第五章 高聚物熔体的流变性
【精品课件】聚合物熔体的流变性

原子数大于20-30时与分子量无关。不同分子 量高聚物的流动活化能与分子量无关。
高分子的流动
高分子流动通过链段的相继跃迁来实现
2.高分子流动不符合牛顿流体流动规律
大多数聚合物的熔体和浓溶液属假塑性流 体,其粘度随剪切速率的增加而减小。
3.高分子流动时伴有高弹形变
3.牛顿流体
为常数
粘度不随剪切应力和剪切速率的大小而改 变,始终保持常数的流体,称为牛顿流体
4.非牛顿流体
之间不呈直线关系,通常采用“幂次定 律”的经验方程来描述其流动行为。
=Kn
K:常数;(非稠度) n:流动指数。
非牛顿流体:
粘度随剪切应力和剪切速率的变化而改变的 流体。
课堂讨论
1.什么叫剪切应力、剪切速率和粘度? 2.什么是牛顿流体?什么是非牛顿流体? 3.高聚物的流动有什么特点? 4.影响粘流温度的因素有哪些? 5.什么叫熔融指数? 6.聚合物熔体一般是什么类型的流体? 7.为什么合成聚合物要控制分子量? 8.为什么聚合物都有一个明确的玻璃化转变温度, 却没有明确的粘流温度?
二.非牛顿流体的类型
1.粘度与时间无关
(1)假塑性流体
粘度随剪切速率的增加而 减小,即剪切变稀
n<1
(2)胀塑性流体(膨胀性流体)
粘度随剪切应力的增大而升高,即剪切 变稠,n>1
在聚合物熔体和浓溶液 中罕见,在聚合物乳液、 悬浮液中常见。
(3)宾汉流体
又称塑性流体
在剪切力小于某一临界
值y 时不发生流动,而 超过 y 后,则可像牛顿
低分子液体流动是完全不可逆的。
高聚物进行粘性流动时,伴随一定的高弹 形变,这部分是可逆的。
第五章 高聚物的流变性

第五章 高聚物的流变性热塑性塑料成型过程一般需经历加热塑化、流动成型和冷却固化三个基本步骤。
加热塑化:经过加热使固体高聚物变成粘性流体;流动成型:借助注塑机或挤塑机的柱赛或螺杆的移动,以很高的压力将粘性流体注入温度较低的闭合模具内,或以很高的压力将粘性流体从所要求的形状的口模挤出,得到连续的型材。
冷却固化:是用冷却的方法使制品从粘流态变成玻璃态。
聚合物的粘流发生在g T 以上,热塑料、合成纤维和合成橡胶的加工成型都是在粘流态下进行的.由于大多数高分子的f T 都低于300℃,经一般无机材料低得多,给加工成型带来很大方便,这也是高分子得以广泛应用的一个重要原因. 5.1牛顿流体与非牛顿流体牛顿流体:粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,通称为~。
非牛顿流体:凡是不符合牛顿流体公式的流体,统称为非牛顿流体。
牛顿流体: d dtγσηηγ== 非牛顿流体:'n a K σγηγ== 式中γ 为剪切速率,n 为非牛顿性指数(n<1称为假塑性); a η为表观粘度,表观粘度比高聚物真正的粘度(零剪切粘度0η小).剪切变稀:大多数高聚物熔体和浓溶液属假塑性流体,其粘度随剪切速率的增加而减小,即所谓~。
剪切变稠:膨胀性流体与假塑性流体相反,随着剪切速率的增大,粘度升高,即发生~。
宾汉流体:或称塑性流体,具有名符其实的塑性行为,即在受到的剪切应力小于某一临界值Y σ是不发生流动,相当于虎克固体,而超过Y σ后,则可像牛顿液体一样流动。
触变(摇溶)液体:在恒定剪切速率下粘度随时间增加而降低的液体。
摇凝液体:在恒定剪切速率下粘度随时间而增加的液体。
5.2高聚物粘性流动的主要特点1. 高分子流动是通过链段的位移运动来实现的,粘流活化能与相对分子质量无关.2. 一般不符合物顿液体定律,即不是牛顿流体,而是非牛顿流体,常是假塑性流体.这是由于流动时链段沿流动方向取向,取向的结果使粘度降低.3. 粘流时伴有高弹形变。
7.高聚物熔体的流变性质

第一章 高聚物熔体的流变性质主要内容:(1)液体的流动类型 (2)高分子熔体的流动特征 (3)影响高聚物熔体粘度的因素 (4)高聚物熔体弹性效应的表现 (5)高聚物熔体粘度的测量方法难点内容:弹性效应的理解掌握内容:(1)牛顿流体和非牛顿流体的流动特征(2)高聚物熔体的流动特征及影响流动温度的因素 (3)影响切粘度的结构因素及外在因素理解内容:(1)高聚物熔体的流动机理(2)高聚物熔体弹性效应的机理、现象及影响因素了解内容:(1)高聚物熔体粘度的测量方法 (2)拉伸粘度的基本情况§8 高聚物的基本流变性质 §8、1流变学的基本概念简介一、流动的方式 1、速度方向 2、速度梯度方向 剪切流动 a 库爱特(拖流动)b 泊肃叶(压力流)拉伸流动速度方向平行速度梯度方向 二.流体的基本类型γγ⋅==⋅=⋅=dtd dt dy dx dy dt dx dY dv 11(1) 牛顿流体στ=η·γ (η为常数) 熔体结构不变 (2) 非牛顿流体 表观粘度ηa =γτσ⋅a. 胀塑流体n k a γγηστ⋅⋅==⋅γ↑ ηa b. 假塑性流体στ=ηa γn(n<1)γ↑.ηa ↓ (剪切变稀)c. στ=σb + k γn三.假塑性流体的基本特性习题1.名词解释牛顿流体 非牛顿流体 假塑性流体 胀塑性流体 Bingham 流体 零切粘度 表观粘度 熔融指数 第一法向应力差 挤出胀大 真实粘度2.大分子流动是如何实现的?3.大分子流动的基本特征是什么?4.流体流动的基本类型有哪些?分别用τ-γ、η-γ、lg τ-lg γ、lg η-lg γ曲线示意图。
5.分析假塑性流体流动的η-γ曲线,并从分子运动论的角度给予解释。
6.为什么粘流态高聚物的表观粘度小于其真实粘度?7.用分子运动论的观点解释下列曲线:(1)分子量对粘度的影响 (2)分子量分布对粘度的影响(α1,α2为分布指数)(3)柔顺性对粘-温特性的影响 (4)柔顺性对粘-切特性的影响8.为了降低聚合物在加工中的粘度,对刚性和柔性链的聚合物各应采取哪些措施?9.为了提高聚合物熔体在加工中的粘度的稳定性,对刚性柔性链聚合物各应严格控制哪些工艺条件?10.试解释聚合物粘流态的粘度-温度等效性。
高聚物的流变性—高聚物熔体的粘度(高分子物理课件)

2.分子量大小的影响
分子量增加,分子间作用力增大,分子间缠结作用的几率
增大,从而使得流动阻力增大,粘度ηa上升,流动性下降 。
a. 低切变速率时
❖ 高聚物熔体零切粘度η0与重均分子 量Mw的关系如下:
当M w
M C时,0
K1M
1~1.6 w
(POM)比刚性高分子链(PC、PMMA) 敏感,当 POM 进行注射成型时,注射负 荷增加 60kg/cm2 时,ηa 下降一个数量级。
4.流体静压力 流体静压力增加,导致物料体积收缩,
分子间相互作用力增加,ηa 增加。
一、 高聚物熔体粘度的测定方法
n高聚物熔体粘度的测定方法主要有三种:
落球粘度计
毛细管流变仪
旋转粘度计
落球粘度仪是最简单的粘度计,在
小分子液体中应用较广。
用一半径为 r,密度为 s 的小球,
在密度为 l 的液体介质中恒速 V 落下,
此时粘度
s
2 9
r3 V
(s
l ) g
此方程为斯托克斯方程,s 为斯托
1. 温度的影响
随温度的升高,链段活动能力增加 ,分子间距离增加,分子间作用力减小 ,流动阻力减小,粘度逐渐降低。
聚合物结构不同,粘度 对温度的敏感性不同:刚 性链对切变速率更加敏感 。
1-PC,2-PE,3-POM,4-PMMA 5-乙 酸纤维素,6-尼龙
1.温度的影响 温度升高,粘度下降,但不同高聚物粘度对温度变化
A
r2
优点:当圆筒间隙很小时,被测流体的剪切速率接近均一,仪
器校准容易。 缺点:高粘度试样装填困难,限于低粘度流体在低 使用,可
高聚物熔体的流变特性

该模型在牛顿流体模型的基础上引入了一个修正项,以考虑高聚物熔体粘度的 非线性变化。数学表达式为$eta = eta_0 + K dot{gamma}^n$,其中$eta_0$ 是零剪切粘度。
弹性流体模型
总结词
弹性流体模型考虑了高聚物熔体的弹性效应,适用于描述高聚物熔体的复杂流动行为。
详细描述
子结构和相变行为。
THANKS
感谢观看
VS
详细描述
毛细管流变仪主要由一根毛细管和两个端 板组成,毛细管内壁光滑,以减少摩擦力 。熔体在毛细管中受到压力或剪切力作用 ,通过测量压力降或流量来计算剪切速率 和粘度等流变参数。
旋转流变仪
总结词
旋转流变仪能够测量高聚物熔体在旋转轴作 用下的粘度、弹性、屈服应力等流变性能。
详细描述
旋转流变仪主要包括一个旋转测量头和一个 固定测量头,通过测量旋转测量头在一定转 速下的扭矩和角位移,可以计算出熔体的流 变性能。该仪器能够模拟实际加工过程中高 聚物熔体的流动状态,广泛应用于高聚物加 工过程的模拟和优化。
分子量与分子量分布对高聚物熔体流变特性的影响还与其在加工过程中的表现密切相关。了解分子量与分子量分布对流变特 性的影响有助于优化加工工艺和提高产品质量。
应力和应变历史
应力和应变历史对高聚物熔体的流变特性具有重要影响。在加工过程中,高聚物熔体会受到各种应力 和应变作用,这些作用会影响其流变特性,并使高聚物熔体表现出一定的记忆效应。
该模型假设高聚物熔体不仅具有粘性,还具有弹性,其流动行为不仅受剪切速率的影响 ,还受弹性应力的影响。数学表达式通常采用胡克定律的形式,即应力等于弹簧常数与
应变率的乘积。
03
CATALOGUE
高聚物熔体的流变特性影响因素
聚合物熔体的流变性-33页PPT精选文档

26
12.11.2019
高分子课程教学
用 / 定义的粘度不是常数,引入表观粘度
的概念a,定义:
a
a Kn1
27
12.11.2019
高分子课程教学
(2) 零切粘度
低剪切速率下,非牛顿流体表现出牛顿流体的
特性,由 对 曲线的起始斜率可得到牛顿粘度。
定义剪切速率趋于零时的粘度为零切速率粘 度,简称零切粘度:
高分子课程教学
4.非牛顿流体
不是常数
非牛顿流体的剪切应力和剪切速率 之间不呈直线关系,通常采用“幂次定 律”的经验方程来描述其流动行为。
6
12.11.2019
高分子课程教学
=Kn
K:常数;(非稠度) n:流动指数。
非牛顿流体:
粘度随剪切应力和剪切速率的变化而改变的 流体。
7
12.11.2019
2.什么是牛顿流体?什么是非牛顿流体?
3.高聚物的流动有什么特点?
4.影响粘流温度的因素有哪些?
5.什么叫熔融指数?
6.聚合物熔体一般是什么类型的流体?
7.为什么合成聚合物要控制分子量?
8.为什么聚合物都有一个明确的玻璃化转变温度,
却没有明确的粘流温度?
32
12.11.2019
高分子课程教学
END
实验事实
产生高分子大小的空穴是困难的;理论推算
1000个-CH2-的E=2.1MJ/mol;比-C-C-键能
(3.4kJ/mol)大。实测烃类同系物的E ,当C
原子数大于20-30时与分子量无关。不同分子
量高聚物的流动活化能与分子量无关。
16
12.11.2019
高分子课程教学
高聚物流变性课件
目录
• 高聚物简介 • 高聚物流变性的基本概念 • 高聚物流变性的影响因素 • 高聚物流变性的理论模型 • 高聚物流变性的应用 • 高聚物流变性定义与分类
定义
高聚物是由单体通过聚合反应形 成的相对分子质量较高的化合物 。
分类
根据分子结构和组成,高聚物可 分为碳链高聚物、杂链高聚物和 元素高聚物等。
感谢您的观看
THANKS
流变性与其他性能的关联研究
流变性与机械性能
研究高聚物的流变性与弹性模量 、屈服强度等机械性能之间的关 系,为材料设计和应用提供依据 。
流变性与热稳定性
分析高聚物的流变性与热稳定性 之间的关系,为材料的加工和应 用提供指导。
流变性与电性能
研究高聚物的流变性与电导率、 介电常数等电性能之间的关系, 拓展材料的应用领域。
注塑成型
通过控制高聚物的流变性,可以优化注塑成 型工艺,提高制品质量和生产效率。
挤出成型
利用高聚物的流变性,可以实现连续、高效 地挤出成型,得到具有特定形状和性能的制 品。
压延成型
通过调整高聚物的流变性,可以控制压延成 型的厚度、表面质量等参数,制备高质量的 薄膜和板材。
在复合材料中的应用
增强增韧
流变性与高聚物性能的关系
流变性对高聚物的加工性能、使用性能和机械性能等方面都有重要影响。例如, 在加工过程中,良好的流变性能够使高分子材料易于加工成型,提高生产效率和 产品质量。
在使用过程中,良好的流变性能够使高分子材料在受到外力作用时表现出良好的 变形和恢复能力,提高其抗冲击性能和耐疲劳性能。此外,流变性还与高聚物的 热稳定性、光学性能和电性能等方面有关。
流变性的测量与表征
流变性的测量方法主要包括旋转流变仪和毛细管流变仪等。 旋转流变仪通过测量扭矩和转速来计算剪切粘度和粘度系数 等参数;毛细管流变仪则通过测量挤出物直径和挤出速率来 计算剪切粘度和弹性模量等参数。
聚合物流变学第五章 高聚物的流变性能
n为流动指数,n=d㏑τ/d㏑ γ ,为在㏑τ-㏑γ对数坐标中曲线 的斜率。 一般说来,在γ变化不是太宽的范围内,大多数流体的k、 n 可 看作常数。
流变指数n 表征非牛顿流体与牛顿流体之间的差异程 度,当n=1 时,即为牛顿粘度定律,k= η0 ,当n<1时,为 假塑性流体,n>1时,则为胀塑性体。 n与1之差,可作为流体的非牛顿性的量度指标,n值越 小,偏离牛顿型越远,粘度随γ增大而降低越多,流变性 越强。
2.
流动粘度大,流动困难,而且粘度不是一个常数
液体流动阻力的大小以粘度值为表征值,普通低分子液 体的粘度很小,而且在一定温度下是一个常数,如水在 室温下的粘度仅为0.001PaS。而对于聚合物来说,粘度 要随T、剪切速率变化而变化,粘度值较大,约为103~ 104PaS。
3. 流动时有构象变化,产生“弹性记忆”效应 小分子液体流动时所产生的形变是完全不可逆的, 高聚物流动过程中所发生的形变中有一部分是可逆的, 聚合物分子链在自由状态下一般是卷曲的,但在外力作 用下而流动时,分子链不仅发生相对位移,而且高分子 链不可避免地要顺着外力方向有所伸展,发生构象改变。 在高聚物粘性流动的同时,必然会伴随一定量的高弹形 变,当外力消失后,高分子链又自发地卷曲起来,因而 整个形变必将恢复一部分。
牛顿流体的粘度不随γ而变化,但假塑性体粘度 随γ而变化。正由于假塑性体的粘度随γ和τ而变化, 为了方便起见,对非牛顿流体可用“表观粘度”描 述其流动时的粘稠性,表观粘度η a定义流动曲线 上某一点τ与γ的比值,即
a /
之所以加上“表观”二字,是因为高聚物在流动 中包含有不可逆的粘性流动和可逆的高弹形变,使 总形变增大,但粘度应该是只对不可逆形变部分而 言的,所以表观粘度比真实粘度小。表观粘度并不 完全反映流体不可逆形变的难易程度,只能对流动 性好坏作一个大致相对的比较,表观粘度大,流动 性小。
chapter聚合物流变学- 聚合物的线性粘弹性
第5章聚合物的线性粘弹性前面我们讨论了四种模式来描述高聚物在一定条件下表现出的性状。
线弹性适用于在低于玻璃化温度下的高聚物,非线性弹性适用于高于Tg时的部分交联的高聚物。
在这两种模式的讨论中,线弹性的高聚物的形变是在应力作用时瞬时发生的不随时间而改变;对非线性弹性的橡胶,我们没有考虑其时间依赖性,而是考虑在平衡态时的应变,因而它也不随时间而变。
线性粘性及非线性粘性则适用于高聚物溶液及高聚物熔体。
这四种模式在一定的条件下可应用于高聚物性状的分析。
弹:外力→形变→应力→储存能量→外力撤除→能量释放→形变恢复粘:外力→形变→应力→应力松驰→能量耗散→外力撤除→形变不可恢复理想弹性:服从虎克定律σ=E·ε应力与应变成正比,即应力只取决于应变。
受外力时平衡应变瞬时达到,除去外力应变立即恢复。
理想粘性:服从牛顿流体定律应力与应变速率成正比,即应力只取决于应变速率。
受外力时应变随时间线形发展,除去外力应变不能恢复。
实质上,在一般情况下,高聚物的性状并不能用以上四种简单模式来表示,首先高聚物在应力作用下,可能同时表现出弹性和粘性;其次高聚物在一般情况下,在恒定应力作用下,应变是随时间而变化的,即应变的时间依赖性(或在应变一定时,应力随时间而变化,即应力的时间依赖性)。
高分子固体的力学行为不服从虎克定律。
当受力时,形变会随时间逐渐发展,因此弹性模量有时间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形(γ∞),说明在弹性变形中有粘流形变发生。
高分子液体,除了粘度特别大以外,其流动行为往往不服从牛顿定律,即η随γ而变化。
这是由于流动过程中伴随着构象的改变,η不再是常数;而当外力除去时,链分子重新卷曲(解取向)。
因此,高分子液体在流动过程中仍包含有熵弹性形变,即含有可回复的弹性形变。
高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。
高聚物熔体的流变性
表7-1
几种高聚物熔体的非牛顿指数n与切变速率的关系
n随
增大而减小,高聚物熔体在高切变速率下假塑性增大。
④其它流体 一些流体的表观粘度表现出强烈的时间依赖性。 这类具有时间依赖性的非牛顿流体大致分为触变性和摇凝性两类。 触变性流体的粘度随着流动过程持续时间的增长而下降,而摇凝 性流体粘度上升。
(3)微分粘度或稠度 以流动曲线上某一切变速率下的对应点作 切线,切线斜率定义为微分粘度或稠度,以η c表示: η c=d s/d
剪切变稀的假塑性高 聚物熔体和浓溶液, 恒有η 0>η a>η c
图7-9 从熔体流动曲线确定η 0、η a和η
c
(4)复数粘度 对于交变应力作用下的不稳定流动过程,切变速率不再是常 数,而且以正弦函数的方式变化,高聚物的粘性流动和弹性形变 对此反映不同,则得到的是复数粘度η *: η *=η ’-iη
) 0 0 (d s / d
(2)表观粘度 η a 定义为给定的切变速率下流动曲线上对应点与原 点连线的斜率:
s / ηa=η( )= ( )
=K
n n-1 / =K
反映粘性流动和可逆的高弹形变两部分 ,比单纯 反映不可逆形变的零切粘度η o小。
在毛细管壁处,r=R,剪切应力为: σ sw=RΔ P/2L 在毛细管壁处(r=R)的切变速率为:
d w =-( dr )w=Δ PR/2η L=4Q/π R3 表观粘度为:
η a=
w sw /
w 为 ① 切变速率的非牛顿改正,即管壁处的真实切变速率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 高聚物熔体的流变性
当温度超过流动温度T f 或熔点T m 时,高聚物处于粘流态, 并成为熔体。
熔体的流动,不仅表现出黏性流动(不可逆形变); 而且表现出弹性形变(可逆形变)。
因此,称为流变性, 而流变学是研究材料流动和变形的科学。
一、高聚物的流动机理
● 小分子的流动过程:分子与空穴交换位置的过程; 流动阻力,即粘度:RT E Ae ηη∆=,
A 常数,ηE ∆流动活化能;
由RT E A η
η∆+=ln ln ,求得ηE ∆
● 高分子的流动过程,不可能按小分子机理(对应于整个分子 的空穴太大),只能通过链段的逐步位移过程来完成整个分子的 位移(只需链段大小的空穴)。
二、高聚物的流动方式
流体的基本流变性-剪切流动,根据切应力στ与切变速率γ&间
的关系(流动曲线),将流体分为牛顿型和非牛顿型流体。
(1) 牛顿流体 dy dV ηστ=, dt
d dy dx dt dt dx dy dy dV γ===)(1)(1 所以:γηστ&=,牛顿流动定律
● 牛顿流体的粘度仅与流体分子的结构和温度有关,与
στ或γ&无关;切应力与速度梯度成正比。
● 小分子可看作是牛顿流体,但高聚物熔体和浓溶液并不 服从牛顿定律。
(2)非牛顿流体
● 特点:粘度随στ、γ&或时间而变化,粘度非常数。
● 根据流动曲线特征,非牛顿流体具有如下几种类型:
i) 宾汉塑性体
流动曲线为直线,但不通过原点,存在临界σy 值,只有 στ>σy 时,才能流动。
στ<σy 时,不能流动,类似弹性体。
γησστ&=-y
ii) 假塑性体 特征:表观粘度随切变速率的增大而减小,即切力变稀。
绝大多数高聚物均属于这种体系,因此最重要。
στ与γ&之间不呈线型关系,定义其表观粘度为(流变曲线与原点直线斜率):
γ
γσγηητ&&&)()(==a a η不完全反映高分子熔体不可逆形变的难易程度,而是塑性形变 与弹性形变的汇合;
而流变曲线任一点的斜率为稠度或微分粘度(切线):
γσητ&
d d c = iii) 膨胀体
特征:表观粘度随切变速率的增大而增大,即切力变稠。
悬浮体系、高聚物熔体-填料体系都属于膨胀体。
表观粘度的表征同上。
(3)非牛顿流体的幂律方程
n K γστ&=, m k τσγ=&(工程上常用)
K :流体的稠度;n :流变指数;二者是与材料相关的非牛顿参数
k :流动系数,k=1/K ,m=1/n ,幂律方程仅适合于中等γ&范围
此时,表观粘度:1)(-===n n a K K γγγγηη&&
&& 流变指数n 表示非牛顿流体与牛顿流体的偏差:
n=1,牛顿流体;n>1,膨胀流体;n<1,假塑性流体。
(4)熔融指数(MI)
在工业生产中,用以表示熔体的流动性。
定义:在一定温度、负荷下,10分钟内从规定直径和长度的
标准毛细管中流出的熔体的重量(g)。
三、高分子流动的高弹形变
1、原因:高分子在流动时,其中链段也要顺着外力方向舒展,外力消失后,由于热运动,高分子链又要恢复卷曲状态;
2、这种恢复过程也是松弛过程:
柔性大、温度高时,恢复快,
柔性小、温度低时,恢复慢,
应注意制品厚薄一致和降温均匀;
3、出口膨胀现象
当聚合物熔体从模口被挤出时,物料流出后立即膨胀,
挤出物的横截面>模口截面积的现象。
原因:受剪切而被迫舒展的高分子链出孔时突然自由,
高弹形变立即得以恢复。
四、影响粘流温度(T f)的因素
1、分子结构的因素
因为流动的机理是通过链段运动而完成整链运动,
所以:分子链柔性大,内旋转位垒低,容纳链段所需的空穴小,T f低;如PE,PP
反之:分子刚硬,T f高,如PPO、PSU、PC
另外,流动是大分子之间相对位置的改变,
因此,分子间作用力大,T f高。
2、分子量
分子量越大,分子间作用力越大,运动时内摩擦阻力大(物理
缠结);分子链越长,其本身的热运动阻止分子链向某一方向移动的阻力越大,T f越高;
所以:从加工成型的角度,只要能满足性能要求,
不希望分子量过大。
3、外力因素
增加外力,可促进分子中心有效位移(结缠结),部分抵消链段的无序运动,使T f降低。
4、延长作用力时间
同样能促进分子重心位移,降低T f,如“冷流现象”。
5、加入增塑剂
有利于分子间的活动,使T f降低,但有损其他性能,
如使热变形温度下降。