五年级下册数学试题-奥数专题:老师-牛吃草问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛吃草问题

知识要点

一、定义

英国大科学家牛顿在他所著的《普通算术》一书中曾提出一个有趣的数学问题(格尔为牧场面积单位):

有三片牧场,场上的草长得一样密,并且长的速度一样快,它们的面积分别是三又三分之一格尔、10格尔和24格尔。第一片牧场的草饲养12头牛可以吃4个星期,第二片牧场的草饲养21头牛可以吃9个星期,问在第三片牧场上放多少头牛可以吃18个星期?

这个问题被人们称为牛顿问题,也就是我们平常说的牛吃草问题。

二、特点

牛吃草问题其实就是消长问题,问题的主要特征是:同一个数量一方面增加,另一方面减少,朝两个方向同时变化。如牛吃草问题中,草生长使草量匀速增加,牛吃草却使草量逐渐减少。

在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。

数量关系分析:

在牛吃草问题中,我们一般把一头牛一天的吃草量看作一个单位的草量,作为牧草的计量单位。

在这个问题中,主要研究牧场原有草量、每日新增草量(即牧草生长速度)、牛的饲养数量、饲养时间,这四个数量之间的关系。

一头牛一天吃一个单位的草量。

如果养牛头数等于或小于每日新增草量,则无需动用牧场原有草量,这个牧场就会像个聚宝盆一样,供这些牛永远吃下去,草永远吃不完;

如果养牛头数大于每日新增草量,我们可以理解为,每日新增的草先喂养了同等数量的牛,而多出的牛则需要吃牧场原有的草,牧场中原有的草可以供这些多出的牛吃多少天,这个牧场草就可以供这些牛吃多少天。(原有的草吃完了,新增草未生长,就理解为牧场的草吃完了。)

此类问题中的基本数量关系有:

牛的头数×对应的吃的天数=总草量;

牛的头数-每日新增草量数=多出牛的头数;

每日新增草量=(较长时间总草量-同一牧场较短时间总草量)÷相差天数;

原有草量=对应总草量-每日新增草量×天数;

吃的天数=原有草量÷多出牛的头数;

牛的头数=原有草量÷天数+每日新增草量数。

【解题方法介绍】:

上面牛顿提出的牛吃草问题,比较复杂(三片面积不同的牧场),需要进行几次转化解题。本讲只学习较简单的牛吃草问题(同一片牧场),及数量关系、解题方法与之相似的消长问题。

解题时,一般要先根据题中的条件(每日消耗数量等),先求出每日新增数量和原有数

量,再根据上面的数量关系,求出对应的时间或个体数量。

典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用的四个基本公式,分别是:

设定一头牛一天吃草量为“1”

1草的生长速度=(对应的牛头数×吃的较多的天数-相应的牛头数×吃的较少的天数)÷(吃的较多的天数-吃得较少的天数)

2原有草量=牛头数×吃的天数-草的生长速度×吃的天数

3吃的天数=原有草量÷(牛头数-草的生长速度)

4牛头数=原有草量÷吃的天数+草的生长速度

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正由于这个不变量,才能导出上面的四个基本公式。

牛吃草的问题经常给出不同头数的牛吃同一片草地,这地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题的关键:是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有的草量,进而解答问题。

解决多块草地的方法

多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。

精解名题

例1 牧场上长满牧草,每天都匀速生长。这片牧场可供27头牛吃6天或23头牛吃9天。问可供21头牛吃几天?

【分析】这片牧场上的牧草的数量每天在变化。解题的关键应找到不变量——即原来的牧草数量。因为总草量可以分成两部分:原有的草与新长出的草。新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。

举一反三

【思考1】一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天?

例2 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少。已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?

【分析】与例1不同的是,不但没有新长出的草,而且原有的草还在匀速减少,但是,我们同样可以用类似的方法求出每天减少的草量和原来的草的总量

举一反三

【思考2】由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。那么,可供11头牛吃几天?

总结:想办法从变化中找到不变的量。牧场上原有的草是不变的,新长出的草虽然在变化,但是因为是匀速生长,所以每天新长出的草量也是不变的。正确计算草地上原有的草及每天新长出的草,问题就会迎刃而解。

知识衍变

例3 两只蜗牛同时从一口井的井顶爬向井底。白天往下爬,两只蜗牛的爬行速度是不同的,一只每天爬行20分米,另一只每天爬行15分米。黑夜往下滑,两只蜗牛滑行的速度却是相同的,结果一只蜗牛恰好用了5个昼夜到达井底,另一只恰好用了6个昼夜到达井底。那么,井深多少米?

例4 一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。如果用10人舀水,3小时舀完。如果只有5个人舀水,要8小时才能舀完。现在要想在2小时舀完,需要多少人舀水?

【分析】典型的“牛吃草”问题,找出“牛”和“草”是解题的关键

解析:把每人每小时舀水量看作一份。

船内8小时总水量与3小时总水量之差,就是多出5小时进船的水。先求出船内每小时进水量:

(5×8-10×3)÷(8-3)=2(份);

相关文档
最新文档