第九章 不等式与不等式组单元测试
第九章不等式与不等式组单元测试

DCBA第九章《不等式与不等式组》单元测试班级_________姓名____________一.填空题(每空3分,第2题每空2分,共35分)1. x的21与5的差不小于3,用不等式可表示为__________.2.设x >y,则x+2___y+2, -3x___-3y, x-y___0, x+y___2y.3.当x_____时,式子3x-5的值大于5x+3的值.4.当x_____时,代数式x-3是非正数.5.不等式x≤23的正整数解为______,不等式-2≤x<1的整数解为__________.6.若不等式组⎩⎨⎧>≤<mxx21有解,则m的取值范围是________.7.若不等式2x<a的解集为x<2,则a=_______.8.某饮料瓶上有这样字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为___________.9.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分。
某学生有一道题未答,那么这个同学至少要答对_____道题,成绩才能在60分以上.二.选择题(每题3分,共24分)1.已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-42设.表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为()3.不等式组⎪⎩⎪⎨⎧-≥+>-xxx2313211的解集在数轴上表示为( )4.若方程3m(x+1)+1=m(3-x)-5x 的解是负数,则m 的取值范围是( )A m>-1.25 B. m<-1.25 C.m>1.25 D.m<1.255.不等式31(x-m)>2-m 的解集为x>2,则m 的值为 ( ) A.4 B.2 C.1.5 D.0.56.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为 ( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时7.不等式7x-2(10-x)≥7(2x-5)非负整数解是( )A .0,1,2 B.0,1,2,3 C.0,1,2,3,4 D.0,1,2,3,4,58.某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米C.8千米 1)1(22<---x x D.15千米 三.解答题(共41分) 1.解不等式1)1(22<---x x ;2.解不等式组⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325,并求其整数解,并把解集表示在数轴上;3.已知方程组⎩⎨⎧-=++=+12123m y x m y x ,当m 为何值时,x>y.4.娃哈哈矿泉水每瓶售价1.2元,现甲、乙两家商场给出优惠政策:甲商场全部九折,乙商场20瓶以上的部分8折.若你是消费者,选哪家商场比较合适?5.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案:一.1.21x-5≥3 2.> < > > 3.x<-4 4.x ≤3 5.0. -2,-1,0 6.1≤m<2 7.4 8.x ≤18 9.12二.1C 2A 3B 4A 5B 6D 7B 8C三.1.x>-2,图略2.解不等式①得:x>2.5解不等式②得:x ≤4, 所以不等式组的解集2.5<x ≤4,整数解为:4,33.解方程组得x=m+3,y=-m+5,因为x>y,所以m+3>-m-5,m>-4 所以当m>-4时,x>y4.20瓶以下,选甲商场20≤x<40瓶,选甲商场X=40瓶,两商场一样x>40瓶,选乙商场5.设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5解得29.5<x<32因为x 为整数,所以x=30或x=31当x=30时,(3x+59)=149当x=31时,(3x+59)=152答:有30只猴子,149只桃子或有31只猴子,152只桃子。
人教新版七年级下册《第9章 不等式与不等式组》单元测试卷

人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.53.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5 4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b25.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>806.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2 8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于29.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.12.不等式4x≤12的自然数解是:.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是,无解的是.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为;最小值为.15.不等式﹣3≤5﹣2x<3的正整数解是.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子袋.三、解答题17.解不等式组:18.解不等式组,并把解集在数轴上表示出来.19.如果方程组的解满足x>0,y>0,求m的取值范围.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>【分析】依据不等式的基本性质进行判断,即可得出结论.【解答】解:A.不等式m>n的两边都减去2,不等号的方向不变,原变形正确,故本选项不符合题意;B.不等式m>n的两边都乘以4,不等号的方向不变,原变形正确,故本选项不符合题意;C.不等式m>n的两边都乘以﹣3,不等号的方向改变,原变形错误,故本选项符合题意;D.不等式m>n的两边都除以2,不等号的方向不变,原变形正确,故本选项不符合题意.故选:C.【点评】本题考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.5【分析】依据不等式的定义求解即可.【解答】解:①﹣3<0是不等式,②3x+5>0是不等式,③x2﹣6不是不等式,④x=﹣2不是不等式,⑤y≠0是不等式,⑥x+2≥x是不等式.故选:C.【点评】本题主要考查的是不等式的定义,掌握不等式的定义是解题的关键.3.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:由﹣x≤1得:x≥﹣1由x﹣2<3得:x<5∴不等式组的解集为5>x≥﹣1.故选:C.【点评】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b2【分析】由不等式的性质进行计算并作出正确的判断.【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.【点评】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>80【分析】首先设答对x道题,则答错了或不答的有(20﹣x)道,根据题意可得:答对题的得分﹣答错了或不答扣的分数≥80,列出不等式.【解答】解:设答对x道题,根据题意可得:10x﹣5(20﹣x)≥80,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,列出不等式.6.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,200×80+(x﹣80)×150>27000解得,x>153∴这批手表至少有154块,故选:C.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到即可确定m的取值范围.【解答】解:∵关于x的不等式组有解,∴m<2,故选:B.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于2【分析】a、b是互不相等的任意正数,不妨设a>b>0,根据a2+b2≥2ab,即可作出判断.【解答】解:a、b是互不相等的任意正数,不妨设a>b>0,x=≥=2×,y=≥=2×,∵a>b>0,∴0<<1,>1∴y一定大于2,而x不确定.故至少有一个大于2.故选:A.【点评】本题考查不等式的性质,正确利用不等式的性质a2+b2≥2ab是关键.9.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【分析】先得出点M关于x轴对称点的坐标为(1﹣2m,1﹣m),再由第一象限的点的横、纵坐标均为正可得出关于m的不等式,继而可得出m的范围,在数轴上表示出来即可.【解答】解:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识,及关于x轴对称的点的坐标的特点,根据题意得出点M对称点的坐标是解答本题的关键.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.【分析】根据不等式的性质对各选项进行逐一分析即可.【解答】解:A.∵a>b,∴a﹣4>b﹣4,原变形正确,故此选项不符合题意;B.∵a>b,∴﹣2a<﹣2b,原变形正确,故此选项不符合题意;C.∵a>b,∴﹣1+a>﹣1+b,原变形不正确,故此选项符合题意;D.∵a>b,∴,原变形正确,故此选项不符合题意.故选:C.【点评】本题考查的是不等式的性质.解题的关键是掌握不等式的性质,即:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.12.不等式4x≤12的自然数解是:0,1,2,3.【分析】首先解不等式,然后确定不等式的自然数解即可.【解答】解:系数化成1得:x≤3.则自然数解是0,1,2,3,故答案为:0,1,2,3.【点评】本题考查了不等式的解法,解一元一次不等式的基本依据是不等式的基本性质,解不等式是本题的关键.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是|2x ﹣1|+1>0,无解的是x2+1≤0.【分析】分别求出不等式的解集,判断即可.【解答】解:不等式2x>﹣3x,解得:x>0;x2+1≤0,即x2≤﹣1,无解;|2x﹣1|+1>0,即|2x﹣1|>﹣1,解得:x为一切实数;x2﹣2x+1>0,即(x﹣1)2>0,解得:x≠1,则解集是一切实数的是|2x﹣1|+1>0,无解的是x2+1≤0.故答案为:|2x﹣1|+1>0,x2+1≤0.【点评】此题考查了解一元一次不等式,以及绝对值,熟练掌握不等式的解法是解本题的关键.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为3;最小值为.【分析】由a+b+c=6,2a﹣b+c=3关系式可以用a来表示b和c,再根据0≤c≤b列出不等式组,可以求得a的取值范围,最后根据a的取值范围来确定a的最大最小值.【解答】解:∵由已知条件得,解得,∵0≤c≤b,∴,解答,故a的最大值为3,最小值为.故答案为:3;.【点评】本题考查了解一元一次不等式组,解答本题的关键是分别用a来表示b和c,根据b≥c≥0,就可以得到关于a的不等式组.本题利用了消元的基本思想,消元的方法可以采用加减消元法或代入消元法.15.不等式﹣3≤5﹣2x<3的正整数解是2,3,4.【分析】先将不等式化成不等式组,再求出不等式组的解集,进而求出其整数解.【解答】解:原式可化为:,解得,即1<x≤4,所以不等式的正整数解为2,3,4.【点评】此题要明确,不等式﹣3≤5﹣2x<3要转化成不等式组的形式解答,否则将无从下手.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子6袋.【分析】根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款,设可以购买x袋蜜枣粽子,根据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.【解答】解:设可以购买x(x为整数)袋蜜枣粽子.2×10+(x﹣2)×10×0.7≤50,解得:x≤6,则她最多能买蜜枣粽子是6袋.故答案为:6.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.三、解答题17.解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.18.解不等式组,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如果方程组的解满足x>0,y>0,求m的取值范围.【分析】先解方程组得出,根据x>0,y>0得出,求出每个不等式的解集即可得出答案.【解答】解:解方程组得,∵x>0,y>0,∴,解不等式①,得:m>1,解不等式②,得:m<或m>1,∴m的取值范围是m>1.【点评】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是根据已知条件列出关于m的不等式组,并熟练解不等式组.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.【分析】根据10个不等式,当10个式子都取等号时,10个式子累加后才成立,进而计算可得结论.【解答】解:a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10=a1+(a3﹣a2)+(a5﹣a4)+(a7﹣a6)+(a9﹣a8)﹣a10,∵0≤a3≤2a2,∴a3﹣a2≤a2,同理:a5﹣a4≤a4,a7﹣a6≤a6,a9﹣a8≤a8,∴原式≤a1+a2+a4+a6+a8﹣a10≤a1+a2+a4+a6+a8,∵a2≤2a1,a4≤23a1,a6≤25a1,a8≤27a1,a9≤28a1,∴原式≤(1+2+23+25+27)a1=171,最大值为171,此时a9=28=256.【点评】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找规律.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?【分析】假设宿舍共有x间,则住宿生人数是5x+19人,若每间住8人,则有一间不空也不满,说明住宿生若住满(x﹣1)间,还剩的人数大于或等于1人且小于8人,所以可列式1≤5x+19﹣8(x﹣1)<8,解出x的范围讨论.【解答】解:设有宿舍x间.住宿生人数5x+19人.由题意得,1≤5x+19﹣8(x﹣1)<8,即1≤﹣3x+27<8,解得:6<x≤8.因为宿舍间数只能是整数,所以宿舍是7间或8间,当宿舍是7间时,住宿人数为5×7+19=54;当宿舍是8间时,住宿人数为5×8+19=59.答:住宿人数是54或59人.【点评】本题考查一元一次不等式的应用,对题目逐字分析,找出隐含(数学中的客观事实,但在题目中不存在)或题目中存在的条件.列出不等式关系,求解.22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.【分析】(1)3<x﹣2<5,转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出﹣4≤3x+5<﹣,即可得到结论.【解答】解:(1)3<x﹣2<5,转化为不等式组;(2)2≥﹣2x+3>﹣5,不等式的左、中、右同时减去3,得﹣1≥﹣2x>﹣8,同时除以﹣2,得≤x<4;(3)﹣3≤x<,不等式的左、中、右同时乘以3,得﹣9≤3x<﹣,同时加5,得﹣4≤3x+5<﹣,∴3x+5的整数值﹣4或﹣3.【点评】本题考查了解一元一次不等式组,参照方法二解不等式组是解题的关键,应用的是不等式的性质.。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
第九章不等式与不等式组单元测试卷含答案.docx

第九章 单元测试卷(时间:120分钟 满分:150分)一、选择题(每题4分,共40分)1、下列各式:(1)5x -≥;(2)30y x -<;(3)50xπ+<;(4)23x x +≠; (5)333x x+≤;(6)20x +<是一元一次不等式的有( ) A. 2个 B. 3个 C. 4个 D. 5个 2、下列命题正确的是( )A. 若a b >,b c <,则a c >B. 若a b >,则ac bc >C. 若a b >,则22ac bc >D. 若22ac bc >,则a b >3、若点P (21m +,312m -)在第四象限,则m 的取值范围是( ) A.14m < B.12m > C.1123m -<< D.1123m -≤≤4、如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A.0ab >B.0a b +<C.(1)(1)0b a -+>D.(1)(1)0b a -->5、不等式组1(1)2,2331xx x ⎧+≤⎪⎨⎪-<+⎩的解集在数轴上表示正确的是( )6、已知2x =是不等式(5)(32)0x ax a --+≤的解,且1x =不是这个不等式的解,则实数a 的取值范围是( )A.1a > B .2a ≤ C.12a <≤ D.12a ≤≤ 7、若0a b +<,且0b <,则a ,b ,a -,b -的大小关系为( )A.a b b a -<-<<B.a b b a -<<-< C .a b a b -<-<< D.a b b a <<-<-8、已知4,221x y k x y k +=⎧⎨+=+⎩且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C. 01k <<D.112k <<9、若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( )A.10m -≤< B .10m -<≤ C. 10m -≤≤ D .10m -<< 10、若人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A. 21090(18)2100x x +-≥B. 90210(18)2100x x +-≤C. 21090(18) 2.1x x +-≤D. 21090(18) 2.1x x +-> 二、填空题(每题5分,共20分) 11、若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是___________.12、已知实数x ,y 满足234x y -=,并且1x ≥-,2y <,现有k x y =+,则k 的取值范围是____________. 13、若不等式组20,x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,则不等式ax b +<0的解集为____________.14、某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n 应满足________________.三、解答题(15—18,每题8分;19、20每题10分;21、22每题12分;23题14分) 15、解不等式(组),并把解集在数轴上表示. (1) 122362x x x -+-<- (2)53362x-≤<16、已知实数a 是不等于3的常数,解不等式组233,11(2)022x x a x -+≥-⎧⎪⎨-+<⎪⎩,并依据a 的取值情况写出其解集.17、已知关于x ,y 的方程组2,2324x y m x y m -=⎧⎨+=+⎩的解满足不等式组30,50x y x y +≤⎧⎨+>⎩求满足条件的m 的整数值.18、小明早上7点骑自行车从家出发,以每小时12千米的速度到距家4千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分之前赶到学校,那么他步行的速度至少应为多少?19、已知关于x 的不等式(2)50a b x a b -+->的解集是107x <,求关于x 的不等式ax b >的解集.20、甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的八折优惠.现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x 把(9x ≥).(1)分别用含x 的式子表示到甲、乙两个厂家购买桌椅所需的金额; (2)请你说出到哪家购买更划算?21、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设某工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作.租赁公司提供的挖掘机有关信息如下表所示:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?22、对x ,y 定义一种新运算T ,规定(,)2ax byx y x y+T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ .已知(1,1)2T -=-,(4,2)1T =. (1)求a ,b 的值;(2)若关于m 的不等式组(2,54)4,(,32)m m m m p T -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围.23、为极大地满足人民生活的需求,丰富市场供应,某区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540 m 2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案,分别是哪几种; (2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?答 案一、选择题二、填空题11. 1a >- 12. 13k ≤< 13.32x > 14.100100mn m≤+ 三、解答题15.(1)4x > (2)7322x -<≤ (解集在数轴上表示略)16.解:233,11(2)0,22x x a x -+≥-⎧⎪⎨-+<⎪⎩①② 解不等式①,得3x ≤. 解不等式②,得x a <. ∵a 是不等于3的常数,∴当3a >时,不等式组的解集为3x ≤. 当3a <时,不等式组的解集为x a <. 17.解:2,2324,x y m x y m -=⎧⎨+=+⎩①②①+②,得334x y m +=+.②-①,得54x y m +=+.依题意,得340,40,m m +≤⎧⎨+>⎩解得443m -<≤-. 当m 为整数时,m =-3或m =-2.18.解:设他步行的速度为x 千米/时.由题意,得13()1212x -≥,解得x ≥4. 答:他步行的速度至少应为4千米/时. 19.解:原不等式可化为(2)5a b x b a ->-.而该不等式的解集为107x <, 说明20a b -<,且51027b a a b -=-.7(5)10(2)b a a b -=-,4527b a =,53b a =,35b a =,所以35b a =.因为20a b -<,所以3205a a -<,705a <, 所以0a <.在ax b >中,因为0a <,所以b x a <,即35x <.所以关于x 的不等式ax b >的解集为35x <.20.解:(1)到甲厂家购买桌椅所需金额为380080(9)(168080)x x ⨯+-=+(元).到乙厂家购买桌椅所需金额为(380080)0.8(192064)x x ⨯+⨯=+(元). (2)若168080192064x x +>+,解得15x >. ∵x 为整数,∴16x ≥.若168080192064x x +=+,解得15x =; 若168080192064x x +<+,解得15x <. ∵x 为整数,∴14x ≤.所以当买的椅子至少16把时,到乙厂家购买更划算; 当买的椅子为16把时,到两家厂家购买费用一样; 当买的椅子不多于14把时,到乙厂家购买更划算.21.解:(1)设租用甲型号的挖掘机x 台,乙型号的挖掘机y 台,根据题意,得8,6080540x y x y +=⎧⎨+=⎩解得5,3x y =⎧⎨=⎩答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用甲型号的挖掘机m 台,则租用乙型号的挖掘机5406080m-台,根据题意,得5406010012085080mm -+⨯≤,解得4m ≤. 又m 为非负整数, ∴0m =或1或2或3或4.将m 的值分别代入5406080m-,可知,只有当m =1时,54060680m-=,为整数,符合题意.∴符合条件的租用方案只有一种,即租用甲型号的挖掘机1台,乙型号的挖掘机6台. 22.解:(1)由,(4,2)1T =,得1(1)2211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+,即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3.(2)由(1)得3(,)2x yx y x y +T =+,则不等式组(2,54)4,(,32)m m m m p T -≤⎧⎨T ->⎩可化为105,539,m m p -≤⎧⎨->-⎩解得19325p m --≤<. ∵不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,∴93235p -<≤,解得123p -≤<-. 23.解:(1)根据题意可知西红柿种了(24)x -垄,则1530(24)540x x +-≤,解得12x ≥.又因为14x ≤,且x 是正整数,所以x =12,13,14. 故共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄;方案二:草莓种植13垄,西红柿种植11垄;方案三:草莓种植14垄,西红柿种植10垄.(2)方案一获得的利润:12×50×1.6+12×160×1.1=3072(元),方案二获得的利润:13×50×1.6+11×160×1.1=2976(元),方案三获得的利润:14×50×1.6+10×160×1.1=2880(元).由计算可知,方案一即种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072元.。
第九章 不等式与不等式组 单元测试

第九章
不等式与不等式组
单元测试
姓名:
班级:
学号:
得分:
时间:100分钟
满分:120分
A .1a ≤-
B .2a ≤-6.如果不等式组1
x x a
>-⎧⎨的解集是x >-
二、填空题(每小题3分,共12分)13.若a b >,则3a _______3b (填“>”、“=”或“<”)
14.已知3)2(1-<++b x b 是关于x 的一元一次不等式,则b =________.15.关于x 的不等式()3112x -<的解集是________.
16.不等式组23
182x x x
>⎧⎨-≤-⎩的所有整数解的和是________.
三、解答题(共72分)
17.
(16分)用不等式表示下列关系.(1)x 的3倍大于1;
(2)a 与1的和是正数;
(3)y 的2倍与1的和大于3;
(4)x 4与7的和不小于6
22.(14分)为了丰富校园文化生活,某校将举行春季特色运动会,需购买A,B两种奖品,经市场调查,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品1件和B种奖品3件,共需55元.
(1)求A、B两种奖品的单价各是多少元;
(2)运动会组委会计划购买A、B两种奖品共100件,购买费用不超过1160元,且A种奖品的数量不大于B种奖品数量的3倍,运动会组委会共有几种购买方案?并求出最小总费用。
第九章《不等式与不等式组》全章测试(含答案)

ABCD第九章《不等式与不等式组》全章测试时间:45分钟 满分:100分班级 姓名一、选择题(每小题6分,5题共30分)1.不等式21≥+x 的解集在数轴上表示正确的是( )2.利用数轴确定不等式组2133x x +≤⎧⎨>-⎩的解集,正确的是 ( )3.若b a >,则下列不等式中错误..的是 ( ) A .11->-b a B .11+>+b a C .b a 22> D .33a b ->- 4.如果关于x 的不等式(21)21a x a +<+ 的解集为1x > ,那么a 的取值范围是 ( ) A .0a > B. 0a < C. 12a >-D. 12a <- 5. 不等式组9511x x x m +<+⎧⎨>+⎩ 的解集是x >2,则m 的取值范围是 ( )A. m ≤2B. m ≤1C. m ≥2D. m ≥1二、填空题(每小题6分,5题共30分) 6.“x 的23倍与7的差不小于-5的相反数”,用不等式表示为_____ _ 7.如果2(1)3x -的值是非负数,则x 的取值范围是 8.不等式3120x -+>的正整数解为 9.当时k 时,不等式1(2)20k k x--+> 是一元一次不等式10. 不等式组⎩⎨⎧->-≥-1230x a x 的整数解共有4个,则a 的取值范围是三、解答题(11题、12题每题4分,13、14、15每题8分,共40分) 11. 解不等式,并把它的解集在数轴上表示出来 (1) 2418-≥--x x x (2)53[2()]72x x x --<12. 解不等式组(1) ⎪⎩⎪⎨⎧-<+≤--.1321,4)2(3x x x x (2)523(2),12123x xx x +<+⎧⎪--⎨⎪⎩ ≤. 13. 若二元一次方程组224x y kx y -=⎧⎨+=⎩的解x y > ,求k 的取值范围.14. 在一次知识竞赛中,甲、乙两人进入了“必答题”环节,规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得m分,回答错误或放弃回答扣n分。
七年级数学(下)第九章《不等式与不等式组》单元测试卷含答案
七年级数学(下)第九章《不等式与不等式组》单元测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.已知实数a 、b ,若a>b ,则下列结论正确的是( ) A .55a b -<- B .22a b +<+ C .33a b > D .33a b < 2.不等式组的解集是( )A .x >B.﹣1≤x < C .x < D .x ≥﹣1 3.若关于x 的一元一次不等式组有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-4.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x 千米远,则x 的值应满足( )A .x=3B .x=7C .x=3或x=7D .3≤x ≤7 5.使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在 6.不等式组⎩⎨⎧≥111-,<-x x 的解集在数轴上表示正确的是( )。
7.下列不等式,其中属于一元一次不等式的是( ) A .x ≥5xB .2x>1-x 2C .x+2y<1D .2x+1≤3x 8.不等式3(2)4x x -≤+的非负整数解有( )个 A .4 B .5 C .6 D .无数9.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒,则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人 10.小亮在解不等式组62053x x -<⎧⎨+>-⎩①②时,解法步骤如下:解不等式①,得x >3,…第一步; 解不等式②,得x >﹣8,…第二步;所有原不等式组组的解集为﹣8<x <3…第三步.对于以上解答,你认为下列判断正确的是( )A .解答有误,错在第一步B .解答有误,错在第二步C .解答有误,错在第三步D .原解答正确无误 二、填空题(共10小题,每题3分,共30分) 11.不等式052>-x 的最小整数解是 .12.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对 道题,成绩才能在80分以上. 13.不等式2x -1≤3的非负整数解是 .14.七年级(1)班组织听写汉字大赛,班长小明现有100元班费,欲购买笔记本和钢笔这两种奖品共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔 支. 15.若a <0则-3a +2____0.(填“>”“=”“<”) 16.若不等式组841,x x x m+<-⎧⎨>⎩的解集是x >3,则m 的取值范围是 .17.代数式41+2x 的值不大于8-2x的值,那么x 的正整数解是 . 18.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于 米. 19.若不等式组2x a <<的整数解有3个,则a 的取值范围是 .20.在一次社会实践活动中,八年级二班可筹集到的活动经费不超过900元.此次活动租车需300元,每个学生活动期间所需经费为20元,则参加这次活动的学生人数最多为_______人.三、解答题(共60分)21.(6分)解不等式:2x 12x 3-+≤并将它的解集在数轴上表示出来. 22.(6分)解不等式组:()()2x 1x 11x 2>2x 13⎧-≥+⎪⎨--⎪⎩. 23.(7分)小明、小华、小刚三人在一起讨论一个一元一次不等式组. 小明:其中一个不等式的解集为x ≤8;小刚:其中有一个不等式在求解的过程中需要改变不等号方向; 请你写出符合上述条件的不等式组,并解这个不等式组.24.(9分)若方程组2225x y m x y m +=+⎧⎨-=-⎩的解是一对正数,则:(1)求m 的取值范围(2)化简:42m m -++25.(12分)已知关于x 、y 的方程组24221x y mx y m +=⎧⎨+=+⎩(实数m 是常数).(1)若x +y =1,求实数m 的值; (2)若-1≤x -y ≤5,求m 的取值范围; (3)在(2)的条件下,化简:223m m ++-.26.(8分)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分. (1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?27.(12分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x 辆,还差5人才能坐满; (1)则该校参加此次活动的师生人数为 (用含x 的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人? (3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.参考答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.已知实数a 、b ,若a>b ,则下列结论正确的是( ) A .55a b -<- B .22a b +<+ C .33a b > D .33a b < 【答案】C 【解析】考点:不等式的性质 2.不等式组的解集是( )A .x >B.﹣1≤x < C .x < D .x ≥﹣1 【答案】A 【解析】试题分析:解不等式2x-1>0得:x >12,解不等式x+1≥0得:x ≥-1,所以不等式组的解集为x >. 故选A .学@科网 考点:不等式组的解集. 3.若关于x 的一元一次不等式组有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】C 【解析】试题分析:解不等式20x m -<得,x <2m ,解不等式2x m +>得,x >2-m ,因为不等式组有解,所以不等式组的解集是:2m >2-m ,解得:m >23; 故选C .考点:不等式组的解集.4.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x 千米远,则x 的值应满足( )A .x=3B .x=7C .x=3或x=7D .3≤x ≤7 【答案】D 【解析】试题分析:设小明家距小丽家x 千米远,根据题意得:5-2≤x ≤5+2,解得:3≤x ≤7. 故选D .考点:不等式组的应用.5.使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在 【答案】A 【解析】考点:不等式组的整数解. 6.不等式组⎩⎨⎧≥111-,<-x x 的解集在数轴上表示正确的是( )。
新七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案解析)
七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级下数学单元测试卷 第九章 不等式与不等式组 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、填空题:(每小题3分,共30分)1、若一个三角形两边的长分别为3cm 和5cm ,那么第三边的长x 的取值范围 是 。
不等式单元测验
第九章 不等式与不等式组测试题一、选择题:(每小题3分,共30分)1.如果不等式ax <b 的解集是x <ab,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 2.若0<a <1,则下列四个不等式中正确的是( ) A .a <1<1a B .a <1a <1 C .1a <a <1 D .1<1a<a 3.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是( )A.3m ≥ B.3m = C.3m < D.3m ≤4. 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( )。
A 、0 B 、-3 C 、-2 D 、-15.不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为( )6.以下所给的数值中,为不等式-2x + 3<0的解的是( ). A .-2 B .-1 C . D .2 7.若b a <,则下列各式中不一定成立的是( )A .11-<-b aB .33ba <C . b a ->-D . bc ac < 8. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )B9.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有( )人。
A 40B 41C 42D 4310.如果关于x 的不等式组{x 13m x m <+>-无解,那么m 的取值范围是( )A m >1B m ≥1C m <1D m ≤1二、填空题 :(每小题3分,共24分)11. 2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a12. 不等式2(x -3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_______________。
新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)
人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章节检测(六) 不等式与不等式组单元测试时间:40分钟 满分:120分班级 姓名 学号 分数一、选择题(本大题共10小题,每题3分,共30分) 1. 下列各式:(1)5x -≥;(2)30y x -<;(3)50xπ+<;(4)23x x +≠;(5)333x x+≤;(6)20x +<中,是一元一次不等式的有( ) A. 2个 B. 3个 C. 4个 D. 5个2.已知<,则下列不等式中不正确的是( )A .4<4B .+4<+4C .-4<-4D .-4<-43.满足-1<≤2的数在数轴上表示为( )4.不等式3x ≤2x +2的解集在数轴上表示如下,其中正确的是( )5.不等式的解集为( ) 第5题图A. 8>xB. 8≥xC. 8<xD. 8≤x6.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集是( )A .3>xB .4>xC .4≥xD .43≤<x7.若点P (21m +,312m -)在第四象限,则m 的取值范围是( ) A.14m <B.12m >C.1123m -<<D.1123m -≤≤ 8.从甲地到乙地有16 km ,某人以4 km/h ~8 km/h 的速度由甲地到乙地,则他用的时间大约为( )A .1 h ~2 hB .2 h ~3 hC .3 h ~4 hD .2 h ~4 h9. 若人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A. 21090(18)2100x x +-≥B. 90210(18)2100x x +-≤C. 21090(18) 2.1x x +-≤D. 21090(18) 2.1x x +->10.若不等式组的解集为0<x <1,则a 的值为( ) A .1B .2C .3D .4二、填空题(本大题共6小题,每题4分,共24分)11.x 的21与5的差不小于3,用不等式表示为 .12.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间(不含7点30分和7点40分)到达学校,设步行速度为米/分,则可列不等式组____________ ______.13.若|x-2|=x -2,则x 的取值范围是 .14.不等式的解集为x >1,则m 的值为_________.15.若不等式组的解集是>3,则的取值范围是 .16.某种商品的进价为800元,出售时标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 折.三、解答题(本大题共4小题,第17题20分、第18、19题每题8分,第20题10分,共46分)17.(每小题5分,共20分)解不等式(组),并把解集在数轴上表示出来.(1) 4x -4≥3 x -7 (2) 1234-<-x x(3) (4)53362x-≤<18.(8分)已知关于的方程122-+=+x m m x 的解为非正数,求的取值范围.19.(8分)某知识竞赛共有20道题,每一道题答队得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?20.(10分)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的八折优惠.现某公司要购买3张办公桌和若干把椅子,x ).(1)分别用含x的式子表示到甲、乙两个厂家购买桌椅所需若购买的椅子数为x把(9的金额;(2)请你说出到哪家购买更划算?四、附加题(共20分)21.(10分)已知关于x 的不等式(2)50a b x a b -+->的解集是107x <,求关于x 的不等式ax b >的解集.22.(10分)为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设某工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作.租(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?第九章 不等式与不等式组检测题参考答案17.(1)4x > (2)7322x -<≤ (解集在数轴上表示略)19.解:设他步行的速度为x 千米/时.由题意,得13()1212x -≥,解得x ≥4. 答:他步行的速度至少应为4千米/时.21.解:原不等式可化为(2)5a b x b a ->-.而该不等式的解集为107x <, 说明20a b -<,且51027b a a b -=-.7(5)10(2)b a a b -=-,4527b a =,53b a =,35b a =,所以35b a =. 因为20a b -<,所以3205a a -<,705a <, 所以0a <. 在axb >中,因为0a <,所以b x a <,即35x <. 所以关于x 的不等式ax b >的解集为35x <. 22.解:(1)设租用甲型号的挖掘机x 台,乙型号的挖掘机y 台,根据题意,得8,6080540x y x y +=⎧⎨+=⎩解得5,3x y =⎧⎨=⎩答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用甲型号的挖掘机m台,则租用乙型号的挖掘机5406080m-台,根据题意,得54060 10012085080mm-+⨯≤,解得4m≤.又m为非负整数,∴0m=或1或2或3或4.将m的值分别代入5406080m-,可知,只有当m=1时,54060680m-=,为整数,符合题意.∴符合条件的租用方案只有一种,即租用甲型号的挖掘机1台,乙型号的挖掘机6台.1.A 解析:A正确;不大于3可表示为,故B错误;是负数可表示为,故C错误;与2的和是非负数可表示为,故D错误.2.B 解析:不等式两边同乘6,得,即所以3. B 解析:移项,得合并同类项,得的系数化为1,得.∴选项B正确.4.C 解析:根据题意得,解得46≤x<56,故选C.5.C 解析:解不等式组得.6.C解析:根据不等式的基本性质,不等式两边同时加上或减去同一个数,不等号的方向不变;不等式两边同时乘或除以同一个正数,不等号的方向不变,同时乘或除以同一个负数,不等号的方向要改变.7.B解析:注意解集表示时的方向及点的空心与实心的区别.8.D解析:路程一定,速度的范围直接决定所用时间的范围.9.A解析:先通过解方程求出用表示的的式子,然后根据方程的解是负数,得到关于的不等式,求解不等式即可.10.A 解析:解不等式①,得,解不等式②,得,∴原不等式组的解集为:.∵不等式组的解集为0<x<1,∴,,解得a=1,故选A.11.x>4 解析:分别解两个不等式,求得两个不等式的解集分别是x>4和x>2.因为两个不等式解集的公共部分是x>4,所以不等式组的解集是x>4.12. 60米/分~80米/分解析:7点出发,要在7点30分到40分之间到达学校,意味着小明在30分钟之内的路程不能超过2 400米,而40分钟时的路程至少达到2 400米.由此可列出不等式组.13.1<a<4 解析:根据题意,可得到不等式组解不等式组即可.14. 4 解析:去分母,得,去括号,得,移项,合并同类项,得.∵此不等式的解集为x>1,∴,解得m=4.15.m 3 解析:解不等式组可得结果因为不等式组的解集是x>3,所以结合数轴,根据“同大取大”原则,不难看出m的取值范围为m 3.16.-3<a≤-2 解析:解不等式组可得结果a≤x≤2,因此五个整数解为2、1、0、-1、-2,所以-3<a≤-2.17.1.3 解析:设导火线的长度为x米,工人转移需要的时间为:(秒),由题意得x≥130×0.01=1.3(米).18.7 解析:设最低打x折,由题意可得,解得x≥7.19.解:去括号,得2x+21≥3x+2,移项,得2 x3 x≥22+1,合并同类项,得x≥1,系数化为1,得x≤1,这个不等式的解集在数轴上表示如下图所示.20.解:解关于x的方程,得.因为方程的解为非正数,所以有≤0,解得≥.21.解:(1)x≥3;(2)x≤5;(3)第21题答图(4)3≤x≤5.22.解:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,根据题意,得解此不等式组得2≤x≤4.因为x是正整数,所以x可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:(2)方案一所需运费300×2+240×6= 2 040(元);方案二所需运费300×3+240×5 =2 100(元);方案三所需运费300×4 +240×4 =2 160(元).所以王灿应选择方案一运费最少,最少运费是2 040元.23.解:设孔明购买球拍个,根据题意,得,解得.由于取正整数,故的最大值为7.答:孔明应该买7个球拍.24.解:(1)60-x-y;(2)根据题意,得900x+1 200y+1 100(60-x-y)= 61 000,整理得y=2x-50.(3)①根据题意,得= 1 200x+1 600y+1 300(60-x-y)-61 000-1 500,整理,得=500x+500.②购进C型手机部数为:60-x-y =110-3x.根据题意列不等式组,得解得29≤x≤34.所以x范围为29≤x≤34,且x为整数.因为是x的一次函数,k=500>0,所以随x的增大而增大.所以当x取最大值34时,有最大值,最大值为17 500元.此时购进A型手机34部,B型手机18部,C型手机8部.。