卢瑟福散射公式的几种推导方法
微分散射截面的卢瑟福公式

微分散射截面的卢瑟福公式引言:微分散射截面是研究微观粒子与物质相互作用的重要参数之一。
卢瑟福公式是描述微分散射截面的经典理论,它为我们理解原子核结构和粒子之间相互作用提供了关键线索。
本文将介绍卢瑟福公式的基本原理和应用,并探讨其在科学研究和工程应用中的重要性。
一、卢瑟福散射实验卢瑟福散射实验是物理学历史上的里程碑之一。
实验中,卢瑟福用α粒子轰击金箔,观察其在金属箔上的散射情况。
实验结果显示,大多数α粒子直线通过金箔,但少数粒子发生明显的散射。
这一观察揭示了原子核的存在,并推翻了汤姆逊的“杏仁布丁模型”。
二、微分散射截面的定义微分散射截面是描述入射粒子在散射过程中与靶粒子相互作用的参数。
它表示在单位立体角范围内,入射粒子被散射到该方向的概率。
微分散射截面通常用符号σ表示,单位为平方米或玻尔恩。
三、卢瑟福公式的推导卢瑟福公式是描述微分散射截面的经典理论。
根据卢瑟福实验的结果,可以推导出以下公式:σ(θ) = (1/4πε₀) * (Z₁Z₂e²/mv²) * (1/sin²(θ/2))其中,σ(θ)表示微分散射截面,Z₁和Z₂分别是入射和靶粒子的电荷数,e是元电荷,m是入射粒子的质量,v是入射粒子的速度,θ是散射角度。
四、卢瑟福公式的应用卢瑟福公式在原子核物理和粒子物理研究中有广泛的应用。
通过测量散射角度和微分散射截面,可以推断出粒子和原子核的结构信息。
此外,卢瑟福公式还可以用于设计粒子加速器和核反应堆等工程应用。
五、卢瑟福公式的局限性尽管卢瑟福公式在经典物理下是有效的,但它忽略了量子力学效应。
在高能散射和微观粒子研究中,需要使用量子力学的散射理论来描述粒子的行为。
因此,卢瑟福公式只适用于低能和经典散射情况。
六、结论卢瑟福公式是描述微分散射截面的重要理论,它为我们研究原子核结构和粒子相互作用提供了关键线索。
虽然卢瑟福公式在经典物理下是有效的,但在高能和微观领域需要使用量子力学的散射理论。
卢瑟福背散

卢瑟福背散【摘要】卢瑟福背散射分析(RBS )是一种对离子束进行分析的方法,其主要优点是能对材料表层的成分作纵向分析,并且无需材料的标准样品就能作定量分析。
本报告主要介绍了RBS 的分析原理、实验装置,并且对实验谱图和数据作了简单分析,重点是对实验谱图进行了能量刻度的标定以及计算薄膜的厚度。
【关键词】RBS 分析原理【引言】背散射分析就是在一束单能的质子、粒子或其他重离子束轰击固体表面时,通过探测卢瑟福背散射(库伦弹性散射、散射角大于90度)离子产额随能量的分布(能谱)确定样品中元素的种类(质量数)、含量及深度分布。
因此背散射分析通常被称为卢瑟福背散射谱学RBS (Rutherford Backscattering Spectrometry).【实验原理】当比靶核轻的入射离子能量amu MeV E amu keV /1/100≤≤范围,靶原子核外电子对入射离子的屏蔽作用不大,且离子和靶原子核的短程相互作用(核力)影响也可以忽略时,离子在固体中沿直线运动,离子主要通过与电子相互作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面。
这个过程就称为离子的背散射过程。
描述离子背散射过程的三个基本物理概念主要有两体弹性碰撞的运动学因子、微分散射截面、固体的阻止截面。
一. 运动学因子和质量分辨率:运动学因子的定义:01E E K =其中0E 是入射粒子能量(动能),1E 是散射粒子能量(动能)。
根据动量与能量守恒定律,可以推导得到:212111⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-==M mM m cos θM m sin θE E K (1-1)由运动学因子公式可以看出:当入射离子种类(m ),能量(0E )和探测角度(θ)一定时,1E 与M 成单值函数关系。
所以,通过测量一定角度散射离子的能量就可以确定靶原子的质量数M 。
这就是背散射定性分析靶元素种类的基本原理。
卢瑟福散射实验(277)

卢瑟福散射实验 4PB04210277 刘善峰实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理: α粒子散射理论(1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫⎝⎛++⋅=••222202241ϕπεr r m r Ze E (1) L b m mr ==••νϕ2 (2)由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:22242ZeEbctgπεθ= (3) 设E Ze a 0242πε=,则a b ctg 22=θ (4)设靶是一个很薄的箔,厚度为t ,面积为s ,则图3.3-1中的db ds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几率,也就是α粒子打在环ds 上的概率,即θθθππd s a s db b s ds 2sin 82cos 2232== (5)若用立体角Ωd 表示, 由于θθθπθθπd d d 2cos 2sin42sin 2==Ω则有θθd s d a sds 2sin1642Ω=(6)为求得实际的散射的α粒子数,以便与实验进行比较,还必须考虑靶上的原子数和入射的α粒子数。
由于薄箔有许多原子核,每一个原子核对应一个这样的环,若各个原子核互不遮挡,设单位体积内原子数为0N ,则体积st 内原子数为st N 0,α粒子打在这些环上的散射角均为θ,因此一个α粒子打在薄箔上,散射到θ方向且在Ωd 内的概率为s t N sds⋅0。
若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在Ωd 立体角内测得的α粒子为:2sin 42414220200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⋅=d E Ze t nN s t N s dsn dn (7) 经常使用的是微分散射截面公式,微分散射截面Ω⋅=Ωtd N n dn d d 01)(θσ其物理意义为,单位面积内垂直入射一个粒子(n=1)时,被这个面积内一个靶原子(10=t N )散射到θ角附近单位立体角内的概率。
卢瑟福散射

3系08级 姓名:方一 日期:6月6日 PB08206045实验题目: 卢瑟福散射 实验目的: 通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。
1.α粒子散射理论 (1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图3.3-1所示。
图中ν是α粒子原来的速度,b 是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。
图3.3-1 α粒子在原子核的库仑场中路径的偏转当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫⎝⎛++⋅=∙∙222202241ϕπεr r m r Ze E (1) L b m mr ==∙∙νϕ2 (2)由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:22242Ze Ebctgπεθ= (3) 设E Ze a 0242πε=,则a b ctg 22=θ (4)这就是库仑散射偏转角公式。
(2)卢瑟福散射公式在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。
事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。
由散射公式(4)可见,θ与b 有对应关系,b 大,θ就小,如图3.3-2所示。
那些瞄准距离在b 到db b +之间的α粒子,经散射后必定向θ到θθd -之间的角度散出。
因此,凡通过图中所示以b 为内半径,以db b +为外半径的那个环形ds 的α粒子,必定散射到角θ到θθd -之间的一个空间圆锥体内。
卢瑟福的a粒子散射实验结论原理计算

卢瑟福的a粒子散射实验结论原理计算卢瑟福的α粒子散射实验是一个具有重要意义的物理实验。
该实验是由新西兰物理学家欧内斯特·卢瑟福于20世纪初进行的,实验中使用了α粒子(即氦离子或称α粒子)射向一个金属薄膜,并对散射角度和散射强度进行了观察和测量。
根据经典的电磁理论,当一个α粒子入射到坚硬物体上时,它会受到库仑力的相互作用。
根据库仑定律,这个作用力具有反比于距离的平方的关系,因此入射到金属薄膜的α粒子将会受到金属原子核的库仑力作用,与之发生散射。
卢瑟福实验的重要结论如下:1.大部分的α粒子直线穿过金属薄膜,只发生微小的散射。
这表明原子的大部分空间是由空隙构成的,因为α粒子直径比原子小得多。
2.少数的α粒子经过散射后,发现其散射角度很大。
这暗示了原子具有一个高度集中的、具有正电荷的中心区域,即原子核。
3.α粒子散射的散射角度与入射粒子的能量有关。
这表明散射的短距离库仑相互作用,与α粒子的能量相关。
根据以上结论,卢瑟福提出了最早的原子核模型,即卢瑟福散射模型。
根据该模型,原子由一个带正电荷的原子核和围绕核的负电荷电子云组成。
原子的大部分体积为空隙,几乎所有的质量都集中在原子核中。
卢瑟福散射实验结论的原理可以通过经典的库仑力和动量守恒定律来解释。
在实验中,当α粒子与金属原子核发生相互作用时,它们之间的库仑力导致了散射。
根据电磁力的方向,α粒子将会受到一个向外的力,从而发生向后的散射。
根据动量守恒定律,散射后的α粒子的动量也会改变,从而使其散射角度发生偏转。
根据电磁力的定性描述和动量守恒定律可以计算散射角度和散射强度。
实际上,卢瑟福通过对散射后α粒子的观察和测量,得出了散射角度与入射粒子能量之间的关系,并从而确定了原子核的存在。
总结起来,卢瑟福的α粒子散射实验结论揭示了原子内部结构的重要特征,尤其是原子核的存在。
这项实验在现代原子物理学的发展中具有深远意义,为原子核物理学的诞生奠定了基础,也为后来的量子力学的发展提供了重要线索。
卢瑟福散射实验2012

实验3.3 卢瑟福散射实验修改日期:2012-1-12 by Zhangxf卢瑟福散射实验是近代物理科学发展史中最重要的实验之一。
在1897年汤姆逊(J.J.Thomson)测定电子的荷质比,提出了原子模型,他认为原子中的正电荷分布在整个原子空间,即在一个半径R≈10-10m区间,电子则嵌在布满正电荷的球内。
电子处在平衡位置上作简谐振动,从而发出特定频率的电磁波。
简单的估算可以给出辐射频率约在紫外和可见光区,因此能定性地解释原子的辐射特性。
但是很快卢瑟福(E.Rutherford)等人的实验否定这一模型。
1909年卢瑟福和他的助手盖革(H.Geiger)及学生马斯登(E.Marsden)在做α粒子和薄箔散射实验时观察到绝大部分α粒子几乎是直接穿过铂箔,但有大约1/8000的α粒子的散射角大于900,这一实验结果根本无法用公认的汤姆逊原子模型解释。
在汤姆逊模型中正电荷分布于整个原子,根据对库仑力的分析,α粒子离球心越近,所受库仑力越小,而在原子外,原子是中性的,α粒子和原子间几乎没有相互作用力。
在球面上库仑力最大,也不可能发生大角度散射。
卢瑟福等人经过两年的分析,于1911年提出原子的核式模型:原子中的正电荷集中在原子中心很小的区域内,而且原子的全部质量也集中在这个区域内。
原子核的半径近似为10-15m,约为原子半径的千万分之一。
卢瑟福散射实验确立了原子的核式结构,为现代物理的发展奠定了基石。
本实验通过卢瑟福核式模型,推导α粒子散射实验,验证卢瑟福散射理论,并学习应用散射实验研究物质结构的方法。
实验原理现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。
1.α粒子散射理论(1)库仑散射偏转角公式设原子核的质量为M,具有正电荷+Ze,并处于点O,而质量为m,能量为E,电荷为ze的α粒子以速度υ入射,在原子核(靶核)的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图3.3-1所示。
卢瑟福模型的提出 卢瑟福散射公式

如上图,我们假设α 粒子以速度 V 射来,且在原 子附近度过的整个时间内均受到 Fmax 的作用,那么会
产生多大角度的散射呢?
解: 由角动量定理得 Fmax • t p
其中t 2R 表示α粒子在原子附近度过的时间.
v
p
1
4
•
2Ze2 R2
• ( 2R ) v
tg p 2Ze2 / 4r 3105 Z
第一章:原子的位形:卢斯福模型
第一节 背景知识 第二节 卢斯福模型的提出 第三节 卢斯福散射公式 第四节 卢斯福公式的实验验证 第五节 行星模型的意义及困难
第一章:原子的位形:卢斯福模型
第一节 背景知识 第二节 卢斯福模型的提出 第三节 卢斯福散射公式 第四节 卢斯福公式的实验验证 第五节 行星模型的意义及困难
第一节 背景知识
P1 P2
1. 阴极射线从阴极C发出后通过狭缝AB成一狭窄的射线, 2. 再穿过两片平行的金属板D、E之间的空间, 3. 最后到达右端带有标尺的荧光屏上, 4. 加电场E后,射线由P1点偏到P2,可知阴极射线带有负电。
第一节 背景知识
1)设电子的电量为e,电场强度为E,则电子都受到向下 的电场力为Fe=eE。 2)设磁场方向为向外垂直于纸面的方向,可使电子受 到磁力的作用,而向上偏转,磁场强度为H,电子通过 磁场时的速度为v,则电子所受向上的磁力为Fm=evH。 3)调整电场或磁场的强度,使两力的大小相等,方向 相反,电子束将不会偏转,即eE = evH,可得電子的 速率為v=E/H。
汤姆孙1856年出生于英格兰的曼彻斯特附近,苏格兰人家庭。 1884年他成为卡文迪许物理学教授,即卡文迪许实验室主任。受 到詹姆斯·克拉克·麦克斯韦工作的影响和X射线的发现,他推导出 阴极射线存在于带负电的粒子,他称之为“微粒”,这种微粒现 在认识为电子。电子曾经被约翰斯东·斯通尼提出过,作为电化 学中电荷的单位,但是汤姆孙认识到电子也是亚原子粒子,这一 点是第一次被发现。1897年他的发现为人所知,并在科学圈内引 起了轰动,并最终于1906年被授予诺贝尔物理学奖。
卢瑟福背散射分析 Rutherford Backscattering Spectrometry (RBS)

2.2 卢瑟福背散射分析的原理
RBS是利用带电粒子与靶核间的大角度库仑 散射的能谱和产额确定样品中元素的质量 数、含量及深度分布。该分析中有三个基 本点,即:
运动学因子—质量分析 背散射微分截面—含量分析 能损因子—深度分析
2.3最佳实验条件的选取
• 由背散射的原理可导出最佳的实验条件:
– 质量分辨 – 含量分辨 – 深度分辨
2
2.2.1 运动学因子—质量分析
• 令δ=π-θ, δ为一小量,且M2>>M1,则对K因子公式 求M2的偏导数并化减得:
M1 (4 2 ) E0 E1 k E0 2 M 2 M 2 M2
由上式得出要提高质量分辨率:
1.增大入射离子能量
2.利用大质量的入射离子
2.1 背散射研究的发展史
1909年,盖革(H. Geiger) 和马斯顿(E. Marsden)观 察到了α粒子散射实验现象 1911年,卢瑟福(Lord Ernest Rutherford)揭示了该 现象,并确立了原子的核式 结构模型 1957年,茹宾(Rubin)首次 利用质子和氘束分析收集在 滤膜上的烟尘粒子的成份 1967年,美国的测量员5号空 间飞船发回月球表面土壤的 背散射分析结果
2 1/ 2
d L 1 4 d 0
2
Z1 Z 2 e 2 E sin 2 L
2
2
2
2.2.2 背散射微分截面—含量分析
• 因为探测器所张的立体角是有限的,故取平均散 射截面: (其定义式如下)
1
– ΔE与x的关系是可化简为:
dE k 1 dE x x E x dx E0 cos1 dx kE0 cos 2