高中数学文科选修1-2知识点总结
数学选修1至2知识点总结

数学选修1至2知识点总结一、选修11. 一次函数一次函数是数学中的一种基本类型的函数,其一般形式为y=ax+b,其中a,b为常数且a≠0。
一次函数的图像是一条通过原点的直线,斜率a表示直线的倾斜程度,常数b表示直线与y轴的交点。
在数学上,一次函数是一种简单串直线函数,但它在实际应用中有着广泛的用途,如经济学、物理学等领域均可利用一次函数来描述问题。
2. 二次函数二次函数是一种常见的函数类型,其一般形式为y=ax²+bx+c,其中a,b,c为常数且a≠0。
二次函数的图像是一条开口向上或向下的抛物线,其开口方向取决于a的正负。
二次函数对应的抛物线有着许多特性,如顶点坐标、对称轴、焦点、直焦距等,这些特性能够帮助我们更好地理解二次函数的性质。
3. 多项式函数多项式函数是由常数组成的数列f(n),在数学中,n是一个变量,它的值可以是实数或者复数,但不是整数或负数,并有定义域。
封闭整数或负数的情况是另一种基于变量方面的数列。
4. 分式函数分式函数是由两个多项式相除而得到的函数,分母不能取0。
5. 指数函数、对数函数指数函数和对数函数是常见的特殊函数类型,它们在数学和实际应用中都有着重要的作用。
指数函数的一般形式是y=a^x,其中a为底数,x为指数,而对数函数的一般形式是y=loga(x),其中a为底数,x为真数。
指数函数和对数函数之间存在着互为反函数的关系,它们在代数、几何、概率等方面均有广泛的应用。
6. 三角函数三角函数是用于描述角度与变化的函数,常见的三角函数包括正弦函数、余弦函数、正切函数等,它们在三角学和实际问题中都有着重要的应用。
三角函数不仅能够描述角度的变化,还能够描述周期性的现象,如振动、波动等。
7. 数列与数学归纳法数列是由一系列按照一定规律排列的数构成的序列,数学归纳法是一种证明数学命题的常用方法。
数列与数学归纳法是数学中重要的概念和方法,它们在数学分析、组合数学、离散数学等领域都有着广泛的应用。
高中数学选修1-2知识点

高中数学选修1-2数学知识点第一部分 统计案例 知识点:1.线性回归方程①变量之间的两类关系:函数关系与相关关系 ②制作散点图,判断线性相关关系 ③线性回归方程:abx y+=∧(最小二乘法)最小二乘法:求回归直线,使得样本数据的点到它的距离的平方最小的方法1221ni i i ni i x y n x y b x n x a y b x ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.线形回归模型:⑴随机误差e :我们把线性回归模型e a bx y ++=,其中b a ,为模型的未知参数,e 称为随机误差。
随机误差a bx y e i i i --=⑵残差eˆ:我们用回归方程a x b y ˆˆˆ+=中的y ˆ估计a bx +,随机误差)(a bx y e +-=,所以y y e ˆˆ-=是e 的估计量,故a x b y y y e ii i i i ˆˆˆˆ--=-=,e ˆ称为相应于点),(i i y x 的残差。
⑶回归效果判定-----相关指数(解释变量对于预报变量的贡献率) 22121ˆ()1()nii i nii i yyR yy ==-=--∑∑(2R 的表达式中21)(∑=-ni i y y 确定)注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。
4.独立性检验(分类变量关系):(1)分类变量:这种变量的不同“值”表示个体所属的不同类别的变量。
(2)列联表:列出两个分类变量的频数表,称为列联表。
高中数学选修1-2知识点总结

知识点总结选修1-2知识点总结第一章统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系③线性回归方程:abx y (最小二乘法)其中,1221ni ii nii x y nx y bx nx a ybx注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):ni ni iini i iy y x x y y x x r11221)()())((注:⑴r >0时,变量y x,正相关;r <0时,变量y x,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,An 相互独立,则有P (A 1A 2…A n )=_P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A 变量121:,;B B B B 通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B是否独立的问题叫2×2列联表的独立性检验.(3)统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章推理与证明考点一合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三数学归纳法:它是一个递推的数学论证方法.步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立C.证明n=k+1时命题也成立, 完成这两步,就可以断定对任何自然数(或n>=0n ,且n N )结论都成立。
高中数学选修1-1、1-2、4-4知识点高考复习总结

选修1-1、1-2数学知识点 选修1-1数学知识点第一章 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线与方程1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
高中数学选修1-2知识点、考点、附典型例题

选修1-2数学知识点第一部分 统计案例 知识点:1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。
2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.回归分析中回归效果的判定: ⑴总偏差平方和:∑=-ni iy y12)(⑵残差:∧∧-=i i i y y e ;⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R 12122)()(1 。
注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。
4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。
考点:无第二部分 推理与证明 知识点:一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)
![人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)](https://img.taocdn.com/s3/m/a7638f276bd97f192279e9a2.png)
人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。
要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。
全体复数所成的集合叫做复数集,用字母C 表示。
要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。
) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
高中数学选修一、二知识点总结

高中数学选修1-1知识点总结第一章 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系:例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and ) :命题形式p q ∧; ⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线一、椭圆1、椭圆的定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A ()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<二、双曲线1、双曲线的定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
高中数学选修1-2知识点总结61389

知识点总结选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修1-2知识点归纳
第一章 统计案例
1.线性回归方程
①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系
③线性回归方程:a bx y +=∧
(最小二乘法)
其中,1
22
1n
i i i n
i
i x y nx y b x nx a y bx
==⎧
-⎪
⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .
2.相关系数(判定两个变量线性相关性):∑∑∑===----=
n
i n
i i i
n
i i i
y y x x
y y x x
r 1
1
2
21
)()()
)((
注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;
⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几
乎不存在线性相关关系。
3.条件概率
对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的
条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )
P (A )
4相互独立事件
(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立. (2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).
(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -
也相互独立.
5.独立性检验(分类变量关系):
(1)2×2列联表
设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B = 通过观察得到右表所示数据: 并将形如此表的表格称为2×2列联表.
(2)独立性检验 根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.
(3) 统计量χ2的计算公式
χ2=n (ad -bc )2
(a +b )(c +d )(a +c )(b +d )
第二章框图
1.流程图
流程图是由一些图形符号和文字说明构成的图示.流程
图是表述工作方式、工艺流程的一种常用手段,它的特
点是直观、清晰.
3.结构图
一些事物之间不是先后顺序关系,而是存在某种逻辑关
系,像这样的关系可以用结构图来描述.常用的结构图
一般包括层次结构图,分类结构图及知识结构图等.
第三章推理与证明
1.推理
⑴合情推理:
归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理
由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
归纳推理是由部分到整体,由个别到一般的推理。
②类比推理
由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
类比推理是特殊到特殊的推理。
⑵演绎推理
从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。
2.证明
(1)直接证明 ①综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
综合法又叫顺推法或由因导果法。
②分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。
分析法又叫逆推证法或执果索因法。
(2)间接证明……反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
第四章 复数
1.复数的有关概念
(1)把平方等于-1的数用符号i 表示,规定i 2=-1,把i 叫作虚数单位.
(2)形如a +b i 的数叫作复数(a ,b 是实数,i 是虚数单位).通常表示为z =a +b i(a ,b ∈R). (3)对于复数z =a +b i ,a 与b 分别叫作复数z 的______与______,并且分别用Re z 与Im z 表示. 2.数集之间的关系
复数的全体组成的集合叫作_____________,记作C. 3.复数的分类
复数a +b i
(a ,b ∈R )⎩⎨⎧
实数(b =0)
虚数(b ≠0)⎩⎨
⎧纯虚数(a =0)非纯虚数(a ≠0)
4.两个复数相等的充要条件
设a ,b ,c ,d 都是实数,则a +b i =c +d i ,当且仅当_________
5.复平面
(1)定义:当用__________________的点来表示复数时,我们称这个直角坐标平面为复平面. (2)实轴:_______称为实轴.虚轴:_________称为虚轴. 6.复数的模
若z =a +b i(a ,b ∈R),则_______________. 7.共轭复数
(1)定义:当两个复数的实部________,虚部互为___________时,这样的两个复数叫作互为共轭复数.复数z 的共轭复数用______表示,即若z =a +b i ,则z -=__________. 2)性质: = =___________.
必记结论
1.(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔z=z ⇔ z 2≥0; (2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );
(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0; (4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R ); 2.复数的代数形式及其运算
设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则: (1) z 1±z 2 = (a + b )± (c + d )i ;
(2) z 1·z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ; (3) z 1÷z 2 =
=-+-+))(())((di c di c di c bi a i
d c ad bc d c bd ac 2
222+-+++ (z 2≠0) ; 3.几个重要的结论
(1) i i 2)1(2
±=±; ;11;11i i
i i i i -=+-=-+
(2) i 性质:T=4;i i i i i i
n n n n -=-===+++34241
44,1,,1;;03424144=++++++n n n i i i i
(3) z
z z z z 1
11=⇔=⇔=。
4.运算律:(1));,())(3(;))(2(;2121N n m z z z z z z z z z m m m
mn n m n m n m ∈=⋅==⋅+。