保障系统的稳定运行和高效脱硫。

可采用在线监测设备对废气成分、温度、压力等参数进行实时监测,通过数据分析和智能控制,实现对脱硫过程的精准调控和优化,同时可采用远程监控系统,实现对设备状态的实时监控和预警,及时处理问题,降低运维成本。

脱硫脱硝装置的运行状态分析及问题优化

脱硫脱硝装置的运行状态分析及问题优化

建筑设计238产 城脱硫脱硝装置的运行状态分析及问题优化孙文行摘要:随着我国经济快速发展,工业生产中排放的SO2、NOx成为大气污染物的主要来源。

SO2、NOx和颗粒物大量存在于燃烧反应生成的烟气中,这部分烟气已成为大气污染的核心来源。

由于含硫原料的使用越来越广泛以及国家对于环境保护的考量,各类燃烧装置产生的烟气排放面临着越来越严格的限制和约束,如何消除烟气中SO2、NOx和颗粒物已成为生产企业关心的重点。

近年来烟气脱硝除尘脱硫装置得到长足发展,在烟气净化问题中发挥了重要的作用。

但受限于当前的装置设计和制造水力,脱硝脱硫装置在使用过程中仍然存在诸多问题,需要提出并进行改进探究,提高装置对原料硫含量适应性,以确保设备投入运行后排放的污染物浓度达到国家排放标准。

关键词:脱硫脱硝装置;问题分析;改进探究1 概述二氧化硫和氮氧化物是酸雨的主要前体物质,我国二氧化硫和氮氧化物排放量巨大,对环境保护造成极大的负面影响。

选择二氧化硫和氮氧化物排放的控制技术,是一项系统工程,必须按照国家及地方的政策、法规、标准并结合各地自身特点,系统考虑各项措施的技术、经济性能。

脱硫和脱硝技术在工厂环保设施中非常关键。

随着科学技术的发展和化工工艺的不断探索,烟气脱硫和脱硝技术在大量生产企业使用方面成效显著。

本文对其中的技术应用进行分析,找出其中出现的问题并提出对应的措施。

2 工艺介绍2.1 反应机理脱硫反应,EDV@湿法烟气脱硫的原理是:烟气中的SO2与NaOH溶液逆向充分接触反应,除去烟气中的S02,并洗涤烟尘净化烟气,实现达标排放,在洗涤塔内的主要反应为:SO2+H20→H2S03(1)H2S03+2NaOH→Na2S03+2H20(2)Na2S03+H2S03→2NaHS03(3)NaHS03+NaOH→Na2S03+H20(4)在洗涤塔及PTU氧化罐内的主要反应为:Na2S03+1/202→Na2S04(5)2.2 脱硝反应臭氧法脱硝反应机理为:烟气中的NO和NO2首先与臭氧发生氧化反应生成N2O5,N2O5与水反应生成硝酸,然后硝酸再与NaOH反应生成硝酸钠,主要反应如下:NO+03→N02+202(6)2N02+03→N205+02(7)N205+H20→2HN03(8)HN03+NaOH→NaN03+H20(9)SCR法脱硝反应机理为:在SCR反应器内氨与烟气中的NOx在催化剂的作用下发生反应,NOx最终以N2的形式排放。

火电厂烟气脱硫技术的改进与优化

火电厂烟气脱硫技术的改进与优化

火电厂烟气脱硫技术的改进与优化一、引言火电厂烟气脱硫技术的改进与优化是为了减少火力发电过程中排放的二氧化硫(SO2),从而减少对环境的污染和人类健康的影响。

本文将重点讨论火电厂烟气脱硫技术的改进与优化。

二、火电厂烟气脱硫技术的背景与现状烟气脱硫技术主要利用喷吹吸收剂与烟气中的SO2反应,将SO2转化为水溶性的硫酸盐。

常用的脱硫工艺有石灰石石膏法、石灰-氧化钙法、海水脱硫法等。

然而,火电厂烟气脱硫技术面临着一些问题,如脱硫效率低、设备运行成本高、废水排放问题等。

三、1.脱硫剂的选择传统的脱硫剂一般为石灰石或者石灰石与氧化钙的混合物。

但这些脱硫剂存在使用成本高、脱硫效率低、废水排放问题等。

近年来,一些新型脱硫剂被引入,如氨基醇类脱硫剂和蚀刻酸类脱硫剂。

这些新型脱硫剂具有脱硫效率高、废水排放少的优点,能够更好地适应火电厂的实际需求。

2.脱硫工艺的改进目前,常见的烟气脱硫工艺主要有湿法和干法两种。

湿法脱硫工艺由于其高脱硫效率被广泛应用,但存在废水排放问题。

研究人员提出了一种改进的湿法脱硫工艺,即湿法-吹塔脱硫工艺。

该工艺利用了湿法脱硫工艺的高脱硫效率,同时采用吹塔技术来降低废水排放,取得了良好的效果。

3.设备的优化设计脱硫设备的优化设计对提高脱硫效率和降低运行成本至关重要。

例如,在石膏浆液混料水箱中添加一定量的起液剂可以降低石膏浆液的黏度,从而减小管道阻力,提高脱硫效率。

此外,采用旋流器来改善气液分离过程,有效减少脱硫过程中的堵塞问题。

四、火电厂烟气脱硫技术的应用前景火电厂烟气脱硫技术的改进与优化将有助于提高脱硫效率、降低运行成本、减少废水排放,从而减少环境污染。

现代火电厂越来越注重环保和可持续发展,对烟气脱硫技术的要求也越来越高。

因此,火电厂烟气脱硫技术的改进与优化具有广阔的应用前景。

五、结论火电厂烟气脱硫技术的改进与优化是减少环境污染的重要举措。

从脱硫剂的选择、脱硫工艺的改进以及设备的优化设计等方面进行的改进与优化有助于提高脱硫效率、降低运行成本、减少废水排放。

石灰石-石膏湿法烟气脱硫脱水系统运行优化

石灰石-石膏湿法烟气脱硫脱水系统运行优化

石灰石-石膏湿法烟气脱硫脱水系统运行优化石灰石-石膏湿法烟气脱硫脱水系统是工业生产过程中常见的处理废气的设备,通过将烟气与石灰石悬浮液和石膏悬浮液接触,使其中的硫化物被吸收和转化为石膏沉淀。

然而,在使用过程中,由于诸多因素影响,该系统可能出现一系列问题,如效率下降、污染物排放超标、能源浪费等。

因此,优化石灰石-石膏湿法烟气脱硫脱水系统的运行成为了必要和紧迫的任务。

一、提高液气反应效率石灰石-石膏湿法烟气脱硫脱水系统的液气反应是其主要工艺过程,能否实现高效的硫化物吸收以及石膏沉淀对系统的治理效果有着至关重要的作用。

液气反应的关键是将烟气与悬浮液充分地接触和反应,而实现这一点的关键在于悬浮液的喷淋方式和喷淋量的控制。

电磁泵作为常见的悬浮液输送设备,不仅能将悬浮液喷入喷淋装置中,而且喷淋量也比较容易调节。

因此,通过采用电磁泵-节流阀控制方式,使得悬浮液的喷淋量得以实现持续的调节和控制,有助于提高液气反应的效率,提高系统的治理效果。

二、优化反应后的石膏沉淀石膏沉淀的形态和颗粒大小直接影响其沉降和过滤效率,因此优化石膏沉淀是实现脱硫脱水系统高效运行的关键手段。

石膏沉淀中的细小颗粒是整个系统中难以控制和排放的污染物,而且还会导致管道的堵塞和阀门的失效。

因此,研究细小颗粒的形成机理和化学成分,合理地选择沉淀剂,缩短石膏颗粒形成时间,控制颗粒大小,是石灰石-石膏湿法烟气脱硫脱水系统优化的重点。

三、控制烟气温度和湿度系统中的烟气温度和湿度对于悬浮液的喷淋和石膏沉淀效果都有很大的影响。

高温的烟气会导致悬浮液的挥发和石膏颗粒的膨胀,阻碍反应过程的进行。

同时,烟气湿度过高也会影响悬浮液和石膏颗粒的效果。

因此,控制烟气温度和湿度对于提高系统的治理效果和运行稳定性是至关重要的。

四、定期维护和检修设备不仅包括石灰石和石膏悬浮液的制备设备,也包括烟气处理设备、悬浮液喷淋装置、石膏沉淀器、排水系统等。

此外,对设备中出现的故障及时进行诊断和维修,寻求最优解决方案,同样对提高系统的运行效率和稳定性至关重要。

关于湿法脱硫系统的优化运行探讨

关于湿法脱硫系统的优化运行探讨

关于湿法脱硫系统的优化运行探讨摘要:本文围绕湿法脱硫系统的运行问题进行了探讨,概述了湿法脱硫系统的内容,分析了影响湿法脱硫效率的主要因素,论述了湿法脱硫系统优化建议及策略,供读者参考。

关键词:湿法脱硫、系统优化1引言在火力发电企业中,脱硫系统是一个十分重要的生产工艺环节,不仅关系到生产安全和生产质量,同时还与能耗及运营成本息息相关。

近年来,国家和社会对环保的重视力度越来越强,相关政策也对火电企业提出了更高的标准和要求。

在这一形势下,从工艺系统的运行方面入手,不断优化生产工艺,提高工艺系统的运行效率,降低能耗成为火电企业管理和运营工作的重中之重。

本文主要围绕湿法脱硫系统工艺谈一下如何进一步优化运行的看法,希望给业内相关人士带了思路和启发。

2湿法脱硫系统概述湿法脱硫工艺技术是目前脱硫技术中较为成熟,生产效率高且操作较简单的一种脱硫技术。

常见的湿法脱硫技术有石灰石/石灰—石膏法,间接的石灰石—石膏法。

该工艺主要是利用石灰石或石灰石粉来吸收烟气中的二氧化硫,生产难溶于水的亚硫酸钙,亚硫酸钙可以进一步被氧化成硫酸钙,作为工业生产的原料进行再利用。

间接石灰石—石膏法也称为双碱法,是通过苛性钠,碱性氧化铝,稀硫酸来吸收烟气中的二氧化硫,之后再将吸收液与石灰石粉或石灰石反应,生产石膏。

3影响湿法脱硫效率的主要因素(一)燃料火电厂湿法脱硫效率一个重要的源头即为燃料的质量。

目前市场上的燃煤供应紧张,受到原料供应波动性影响,多数火电企业无法持续性满足燃烧设计的煤种,在实际中通常是采取多种煤型搭配的形式。

本身掺煤燃烧的现象已经在燃料效率上有了折扣,同时再加上市场上的燃料供应商及燃料产品质量参差不齐,因此导致了火电厂湿法脱硫效率的波动性,使生产效率难以理想。

不同类型的燃煤其各种性能指标对生产效率和能耗的影响往往有所差异。

煤质的水分蒸发所需要的耗能约2300Kj/kg,这部分能耗会占据燃料整体的发热能耗,因此煤质水分比例越高,燃料的发热量就越低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱硫系统优化运行探讨
对600MW机组脱硫系统运行优化进行技术总结,通过优化脱硫设备运行方式,实现节能与减排的双赢。

标签:600MW机组;脱硫系统;运行优化;节能
TB
石灰石-石膏湿法脱硫是各大电厂普遍采用的一种脱硫技术,但设备主要以国产为主,普遍存在设备运行可靠性低、经济性较差等问题。

特别是大容量的600MW机组脱硫系统,由于设备和原料的原因,造成运行人员在操作中往往遇到很多困难,造成实际运行状况不容乐观。

为了改善脱硫运行的可靠性、优化运行操作,在确保湿法脱硫机组高效稳定运行的同时有效降低耗电量,实现节能与减排双赢,现对金堂电厂一期2×600MW燃煤机组脱硫系统运行方式进行分析,优化脱硫设备的运行方式。

1 烟气系统
(1)增压风机的运行调整主要通过减小烟气系统阻力(如GGH、除雾器的吹扫、冲洗等)方式来实现。

FGD入口压力的改变对增压风机的电功率影响较大,对引风机的影响相对较小。

系统运行中,应合理的设置增压风机的动叶开度,FGD入口压力正常设定在-0.15~-0.2kPa,不得高于-0.3kPa。

(2)保证GGH和除雾器表面的清洁不仅可以减小烟风阻力,减小增压风机能耗。

运行人员应坚持GGH和除雾器冲洗的定期制度,保证蒸汽吹扫压力在1.4MPa,除雾器的冲洗水母管压力在0.3MPa。

机组负荷在450MW时,GGH差压应保证在0.5kPa以下,除雾器差压应保证在0.3kPa以下;机组负荷在600MW 时,GGH差压应保证在0.65kPa以下,除雾器差压应保证在0.5kPa以下。

2 吸收塔系统
(1)当煤质发生变化,入炉煤硫份高,FGD入口烟气含硫量超过设计值3525mg/m3,运行人员应加强运行调整,当pH下降时适当加大吸收塔石灰石供浆量,增加氧化风,但供浆量不得超过50t/h,在pH值无法稳定的情况下,可借助于氢氧化钠来维持pH值。

石灰石供浆量过大,石灰石耗量增加,也会导致石膏浆液密度升高,循环浆泵运行电流增大,耗电增加,石膏品质也无法保证。

(2)吸收塔浆液pH值是湿法脱硫系统反应工艺控制的核心,脱硫效率、石灰石利用率、石膏品质等主要脱硫性能指标都与此有关,运行的主要工艺控制参数如液气比、反应停留时间等也受pH的影响。

脱硫效率、钙硫比都随着吸收塔浆液pH的升高而增加,pH越高,越有利于SO2的吸收,脱硫效率也越高,但不利于石灰石的溶解和CaSO3·1/2H2O的氧化,使石膏中的CaCO3含量也增加,相应的Ca/S比增大,石灰石耗量增加。

在系统运行中,吸收塔石膏浆液pH值维持在5.2~5.3之间,更接近于我们的设计值,当pH值>5.5时,将使Ca/S增大,对提高脱硫效率没有明显作用。

(3)液气比决定了酸性气体吸收所需要的吸收面积,在其他参数值一定的情况下,提高液气比相当于增大了吸收塔内的喷淋密度,使液气间的接触面积增大,脱硫效率也将增大。

根据机组负荷和入口SO2含量投用不同扬程的循环浆泵,并进行优化组合,将脱硫效率维持在95%左右。

(4)根据入口SO2的含量合理的投运氧化风机的运行数量。

脱硫反应的O/S摩尔比一般控制在2.0~2.5之间,根据脱硫设计的最大烟气量和SO2含量计算得出:1台氧化风机可满足的入口SO2质量流量范围为1364~1705mg/m3;2台氧化风机为2728~3410mg/m3;3台氧化风机为4092~5115mg/m3。

(5)系统运行中,吸收塔液位维持在12.8~13.2米,过高的液位使液面与喷淋层间距离变小,缩短脱硫剂与烟气中SO2的吸收空间,降低脱硫效率;过低的液位将造成氧化空间不足,使浆液中CaSO3·1/2H2O的含量增加,影响脱水系统正常运行。

(6)循环浆泵的电流是随着密度的增高而增大,将密度控制在合理的范围内不仅对循环浆泵的节能运行十分有利,还有利于提高石灰石利用率和石膏品质,而且对减少浆液结垢和设备磨损都十分有益。

吸收塔浆液中新石膏晶种的生成和晶体的长大两个过程同时进行,当密度大于1080kg/m3时,晶体就已成型,呈不规则的多面体。

当密度达到1130kg/m3时,大部分晶体的颗粒大小已在40μm以上,这时的晶体不会堵塞滤布,有利于脱水皮带机的运行。

所以在系统运行中,要求运行人员将石膏浆液密度维持在1096~1150kg/m3之间。

参考文献
[1]曾庭华,杨华,马斌,王力.湿法烟气脱硫系统的安全性及优化[M].北京:中国电力出版社,2003.
[2]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002.
[3]周祖飞.湿式石灰石-石膏烟气脱硫系统的工艺控制[J].环境科学与技术,2005,28(2):8081.
[4]邵炜,陈颖,金东春.600MW机组湿法脱硫石灰石盲区现象分析及对策[J].浙江电力,2007,26(3):5759.
[5]周祖飞.浅析脱硫系统的经济性影响因素及改进措施[C].资源节约环境友好型电力技术论坛论文集.北京:中国电力出版社,2008.。

相关文档
最新文档