机床静刚度实验
机床主轴系统综合静刚度测定实验指导书07级

机械设计制造及其自动化专业实验实验指导书机床主轴系统综合静刚度测定实验重庆汽车学院实践教学及技能培训中心二零一零年三月机床主轴系统综合静刚度测定实验一、实验目的1、在卡盘夹持工作的状态下测定加载点处主轴系统(包括主轴部件、卡盘、工件)的综合静刚度,以便和同类车床相应的刚度值作比较。
2、测定主轴系统各组成部分变形在系统综合变形中占的比例,找出影响住轴系统综合刚度的薄弱环节。
3、通过实验,掌握静刚度测定实验数据分析的基本方法。
二、实验原理主轴系统的综合静刚度k可采用下式表达:k=p/(1)或w=1/k=/p (2)式中 w—主轴系统的综合静刚度。
(n/kgf)—工件在加载点的绝对变形(相对于主轴箱体)P—作用在工件上的静载荷(kgf)主轴系统的综合静刚度直接影响加工误差(锥度和复映误差等)。
静刚度过弱也是引起振动的重要原因。
因此对主轴系统进行综合刚度的考核时很有必要的。
但是主轴系统的综合静刚度仅反映主轴系统各组成部分在静载时的综合变形,不能用于分析各部分变形对综合刚度的影响程度。
为此,必须进一步找出主轴系统各部分变形影响到工件加载点处的变形,根据它们各自在综合变形中所占的百分数,便可确定各部分对综合刚度的影响,并找出其中的薄弱环节。
本次实验对象是车床,车削主要是在卡盘夹持的状态下工作。
这时,车床主轴系统由主轴部件(主轴与轴承)、卡盘、工件三部分组成。
由于卡盘和工件自身的刚度很大,在忽略其变形时,受静载p作用,主轴系统的总变形由三部分组成:(1)由于主轴部件(主轴和轴承)变形而影响到工件加载点处的变形z;(2)由于主轴与卡盘联接部的接触变形而影响到工件加载点处的变形k;(3)由于卡盘与工件在夹持部的变形而影响到工件加载点处的变形j。
用式子表示则为:(本实验工件自身的变形可以忽略)=z+k+j (3)这时,(2)式变为:w-/p=z/p+k/p+j/p (4)(4)式右边各项wz=z/p,wk=k/p,wj=j/p分别表示主轴部件,主轴与卡盘联接部分,卡盘与工件夹持部分在加载处的静柔度。
【2017年整理】机床刚度测量和加工误差统计实验指导书

第四章 机械设计制造工艺4.1 概述机械设计制造工艺就是机械产品从设计到产品的全过程,它涉及的面比较广,是保证产品质量非常重要的技术保障。
影响产品质量的因素很多,产品的设计、原材料的选择、加工设备的选择、加工方法的选择,乃至工装的设计与制造、工步的设计、运输与搬运等等,无一不影响到产品的最终质量,然而零件加工又是保证产品质量的基本保障,因此,加工机床是研究机械设计制造工艺中的重要内容。
4.2 机床静刚度静刚度是评价机床性能的主要指标之一,也是被加工零件的精度和表面质量的重要保障,它在很大程度上决定了机床的生产率,同时又是产品零件设计和生产中必需要结合起来考虑的重要内容。
机床静刚度K 可以用下式表示:K=F(N/μm)式中:F__作用在机床上的静载荷(N),δ__在载荷方向上的变形(μm )作用在机床上的静载荷有:切削力、传动力、磨擦力、部件本身和工件的重力以及夹紧力等。
上述这作用些力的大小、位置和方向不同时,所引起的变形也不一样。
因受载荷而引起的变形,从性质上来说,可以是机床零、部件的自身变形和局部变形,也可以是部件接合面间的接触变形。
在零、部件的自身变形中,又可分为拉、压、弯、扭的不同形式,这些形式的变形引起了线位移或角位移。
因接触变形引起的位移也可分为线位移或角位移。
在研究机床的刚度时,为了能更清楚地分析刚度对加工精度的影响,一般也常将一台机床的综合刚度K 定义为法向切削力F y 与垂直加工表面的刀具和工件间相对位移y 之比,即:K=yF y因为机床由许多部件组成的,所以一台机床的综合刚度与其各部件的刚度有关,即刀具与工件之间的总相对位移是由各部件变形所引起的刀具与工件之间的相对弹性位移综合组成。
综合刚度能够用来评定和比较机床作为一个整体的刚度但是却不能用来分析各部件刚度在其中的影响程度。
为了能得到主要零部件的变形对综合刚度的影响,找出其中的薄弱环节,给机床的新设计或改进设计提供依据,以便使所设计的设计能够提高性能,又使材料的利用率更加合理,就要对弹性位移分配进行分析。
实验一车床三向力静刚度测定

实验一车床三向力静刚度测定一、实验目的与要求:1.熟悉车床静刚度的测定方法。
2.比较车床各部件刚度的大小,分析影响车床刚度的各种因素。
3.巩固和验证《机械制造工艺及夹具设计》中有关系统刚度和误差复映规律的概念。
二、实验设备和仪器:1.CA6140车床。
2.三向力静刚度测定仪。
3.千分表。
三、实验方法:1.图 1将紧锁套9(见图1)装在车床尾座套筒上。
由于在该套上有两个相互垂直的平面,所以可将磁性表座安放在小拖板上,用百分表在套9的水平面上拉表,或将角尺放在床身上,依套9的垂直平面找正,当找正后,即将两个夹紧螺钉12固定,这时,套9上的刻线即位于车床前后顶尖轴线所处的水平平面内,随后将弓形体1装在车床两顶尖之间,摇动尾座手把将顶尖压在弓形体1右顶尖孔中,再将销8插入套9的孔中,将手把2扭入弓形体所选定的螺纹孔中(如图1所示为30º).2.模拟车刀的安装:第一种情况:α=0º,β由0º转到90º时(见图3),可将模拟车刀刀杆装在车床刀架左边的压刀槽内,这时,先将找正顶尖6装入弓形体孔内,将刀杆13安装在与车床两顶尖中心连线相垂直,并在刀杆底部垫适当厚度的垫铁,使顶尖6的尖端与模拟刀头14的中心孔均匀接触,这时模拟车刀上的刚球中心便与车床中心等高。
若弓形体转动不同的ß角,可将模拟车刀刀头转适应的角度,转角大小以刀头与测力圈不相撞为准。
第二种情况:α=30º,β由0º转到90º时。
仍将模拟车刀刀杆装在车床刀架左边的压力槽内(见图2a),车刀高度方向(即Z方向)位置的确定仍与第一种情况相同,但由于α≠0º,所以模拟车刀必须在X-Y平面内转相应的角度,转角大小的确定,是以模拟车刀受力后使刀架所产生得力距,与一般车削时受力架产生的力矩尽量相接近,由于刀架的转动,刀头上的刚球中心离开了车床中心线(在Y方向上有了变化)。
为了使刚球中心与车床两顶尖中心连线重合,可将找正棒5装入弓形体内,使棒5前端的一个小平面与刚球外圆相接触即可。
机床静刚度实验报告

机床静刚度实验报告机床静刚度实验报告引言:机床静刚度是指机床在静止状态下对外力的抵抗能力,是机床性能的重要指标之一。
静刚度实验是评价机床性能的一种重要手段。
本实验旨在通过测量机床在不同工况下的变形情况,分析机床的静刚度性能。
实验目的:1. 测量机床在不同工况下的变形情况,获得机床的刚度曲线。
2. 分析机床的静刚度性能,评价其稳定性和刚性。
实验装置:1. 机床:实验采用一台X型龙门铣床作为实验机床。
2. 传感器:采用应变片传感器和位移传感器对机床进行测量。
3. 数据采集系统:使用压力传感器和位移传感器,将测得的数据传输至计算机。
实验过程:1. 实验前准备:检查机床的各项参数,确保机床处于正常工作状态。
2. 安装传感器:将应变片传感器和位移传感器分别安装在机床的关键部位,如主轴箱、工作台等。
3. 实验步骤:根据实验要求,逐步改变机床的工况,如改变进给速度、切削深度等,同时记录传感器所测得的数据。
4. 数据采集与分析:将传感器所测得的数据通过数据采集系统传输至计算机,进行数据分析和处理。
5. 结果展示:根据分析结果,绘制机床的刚度曲线和变形图。
实验结果与分析:根据实验数据,我们绘制了机床的刚度曲线和变形图。
从刚度曲线可以看出,机床的刚度在不同工况下存在差异。
在切削深度较小、进给速度较慢的情况下,机床的刚度较高,能够有效抵抗外力的作用。
而在切削深度较大、进给速度较快的情况下,机床的刚度较低,容易发生变形。
通过变形图可以观察到机床在不同工况下的变形情况。
在切削深度较小、进给速度较慢的情况下,机床的变形较小,表现出较好的稳定性和刚性。
而在切削深度较大、进给速度较快的情况下,机床的变形明显增加,表现出较差的稳定性和刚性。
实验结论:通过本次机床静刚度实验,我们得出以下结论:1. 机床的静刚度与工况有关,切削深度和进给速度的增加会导致机床的刚度降低。
2. 机床的静刚度与稳定性和刚性密切相关,刚度越高,机床的稳定性和刚性越好。
车床工艺系统静刚度的测定实验

实验原理
加力点在前、后顶尖中间时, 加力点在前、后顶尖中间时,机床静刚度
K 机床 =
1 1 1 1 1 +( + ) k刀 4 k头 k 尾
实验方法
实验步骤
把螺旋加力架夹固在刀架上, 把螺旋加力架夹固在刀架上,保证其加力点 的高度与车床顶尖中心线等高, 的高度与车床顶尖中心线等高,加力方向垂 直于心轴。 直于心轴。 将心轴安装在车床两顶尖间, 将心轴安装在车床两顶尖间,尾座套筒伸出 长度约50毫米 毫米, 长度约50毫米,心轴在顶尖间的夹紧力不宜 过紧或过松,以用手可以转动为宜。 过紧或过松,以用手可以转动为宜。
机械制造技术实验
车床工艺系统 静刚度的测定实验
河南工业大学 机械工程实验教学中心
实验目的
熟悉车床工艺系统静刚度测定方法 掌握车床工艺系统静刚度的测定方法和计 算方法 熟悉车床工艺系统静刚度测定方法
实验设备及工具
CA6140普通车床一台; CA6140普通车床一台; 普通车床一台 数字测力仪一套; 数字测力仪一套; 力传感器一套; 力传感器一套; 百分表(带磁力表架)三套; 百分表(带磁力表架)三套; 心轴一只。 心轴一只。
实验内容
用静载法测定车床刚度, 用静载法测定车床刚度,着重测量记录 车床主轴前顶尖、 车床主轴前顶尖、刀架及尾架后顶尖在受力 后的位移, 后的位移,以便计算其各部件刚度及机床刚 度。
机床静刚度测定实验报告

机床静刚度测定实验报告一、实验目的。
本实验旨在通过测定机床的静刚度,了解机床在不同工况下的刚度特性,为机床的使用和维护提供依据。
二、实验原理。
机床的静刚度是指机床在受力作用下的变形能力,通常用刚度系数K表示。
在实验中,我们通过在机床上施加一定的力,测定机床的变形量,从而计算出机床的静刚度。
三、实验仪器与设备。
1. 拉压力传感器。
2. 变形测量仪。
3. 机床。
四、实验步骤。
1. 将拉压力传感器安装在机床上,并连接至变形测量仪。
2. 在机床上施加一定的力,记录下拉压力传感器的输出值。
3. 根据拉压力传感器的输出值,计算出机床的变形量。
4. 根据机床的变形量和施加的力,计算出机床的静刚度。
五、实验结果与分析。
经过实验测定和计算,得到了机床在不同力作用下的静刚度系数K。
通过对实验结果的分析,我们发现机床的静刚度与施加力的大小成正比,这表明机床在受力作用下的变形能力与施加的力呈线性关系。
同时,我们还发现在不同位置施加力对机床的静刚度也有一定影响,这提示我们在使用机床时需要注意力的施加位置。
六、实验结论。
通过本次实验,我们成功测定出了机床的静刚度,并对其进行了分析。
实验结果表明机床的静刚度与施加力的大小成正比,同时受力位置也会对静刚度产生影响。
这些结果为机床的使用和维护提供了重要的参考依据。
七、实验总结。
本次实验通过测定机床的静刚度,使我们更加深入地了解了机床在受力作用下的特性。
同时,实验过程中我们也发现了一些问题和不足之处,这为今后的实验和研究提供了一定的启示。
八、参考文献。
[1] 张三, 李四. 机床静刚度测定方法及实验研究[J]. 机械工程学报, 2010, 32(4): 123-128.[2] 王五, 赵六. 机床静刚度测定技术及应用[M]. 北京: 机械工业出版社, 2015.以上就是本次机床静刚度测定实验的报告内容,谢谢阅读。
机床静刚度测定实验

机床静刚度实验一、实验目的:通过实验,使学生进一步了解由机床(包括夹具)一工件一刀具所组成的工艺系统是一弹性系统,在此系统中因切削力、零件自重及惯性力等的作用,工艺系统各组成环节会产生弹性变形及系统中各元件之间若有接触间隙,在外力的作用下会产生位移,并且熟悉机床静刚度的测量方法和计算方法,从而更深的理解机械制造工艺中的工艺设备及其对零件加工质量的影响,提高学生分析和处理问题的能力。
二、实验装置机床一台静刚度测定装置一套图1 机床静刚度测定装置图三、实验方法与步骤1、如上图所示,在机床的两顶尖间装夹一根刚度很大的光轴1 (光轴受力后变形可忽略不计)。
2、将加力器5固定在刀架上,在加力器与光轴间装一测力环4。
3、在测力环内孔中固定安装一个千分表,当对如图1所示安装的测力环施加外力时,其中的千分表指针就会变动,其变动量与外载荷之间对应关系可在材料试验机上预先测出,千分表2、3、6的指针也会因与之接触部位的位移而变动。
4、实验时用扳手扭转带有方头的螺杆7,以施加外载荷(Fy)。
然后读出靠近在车头,尾座和刀架安放的千分表(2)、(3)、(6)的读数,并记录下来填入表1中。
根据以上数据,计算出床头、刀架和尾座的受力F 头、F 刀和F 尾。
为了说明尾座套筒伸出长度对刚度的影响,实验时可将套筒分别伸出5mm 和105mm 。
并分别测出千分表读数和计算出刚度的数值,填入表2中。
表2 机床静刚度计算四、静刚度的计算为了计算方便,实验时可将测力环抵在刚性轴的中点处。
故机床、床头、刀架它们之间的刚度关系可以用下式表示:)j 1j 1(41j 11尾头刀机++=j 式中:头头头Y F j =;刀刀刀Y F j =;尾尾尾Y F j =机床静刚度测定实验报告专业班级姓名成绩实验日期。
机床静刚度测定实验报告

机床静刚度测定实验报告1.了解机床静刚度的概念和特征。
2.学习测定机床静刚度的方法。
3.运用实验数据对机床静刚度进行分析和评估。
仪器设备1.回路式测量仪。
2.单柱式万能试验机。
3.直线轴承和滑动轴承。
实验原理机床静刚度是指机床在静力作用下,从位置改变所需的力量和形变的量的比值。
机床静刚度包括了机床的刚性、变形和振动特性。
虽然静刚度的定义是一个比值,但为方便起见,通常使用力学刚度和形变刚度来表述。
力学刚度是机床在单位力作用下,床身产生的刚度变化量。
形变刚度是机床在单位刚度变化下的力量变化量。
测量机床静刚度的方法主要有自激振动法、悬臂梁法、回路法等。
其中回路法是目前最常用的一种测量机床静刚度的方法。
回路法是将测力仪和测压仪组成一个回路,以测量机床的变形量。
该方法适用于测量处于静止状态的机床并精度比较高。
实验步骤1.安装直线轴承和滑动轴承,分别测量机床的力学刚度和形变刚度。
2.根据机床的变形规律和受力情况,选择合适的位置安装测量器。
3.拧紧测量仪和测量器,调整它们的相对位置,并进行初步调整。
4.开始测量,记录数据并分析。
实验结果通过对机床静刚度的测量,得出了机床的力学刚度和形变刚度,数据如下:力学刚度:1000 N/m形变刚度:0.1 mm/N然后,根据实验数据计算出机床的回路法静刚度为1300 N/m。
这表明机床处于静态稳态,并具有良好的刚度、变形和振动特性。
结论1.机床静刚度是机床在静止状态下,从位置改变所需的力量和形变量的比值。
2.回路法是测量机床静刚度的一种常用方法。
3.机床静刚度包括了机床的刚性、变形和振动特性。
4.实验结果表明机床具有较高的静刚度,能够满足使用要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一机床静刚度实验一、实验目的:通过实验,使学生进一步了解由机床(包括夹具)一工件一刀具所组成的工艺系统是一弹性系统,在此系统中因切削力、零件自重及惯性力等的作用,工艺系统各组成环节会产生弹性变形及系统中各元件之间若有接触间隙,在外力的作用下会产生位移,并且熟悉机床静刚度的测量方法和计算方法,从而更深的理解机械制造工艺中的工艺设备及其对零件加工质量的影响,提高学生分析和处理问题的能力。
二、实验装置机床一台静刚度测定装置一套图1 机床静刚度测定装置图三、实验方法与步骤1、如上图所示,在机床的两顶尖间装夹一根刚度很大的光轴1 (光轴受力后变形可忽略不计)。
2、将加力器5固定在刀架上,在加力器与光轴间装一测力环4。
3、在测力环内孔中固定安装一个千分表,当对如图1所示安装的测力环施加外力时,其中的千分表指针就会变动,其变动量与外载荷之间对应关系可在材料试验机上预先测出,千分表2、3、6的指针也会因与之接触部位的位移而变动。
4、实验时用扳手扭转带有方头的螺杆7,以施加外载荷(Fy)。
然后读出靠近在车头,尾座和刀架安放的千分表(2)、(3)、(6)的读数,并记录下来填入表1中。
表1 外加载荷与千分表读数记录根据以上数据,计算出床头、刀架和尾座的受力F 头、F 刀和F 尾。
为了说明尾座套筒伸出长度对刚度的影响,实验时可将套筒分别伸出5mm 和105mm 。
并分别测出千分表读数和计算出刚度的数值,填入表2中。
表2 机床静刚度计算三、静刚度的计算为了计算方便,实验时可将测力环抵在刚性轴的中点处。
故机床、床头、刀架它们之间的刚度关系可以用下式表示:实验时将测力环对准光轴中间,即X=L/2时,则上式简化为 式中:头头头Y F j =;刀刀刀Y F j =;尾尾尾Y F j = 四、画出尾座套筒分别伸出为5mm 、105mm 时尾座的刚度曲线图。
其中横座标为尾座位移量Y 尾,纵座标为F 尾值。
五、实验结果分析及体会 六、填写实验报告实验二机床夹具运用实验一、实验目的通过实验,使学生进一步了解夹具的各种类型,掌握机械加工过程中夹具的功能、工件的定位原理及夹紧机构的作用,并能根据工件的具体情况和加工要求,设计出合适的夹具。
二、实验前必须了解的基本知识(一)夹具的种类1、通用夹具在通用机床上一般都附有通用夹具,如车床上的三爪和四爪卡盘,顶针和鸡心夹头;铣床上的平口钳、分度头和回转台等,通用夹具有很大的通用性,无需调整或稍加调整就可以用于装夹不同的工件。
通用夹具主要用于单件小批量生产中,因为单件小批量生产中加工工件经常变换,在成批生产中很少使用。
这种通用夹具一般由专业厂生产。
2、专用夹具专用夹具是针对某一种工件的一定工序而专门设计的,因为不需要考虑通用性,所以夹具可以设计得结构紧凑,操作迅速方便。
专用夹具通常由使用厂根据要求自行设计与制造。
其设计制造周期较长,当产品变更时,因无法再使用而报废,故多适用于产品固定的批量大的生产中。
3、成组专用夹具有时由于批量较小,为每种工件设计专用夹具不合适,而使用通用夹具又不能满足加工质量或生产率的要求,这时可以采用成组加工工艺,把工件按形状、尺寸和工艺的共性分组,再为每组工件设计组内通用的专用夹具,这种夹具的特点是,在通用的夹具体上,只需对夹具的部分元件稍加调整或更换,即可用于组内的不同工件的加工。
4、组合夹具组合夹具是由一套预先制造好的标准元件组装成的专用夹具,它在使用上具有专用夹具的优点,而当产品变换时,不存在夹具“报废”问题。
因为它可以拆开,其元件可清洗入库,以待组装新的夹具。
因此,组合夹具很适合于新产品试制和单件小批量生产中。
5、随行夹具随行夹具为自动线夹具的一种。
自动线夹具基本上分为两类:一类为固定式夹具,这与一般专用夹具相似;另一类为随行夹具,这除了具有一般夹具所担负的装夹工件任务外,还担负沿自动线输送工件的任务,因为它是跟随被加工工件沿着自动线从一个工位移到下一个工位的,故有“随行夹具”之称。
夹具除了以上分类方法分类外,还可以按动力来源不同分为手动夹具、气动夹具、液压夹具、电动夹具、磁力夹具、真空夹具以及自夹紧夹具等。
按工种还可以分为车床夹具、铣床夹具、磨床夹具、镗床夹具、钻床夹具等。
(二)工件的六点定位原理如下图所示,工件在夹具中的位置有六个不定度,即空间X 、Y 、Z 直角坐标中沿X 轴移动X ,沿X 轴转动x ;沿Y 轴的移动Y ,沿Y 轴的转动y ;沿Z 轴的移动Z 和沿Z轴的转动z。
这六个不定度需要用夹具上按一定要求布置的六个支承点(定位元件)来消除,这就是工件的六点定位原理。
(三)工件的夹紧一般情况下,工件在加工过程中会受到切削力、惯性力、重力等外力的作用,若不夹紧,工件就可能发生移动,造成设备、刀具损坏及人身事故。
同时,工件在定位过程中获得的既定位置主要依靠夹紧来保持,有时工件的定位也是在夹紧过程中实现的。
因此,夹紧装置是夹具的重要组成部分。
(四)组合夹具的组装组合夹具的组装,就是按一定的步骤和要求,把组合夹具的有关元件组装成加工工件所需的夹具,组装工序包括夹具的设计和装配二个过程。
组合夹具既要有较大的刚度,也要力求结构紧凑,轻巧灵活。
正确的组装过程可按下列步骤进行。
组装步骤(1)在组装前,根据工件的形状、尺寸、公差等加工工艺要求以及使用的机床、刀具等情况确定组装方案。
(2)按工件的定位和夹紧的基本要求,选择定位元件、夹紧元件及相适应的支承元件、基础板等(包括特殊情况下设计的简单专用件),初步确定夹具的结构形式。
(3)试装。
也就是将前面设想的夹具结构方案先组装一下,各元件之间暂不紧固,对有些主要元件的精度,如等高度、平行度等进行测量和挑选,从而对前面拟定的夹具结构方案进行修改和补充。
(4)连接。
通过试装肯定了夹具结构的方案后,即可进行元件的连接和调整工作。
即按一定的顺序(一般由下到上,由内到外)把各元件用螺钉和螺母连接起来,在连接的同时要进行有关尺寸的调整,连接和调整要交替进行。
(5)检验。
夹具元件全部紧固后,要进行一次仔细的检验。
检验的内容与试装中相同,最后检查零星元件是否配齐。
三、实验步骤1、对照实验室夹具模型进一步熟悉工件定位原理,了解夹紧机构的作用,分析有关定位元件和夹紧机构的特点。
2、任选一种车、钻、镗、铣等夹具,进行实物分析研究,找出定位元件,分析定位情况,画出夹具简图,写出评定及改进意见。
3、按前述组合夹具组装步骤,结合实验室具体工件的具体加工工序要求,用现有的组合夹具元件,组装所需夹具,并分析加工的可靠性及各元件的具体功能。
4、对已组合好的组合夹具,按元件加工要求进行实物分析,判定是否组装合理;四、填写实验报告实验三曲轴状态检查实验一、实验目的通过实验使学生进一步熟悉曲轴臂距差的测量方法,学会分析影响臂距差变化的因素,并能根据测定出的曲轴臂距差绘制出曲轴轴线状态图。
三、基本原理曲轴安放在高低不同的主轴承上时,其轴心线即成为一弯曲的状态。
当曲轴轴心线弯曲时,必然引起曲轴曲柄臂之间的距离在上、下止点或左右舷时有变化,曲轴轴心线弯曲越大,臂距的差值就越大。
曲轴曲柄间产生臂距差的主要原因是机座变形,主轴承加工误差,曲轴安装时的轴线偏差等。
对于长期使用的柴油机由于受力或其它原因造成轴瓦不同程度的严重磨损,也是曲轴曲柄间产生臂距差的重要原因。
三、实验设备及工具1.6250柴油机一台2.曲轴量表(拐挡表)及其附件3.桥规、塞尺、钢直尺等四、实验步骤1.测量曲轴各有关尺寸,如图1所示,并将其测量结果填入表1中,要求测量误差小于1mm.表1 曲轴结构尺寸表(mm)2、测量桥规值桥规测量如图2所示,如“1”号主轴颈a=0.04,“2”号主轴颈b=0.05。
图2 曲轴桥规定值测量1—桥规 2—曲轴轴颈3、在曲柄臂内左右两边找出安装曲轴量表的洋冲眼如图4所示22S D R +=, 其中:R-----------曲轴量表回转半径 R=245mm ; D-----------曲轴颈直径 D=220mm ; S-----------活塞行程 S=270mm 。
图4 曲轴量表安装示意图4.绘制臂距值记录表5.安装曲轴量表(1)活塞运动部件未装上时,盘车将曲柄销转至下止点或其它合适位置,即可安装曲轴量表。
(2)在放置曲轴量表时,其表的两端顶尖一定要顶在曲柄臂上既定的洋冲眼内,安放好曲轴量表后,要将其来回摆动几次,直至曲轴量表无论摆到任何角度,指针都不动时,才可认为曲轴量表顶尖确实顶到了洋冲眼的中心,证明曲轴量表已经安装好。
(3)盘车时应注意飞轮周围的人和物,待所有人员的头和手离开曲柄箱并检查曲柄箱内无其他物件后方可盘车,以免发生人身事故及机损事故。
(4)盘车至下止点,调整零位(即再转动表的外表,使指针指到零位)。
最后,装表人员的头和手应立即离开曲柄箱,并检查无工具或障碍物悬在曲轴箱内,方可缓慢按顺序盘车。
(5)若活塞运动部件已装上时,盘车将曲柄销转至下止点后30°,安装曲轴量表,调整零位,曲柄销不能到下止点,否则在曲柄销运行中连杆会打坏曲轴量表。
6.测量和记录 按柴油机转向盘车:(1)活塞运动部件未装上时,依次测出曲轴曲柄销在左舷、上止点、右舷、下止点(如图5a 所示)的臂距值,记入表2。
(2)活塞运动部件已装上时,要在下止点后30°装表,调整零位,并依次测出曲轴曲柄销处在左舷、上止点、右舷、下止点前30°(如图5b 所示)的臂距值,记入表2。
a、活塞运动部件未装上时b、活塞运动部件运装上时图5 测量点确定示意图(3)活塞运动部件已装上时,上止点前30°和下止点后30°两处的臂距测量值取平均值作为下止点臂距值。
7.计算臂距差值填入表2五、注意事项1.安装曲轴量表时注意短针压缩,长针调零(装好后方可松手,以免损坏曲轴量表)。
2.盘车时注意柴油机的转向、转角准确,注意人身安全。
3.读取、记录、计算要求准确,实验时分工负责。
4.活塞运动部件已装上测量时,注意下止点前30°值的测量,防止连杆旋转打坏曲轴量表。
六、确定所测臂距值的正确性通常根据上下止点的臂距值之和与左右舷臂距值之和相等的规律来验证所测臂距值的正确性。
七、作曲轴轴线状变图1.计算臂距差值现假设一组数据,如表3所示表3 假设垂直平面臂距值(△垂)2.作垂直平面曲轴轴线状态图⑴计算垂直平面各拐因臂距差△垂所引起的主轴承偏移量f,且将计算结果填入表4:表4垂直平面各拐因臂距差△垂所引起的主轴承偏移量f式中:R--------曲轴量表回转半径(mm)LX-------汽缸中心距(mm)f---------主轴承偏移量⑵绘制垂直平面内曲轴轴线状态图a、如图6,作水平线0—0代表曲轴轴线,以M(1:25)表示曲轴轴线长度的比例,在0—0线上划出Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ代表相应的汽缸中心线位置。