2019-2020学年高中数学必修五综合测试卷及答案
高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
2019-2020学年高中数学人教A版必修5练习:第二章 2.2 等差数列 第一课时 等差数列的概念及通项公式 课下检

一、选择题1.{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2 011,则序号n 等于( ) A .668 B .669 C .670D .671解析:∵a n =a 1+(n -1)·d , ∴2 011=1+(n -1)×3,n =671. 答案:D2.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2(n ∈N *) B .a n =2n +4(n ∈N *) C .a n =-2n +12(n ∈N *) D .a n =-2n +10(n ∈N *) 解析:由⎩⎪⎨⎪⎧a2·a4=12,a2+a4=8,d<0,⇒⎩⎪⎨⎪⎧ a2=6,a4=2,⇒⎩⎪⎨⎪⎧a1=8,d =-2,所以a n =a 1+(n -1)d =8+(n -1)(-2). 即a n =-2n +10. 答案:D3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a 、b 的关系是( ) A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0解析:由等差中项的定义知:x =a +b 2,x 2=a2-b22, ∴a2-b22=(a +b 2)2,即a 2-2ab -3b 2=0. 故a =-b 或a =3b . 答案:C4.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( ) A .52 B .51 C .50D .49解析:∵2a n +1=2a n +1, ∴2(a n +1-a n )=1.即a n +1-a n =12.∴{a n }是以12为公差的等差数列.a 101=a 1+(101-1)×d =2+50=52. 答案:A二、填空题5.等差数列1,-3,-7,-11,…的通项公式是________,它的第20项是________. 解析:数列中a 2=-3,a 1=1,∴d =a 2-a 1=-4. 通项公式为a n =a 1+(n -1)×d =1+(n -1)×(-4) =-4n +5, a 20=-80+5=-75. 答案:a n =-4n +5 -756.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________. 解析:∵由a 4=8,a 8=4,得⎩⎪⎨⎪⎧a1+3d =8,a1+7d =4. ∴d =-1,a 1=8-3d =11. ∴a n =a 1+(n -1)d =11-(n -1)=12-n . 答案:12-n7.等差数列{a n }中,首项为33,公差为整数,若前7项均为正数,第7项以后各项都为负数,则数列的通项公式为____________.解析:由题意,得⎩⎪⎨⎪⎧ a7=a1+6d >0,a8=a1+7d <0,即⎩⎪⎨⎪⎧33+6d >0,33+7d <0,得:-336<d <-337,又∵d ∈Z ,∴d =-5.∴a n =33+(n -1)×(-5)=38-5n . 答案:a n =38-5n (n ∈N *) 8.下表给出一个“等差矩阵”:其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数,那么a 45=________. 解析:该等差数列第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1). 第二行是首项为7,公差为5的等差数列:a 2j =7+5(j -1).……第i 行是首项为4+3(i -1),公差为2i +1的等差数列. 因此,a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j .故a 45=49. 答案:49 三、解答题9.已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?解:法一:设等差数列{a n }的前三项分别为a 1,a 2,a 3.依题意得⎩⎪⎨⎪⎧a1+a2+a3=18,a1·a2·a3=66,∴错误!解得⎩⎪⎨⎪⎧ a1=11,d =-5.或⎩⎪⎨⎪⎧a1=1,d =5.∵数列{a n }是递减等差数列,∴d <0. 故取a 1=11,d =-5,∴a n =11+(n -1)·(-5)=-5n +16 即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n =10. ∴-34是数列{a n }的项,且为第10项. 法二:设等差数列{a n }的前三项依次为: a -d ,a ,a +d , 则错误!解得错误!又∵{a n }是递减等差数列,即d <0. ∴取a =6,d =-5.∴{a n }的首项a 1=11,公差d =-5. ∴通项公式a n =11+(n -1)·(-5), 即a n =-5n +16. 令a n =-34,解得n =10.即-34是数列{a n }的项,且为第10项.10.数列{a n }满足a 1=1,a n +1=(n 2+n -λ)a n (n =1,2,…),λ是常数. (1)当a 2=-1时,求λ及a 3的值;(2)是否存在实数λ使数列{a n }为等差数列?若存在,求出λ及数列{a n }的通项公式;若不存在,请说明理由.解:(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…), 且a 1=1.所以当a 2=-1时,得-1=2-λ,故λ=3.从而a3=(22+2-3)×(-1)=-3.(2)数列{a n}不可能为等差数列,证明如下:由a1=1,a n+1=(n2+n-λ)a n,得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).若存在λ,使{a n}为等差数列,则a3-a2=a2-a1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a2-a1=1-λ=-2,a4-a3=(11-λ)(6-λ)(2-λ)=-24.这与{a n}为等差数列矛盾.所以,不存在λ使{a n}是等差数列.。
高中数学北师大版5第一、二章综合测试题与答案

高中数学必修5第一二章综合测试卷一、选择题:(每小题4分,共计40分)1.△ABC 的内角A,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120o,则a 等于( D )AB .2 CD2.在△ABC 中,已知b=2,B=45°,如果用正弦定理解三角形有两解,则边长a 的取值范围是 ( A )A .222<<aB .42<<aC .22<<aD .222<<a3.在△ABC 中,角A ,B,C 的对边分别为a,b,c ,若(a 2+c 2—b 2)tan B =3ac ,则角B 的值为(D )A. 6πB. 3πC.6π或56πD 。
3π或23π4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( D )A 。
185B.43 C.23 D.87 5.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于 ( A ) A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-a C .)sin(cos cos βαβα-aD .)cos(cos cos βαβα-a6.已知等差数列{a n }满足a 2+a 4=4, a 3+a 5=10,则它的前10项的和S 10=( C ) A .138 B .135 C .95 D .237.已知{a n }是等比数列,a 2=2, a 5=41,则a 1a 2+ a 2a 3+…+ a n a n+1=( C )A .16(n--41) B .16(n--21)C .332(n--41) D .332(n--21)8 如果a 1,a 2,…, a 8为各项都大于零的等差数列,公差0d ≠,则 ( B )A 5481a a a a >B 5481a a a a < C1845a a a a +>+ D5481a a a a =[解析]:因为128,,,a a a 为各项都大于零的等差数列,公差0d ≠故2121115412111817)4)(3(,7)7(d d a a d a d a a a d a a d a a a a ++=++=+=+=;故5481a a aa <9、3、已知数列{a n }满足a 1=0, a n+1=a n +2n,那么a 2003的值是 ( C )A 、20032B 、2002×2001C 、2003×2002D 、2003×200410、已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使前n 项和S n 取最大值的正整数n 是(B)A 、4或5B 、5或6C 、6或7D 、8或9二、填空题:(每小题4分,共计20分)11.已知a +1,a +2,a +3是钝角三角形的三边,则a 的取值范围是 (0,2)12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若(3b – c)cosA=acosC ,则13.若AB=2,,则S △ABC 的最大值14.在等比数列{a n }中,若a 9·a 11=4,则数列{n a 21log}前19项之和为___-19 ___[解析]:由题意a n 〉0,且a 1·a 19 =a 2·a 18 =…=a 9·a 11=210a又a 9·a 11=4 ,故1921a a a =192故+121log a 221log a +…+1921loga =19)(log 192121-=a a a15.已知函数f (x )=2x ,等差数列{a x }的公差为2.若f (a 2+a 4+a 6+a 8+a 10)=4,则log 2[f (a 1)f(a 2)f(a 3)…f(a 10)]= -6三、解答题:(共计40分)16.(本题10分)△ABC 中,∠A=45°,AD ⊥BC ,且AD=3,CD=2,求三角形的面积S. 解:记,,βα=∠=∠CAD BAD βαβαβαβαtan tan 1tan tan )tan(45tan ,2tan ,3tan -+=+=︒∴==∴hh1(60656522-==⇒=--⇒-=h h h h h h 不合),155621=⨯⨯=∴S 。
2019-2020学年高中数学人教A版必修5单元提分卷:(6)等比数列

单元提分卷(6)等比数列1、等比数列,33,66x x x ++,…的第四项等于( ) A.-24 B.0C.12D.242、已知等比数列{}n a 中, 13a =,且1234,2,a a a 成等差数列,则345a a a ++=( ) A.33B. 72C. 84D. 1893、等比数列{}n a 的各项为正数,且564718a a a a +=,则3132310log log log a a a +++=( )A.12B.10C.8D.32log 5+4、若等比数列的首项为98,末项为13,公比为23,则这个数列的项数为( )A.3B.4C.5D.65、在等比数列{}n a 中,n T 表示前n 项的积,若51T =,则下列一定正确的是( ) A. 11a = B. 31a = C. 41a = D. 51a =6、设数列{}n a ,( ).A.若2*4,,n n a n N =∈则{}n a 为等比数列. B.若2*21,n n n a a a n N ++⋅=∈,则{}n a 为等比数列. C.若*2,,m n m n a a m n N +⋅=∈,则{}n a 为等比数列. D.若*312,n n n n a a a a n N +++⋅=⋅∈,则{}n a 为等比数列.7、三个数,,a b c 既是等差数列,又是等比数列,则,,a b c 间的关系为( ). A. b a c b -=-B. 2b ac =C. a b c ==D. 0a b c ==≠8、如果1,,,,9a b c --成等比数列,那么( )A. 3,9b ac ==B. 3,9b ac =-=C. 3,9b ac ==-D. 3,9b ac =-=-9、在等比数列{}n a 满足135a a +=,且公比2q =,则35a a +等于( ). A.10 B.13 C.20 D.25 10、在等比数列{}n a 中,首项10a <,要使数列{}n a 对任意正整数n 都有1n n a a +>,则公比q 应满足( ). A. 1q > B. 01q << C.112q << D. 10q -<<11、已知等比数列{}n a 中, 12451,8a a a a +=+=-则公比q 等于( ). A.-2 B.2 C. 23- D.3212、设等比数列{}n a 满足132410,5a a a a +=+=,则12n a a a 的最大值为__________13、若三个正数,,a b c 成等比数列,其中5a =+5c =-则b =__________. 14、已知数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =__________15、三个互不相等的实数,1,a b 依次成等差数列,且22,1,a b 依次成等比数列,则11a b+=__________ 16、首项为3的等比数列的第n 项是48,第23n -项是192,则n =__________答案以及解析1答案及解析: 答案:A解析:由题意知()()23366x x x +=+,即2430x x ++=,解得3x =-或1x =- (舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2答案及解析: 答案:C解析:由题意可设公比为q ,则21344a a a =+, 又13a =,∴2q =.∴223451134124()(84)a a a a q q q ++⨯⨯++++===.3答案及解析: 答案:B解析:564756189a a a a a a +=∴=,()313231031210log log log log a a a a a a +++=()53563log 5log 910a a ===.4答案及解析: 答案:B解析:111192,(),383n n n a a q --=∴=⋅则128()327n -=,13n ∴-=,即4n =.5答案及解析: 答案:B解析:由题意,可得123451a a a a a ⋅⋅⋅⋅=, 即15243()()1a a a a a ⋅⋅⋅⋅=,又215243()()a a a a a ⋅=⋅=,所以531a =,得31a =6答案及解析: 答案:C 解析:7答案及解析: 答案:D解析:一个数列既是等差数列又是等比数列,那它一定是常熟数列,但要注意的是等比数列中不能有0.8答案及解析: 答案:B 解析:9答案及解析: 答案:C 解析:10答案及解析: 答案:B解析:()11110n n n a a a q q -+-=->对任意正整数n 都成立,而10a <只能01q <<11答案及解析: 答案:A 解析:12答案及解析:答案:64 解析:13答案及解析: 答案:1解析:∵,,a b c 成等比数列,∴((25525241b ac ==+⋅-=-=. ∵ b 为正数,∴1b =.14答案及解析: 答案:1 解析:15答案及解析: 答案:2± 解析:16答案及解析: 答案:5 解析: 设公比为q ,则1212424348163192644n n n n q q qq q ----⎧⎧==⎪⇒⇒=⎨⎨==⎪⎩⎩,得2q =±.由()1216n -±=,得5n =.。
《数列》测试卷及答案解析(基础卷)

2019-2020学年高中数学必修五《数列》考试卷姓名: 成绩:一、本卷共12个小题,每题5分,共60分.在每个小题给出的四个选项中,只有一项是最符合题目要求的,请把正确答案填涂在答题卡上.1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 020,则序号n 等于( ).A .672B .673C .674D .675【答案】C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 020=1+3(n -1),∴n =674. 2. 已知数列{a n }的通项公式a n =12[1+(-1)n +1],则该数列的前4项依次是( )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0【答案】A3. 若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是 ( )A .39B .20C .19.5D .33 【答案】D4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.2223【答案】 C.由题意知数列的通项公式是an =2n 2n +1,∴a10=2×102×10+1=2021.故选C.5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .192 【答案】B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120.6.若数列{a n }是等差数列,首项a 1>0,a 2019+a 2020>0,a 2019·a 2020<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4038C .4039D .4 008【答案】B解析:由a 2019+a 2020>0,a 2019·a 2020<0,知a 2019和a 2020两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2019>a 2020,即a 2019>0,a 2020<0.∴S 4038=2+006400641)(a a >0,∴S 4039=20074·(a 1+a 4039)=20074·2a 2020<0, 故4038为S n >0的最大自然数. 选B .7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -10【答案】B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6, 又由a 1,a 3,a 4成等比数列, ∴(a 1+4)2=a 1(a 1+6),解得a 1=-8, ∴a 2=-8+2=-6.8.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21。
2019-2020学年高中人教B版数学必修五同步课时跟踪检测:综合测评 Word版含解析【KS5U 高考】

必修5综合测评(时间:120分钟 满分:150分)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果a <0,b >0,那么,下列不等式中正确的是( ) A.1a <1b B.-a <b C .a 2<b 2D .|a |>|b |2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =4,C =120°,则△ABC 的面积是( )A .3B .3 3C .6D .6 33.(2018·吉林延边月考)在△ABC 中,a =2,b =2,A =45°,则B 等于( ) A .45° B .30° C .60°D .30°或150°4.(2019·广西陆川月考)等比数列{a n }的前n 项和S n =12·3n +1+c (c 为常数),若λa n ≤3+S 2n 恒成立,则实数λ的最大值是( )A .3B .4C .5D .65.(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30 C.29D .2 56.(2018·黑龙江大庆月考)目标函数z =2x +y ,变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y <25,x ≥1,则有( )A .z max =12,z min =3B .z min =3,z 无最大值C .z max =12,z 无最小值D .z 既无最大值,也无最小值7.(2018·临川二中月考)已知数列{a n }中,a 1=1,a n +1=a n +n +1,则数列⎩⎨⎧⎭⎬⎫a n n 的前n 项和为( )A.n 2+5n 2B .n 2+5n 4C.n 2+3n 2D.n 2+3n 48.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n =( )A .2n -1B .2n -1-1 C .2n +1D .4n -19.(2018·广东佛山高明月考)在数列{a n }中,a 1=3,a 2=1,a n +2=a n +a n +1,则a 7等于( ) A .7 B .20 C .12D .2310.设实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≤6,2x +y ≤6,x ≥0,y ≥0,则z =max{2x +3y -1,x +2y +2}的取值范围是( )A .[2,5]B .[2,9]C .[5,9]D .[-1,9]11.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3D .7+4 312.(2019·黑龙江月考)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称{a n }为“调和数列”,已知正项数列⎩⎨⎧⎭⎬⎫1x n 为“调和数列”,且x 1+x 2+…+x 20=200,则1x 3+1x 18的最小值为( )A.110 B .10 C.15D .5第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.(2018·江苏启东月考)若正实数x ,y 满足x 2+2xy -1=0,则2x +y 的最小值为________.14.设数列{a n }的通项公式为a n =2n -7(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 15.(2019·吉林延边月考)已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为________.16.(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(2018·安徽池州月考)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且cos A cos B =b a =43.(1)证明角C =90°; (2)求△ABC 的面积.18.(12分)(2018·福建华安月考)设数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n=1(2n +1)log 2a 2n -1+22n -1.(1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和T n .19.(12分)(2018·甘肃武威月考)某小型餐厅馆一天中要购买A ,B 两种蔬菜,A ,B 蔬菜每公斤的单价分别为2元和3元.根据需要A 蔬菜至少要买6公斤,B 蔬菜至少要买4公斤,而且一天中购买这两种蔬菜的总费用不能超过60元.如果这两种蔬菜加工后全部卖出,A ,B 两种蔬菜加工后每公斤的利润分别为2元和1元,餐馆如何采购这两种蔬菜使得利润最大,利润最大为多少元?20.(12分)(2018·北京卷)在△ABC 中,a =7,b =8,cos B =-17.(1)求A ;(2)求AC 边上的高.21.(12分)(2018·天津卷)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列. 已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *),求T n . 22.(12分)已知ƒ(x )=-3x 2+a (6-a )x +b . (1)解关于a 的不等式ƒ(1)>0;(2)若不等式ƒ(x )>0的解集为(-1,3),求实数a ,b 的值. 解析:如果a <0,b >0,那么1a <0,1b >0,∴1a <1b .答案:A解析:S △ABC =12ab sin C =12×3×4×32=3 3.故选B.答案:B解析:由正弦定理,得sin B =b sin A a =2×222=12, 又a >b ,∴B =30°,故选B. 答案:B解析:当n =1时,S 1=92+c ,当n ≥2时,a n =S n -S n -1=12·3n +1-12·3n =3n,∴当n =1时,92+c =3,∴c =-32,∴S n =12·3n +1-32,不等式λa n ≤3+S 2n 可化为 λ·3n ≤3+12·32n +1-32,∴λ≤32⎝⎛⎭⎫13n +3n 恒成立, ∴λ≤⎣⎡⎦⎤32⎝⎛⎭⎫13n +3n min ,∵y =32⎝⎛⎭⎫13n +3n ,当n ≥1时,为递增数列, ∴λ≤32⎝⎛⎭⎫13+3,即λ≤5,故选C. 答案:C解析:因为cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35,所以c 2=a 2+b 2-2ab cos C =1+25-2×1×5×⎝⎛⎭⎫-35=32.所以c =42,故选A. 答案:A解析:不等式组所表示的平面区域如图所示.∴z =2x +y 过点B (1,1)点时,有最小值, ∴z min =3,当z =2x +y 过点C (5,2)时,有最大值,∴z max =12,故选A. 答案:A解析:解法一:当n =1时,a nn =1,代入验证知D 正确.解法二:由a n +1=a n +n +1, 得a 2-a 1=2, a 3-a 2=3, …a n -a n -1=n ,∴a n -a 1=2+3+…+n , ∴a n =1+2+…+n =n (n +1)2,∴a n n =n +12, ∴数列⎩⎨⎧⎭⎬⎫a n n 的前n 项和S n =n ⎝⎛⎭⎫1+n +122=n 2+3n 4.故选D. 答案:D解析:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=1-2n 1-2=2n-1故选A.答案:A解析:由题可知a 3=a 1+a 2=4,a 4=a 3+a 2=5,a 5=9,a 6=14,a 7=23,故选D. 答案:D解析:作出可行域如图,当平行直线系2x +3y -1=z 在直线BC 与点A 间运动时,2x +3y -1≥x +2y +2,此时z =2x +3y -1∈[5,9],平行直线系x +2y +2=z 在点O 与BC 之间运动时,2x +3y -1≤x +2y +2,此时,z =x +2y +2∈[2,8],∴z ∈[2,9].选B.答案:B解析:由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b=1,所以a +b =(a +b )⎝⎛⎭⎫4a +3b=7+4b a +3ab ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab,即a =4+23,b =23+3时等号成立,故其最小值是7+4 3.答案:D解析:由题可知,若⎩⎨⎧⎭⎬⎫1x n 为调和数列,则x n +1-x n =d , 即{x n }是等差数列,由x 1+x 2+…+x 20=200,得x 1+x 20=20, ∴x 3+x 18=20.∴1x 3+1x 18=⎝⎛⎭⎫1x 3+1x 18⎝⎛⎭⎫x 3+x 1820=120⎝⎛⎭⎫2+x 18x 3+x 3x 18 ≥120(2+2)=15. 当且仅当x 18x 3=x 3x 18,即x 3=x 18时,等号成立,故1x 3+1x 18的最小值为15. 答案:C 解析:由x 2+2xy -1=0,得y =1-x 22x>0,∴0<x <1,∴2x +y =2x +1-x 22x =3x 2+12x =12⎝⎛⎭⎫3x +1x ≥3x ·1x= 3. 当且仅当3x =1x ,即x =33时,等号成立.答案: 3解析:∵a n =2n -7,∴a 1=-5,a 2=-3,a 3=-1,a 4=1,a 5=3,…,a 15=23.∴|a 1|+|a 2|+…+|a 15|=(5+3+1)+(1+3+5+…+23)=9+12×(1+23)2=153.答案:153解析:由题可知⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,∴⎩⎪⎨⎪⎧x >2或x <1,x >3或x <2, ∴x <1或x >3.答案:(-∞,1)∪(3,+∞)解析:由正弦定理得a b =sin A sin B ,∴sin B =27×sin π3=217,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴7=4+c 2-2c ,∴c =3(负值舍去).答案:2173 解:(1)证明:根据正弦定理得cos A cos B =sin Bsin A ,整理为sin A cos A =sin B cos B ,即sin2A =sin2B . ∵0°<2A,2B <180°,∴2A =2B ,或2A +2B =180°. ∵b a =43,∴A +B =90°,即∠C =90°. (2)因为△ABC 是以角C 为直角的直角三角形,且c =10,易求得a =6,b =8. ∴△ABC 的面积S =12ab =24.解:(1)当n =1时,a 1=S 1=2,由S n =2n +1-2, 得S n -1=2n -2(n ≥2),∴a n =S n -S n -1=2n +1-2n =2n (n ≥2),又a 1也符合, ∴a n =2n (n ∈N *).(2)b n =1(2n +1)log 222n -1+22n -1=1(2n +1)(2n -1)+22n -1=12⎝⎛⎭⎫12n -1-12n +1+22n -1, T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1+(2+23+25+…+22n -1)=12⎝⎛⎭⎫1-12n +1+2(1-4n )1-4=22n +13-14n +2-16.解:设餐馆一天购买A 蔬菜x 公斤,购买B 蔬菜y 公斤,获得的利润为z 元. 依题意可知x ,y 满足不等式组⎩⎪⎨⎪⎧2x +3y ≤60,x ≥6,y ≥4,目标函数为z =2x +y ,画出的平面区域如图.∵y =-2x +z ,∴z 表示过可行域内点斜率为-2的一组平行线在y 轴上的截距.联立⎩⎪⎨⎪⎧ 2x +3y =60,y =4解得⎩⎪⎨⎪⎧x =24,y =4.即B (24,4), ∴当直线过点B (24,4)时,在y 轴上的截距最大, 即z max =2×24+4=52.故餐馆应够买A 蔬菜24公斤,B 蔬菜4公斤,加工后利润最大为52元.解:(1)在△ABC 中,∵cos B =-17,∴B ∈⎝⎛⎭⎫π2,π,∴sin B =1-cos 2B =437.由正弦定理得a sin A =b sin B ⇒7sin A =8437,∴sin A =32.∵B ∈⎝⎛⎭⎫π2,π,∴A ∈⎝⎛⎭⎫0,π2,∴A =π3. (2)在△ABC 中,∵sin C =sin(A +B )=sin A cos B +sin B cos A =32×⎝⎛⎭⎫-17+12×437=3314. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =BC ·sin C =7×3314=332,∴AC 边上的高为332.解:(1)设等比数列{a n }的公比为q .由a 1=1,a 3=a 2+2,可得q 2-q -2=0. 因为q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6, 可得3b 1+13d =16,从而b 1=1,d =1,故b n =n .所以,数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n . (2)由(1),有S n =1-2n 1-2=2n-1,故T n =∑k =1n(2k-1)=∑k =1n2k-n =2×(1-2n )1-2-n =2n +1-n -2.解:(1)因为ƒ(1)>0,所以-3+a (6-a )+b >0, 即a 2-6a +3-b <0.Δ=(-6)2-4(3-b )=24+4b .①当Δ≤0,即b ≤-6时,原不等式的解集为∅; ②当Δ>0,即b >-6时,方程a 2-6a +3-b =0有两根a 1=3-6+b ,a 2=3+6+b ,所以不等式的解集为(3-6+b ,3+6+b ). 综上所述,当b ≤-6时,原不等式的解集为∅;当b >-6时,原不等式的解集为(3-6+b ,3+6+b ). (2)由ƒ(x )>0,得-3x 2+a (6-a )x +b >0, 即3x 2-a (6-a )x -b <0. 因为它的解集为(-1,3),所以-1与3是方程3x 2-a (6-a )x -b =0的两根, 所以⎩⎨⎧-1+3=a (6-a )3,-1×3=-b3,解得⎩⎨⎧ a =3-3,b =9或⎩⎨⎧a =3+3,b =9.。
【试题】2019年新课标人教A版高中数学必修五第一章《解三角形》单元测试题及答案

【试题】2019年新课标人教A 版高中数学必修五第一章《解三角形》单元测试题及答案第Ⅰ卷(选择题共60分)一、选择题(共12小题,每小题5分,只有一个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =AC =( )A .. C D 2.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形3.在△ABC 中,已知a =11,b =20,A =130°,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定 4. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60 的视角,从B 岛望C 岛和A岛成75 视角,则B 、C 两岛的距离是( )海里A. 65B. 35C. 25D. 55.边长为3、7、8的三角形中,最大角与最小角之和为 ( )A .90°B .120°C .135°D .150°6.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定的一点C ,测出AC 的距离为m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. mC. mD. 200m7.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则△ABC 的面积为( )A .1B .2 C. 2 D. 38.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3B .5 3C .6 3D .7 39.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( ) A.85 B.58 C.53 D.3510.某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向航行,进行海面巡逻,当行驶半小时到达B 处时,发现北偏西45°方向有一艘船C ,若C 船位于A 处北偏东30°方向上,则缉私艇B 与船C 的距离是( )A .5(6+2) kmB .5(6-2) kmC .10(6+2) kmD .10(6-2) km11.△ABC 的周长为20,面积为A =60°,则BC 的长等于( )A .5 B.6 C .7 D .812.在ABC △中,角A B C 、、所对的边分别为,,a b c ,若120,C c ∠=︒=,则( )A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定第Ⅱ卷(非选择题共90分)二、填空题(共4小题,每小题5分):13.三角形的两边分别是5和3,它们夹角的余弦值是方程06752=--x x 的根,则此三角形的面积是 。
2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(一) Word版含解析

姓名,年级:时间:综合质量测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式错误!〈错误!的解集是( )A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)答案D解析错误!<错误!⇔错误!-错误!<0⇔错误!<0⇔错误!〉0⇔x〈0或x〉2.2.在△ABC中,若sin2A+sin2B=2sin2C,则角C为( )A.钝角B.直角C.锐角D.60°答案C解析由sin2A+sin2B=2sin2C,得a2+b2=2c2,即a2+b2-c2=c2〉0,cos C>0.故角C为锐角.3.在△ABC中,a=20,b=10,B=29°,则此三角形解的情况是()A.无解B.有一解C.有两解D.有无数个解答案C解析a sin B=a sin29°〈a sin30°=20×错误!=10=b<a,所以有两解.故选C.4.设变量x,y满足约束条件错误!则目标函数z=2x+5y的最小值为()A.-4 B.6 C.10 D.17答案B解析 由题意知,约束条件错误!所表示的三角形区域的顶点分别为A(0,2),B(3,0),C (1,3).将A ,B ,C 三点的坐标分别代入z =2x +5y ,得z =10,6,17,故z 的最小值为6.5.已知△ABC 的三边长构成公差为2的等差数列,且最大角的正弦值为错误!,则这个三角形的周长为( )A .15B .18C .21D .24答案 A解析 根据题意,设△ABC 的三边长为a,a +2,a +4,且a +4所对的角为最大角α,∵sin α=错误!,∴cos α=错误!或-错误!,当cos α=错误!时,α=60°,不符合题意,舍去; 当cos α=-12时,α=120°,由余弦定理得:cos α=cos 120°=错误!=-错误!,解得a =3或a =-2(不符合题意,舍去),则这个三角形周长为a +a +2+a +4=3a +6=9+6=15.故选A .6.在△ABC 中,三个内角A ,B ,C 所对的边分别是a ,b ,c ,若内角A ,B,C 依次成等差数列,且不等式-x 2+6x -8>0的解集为{x |a <x <c},则S △ABC =( )A . 3B .2错误!C .3错误!D .4错误!答案 B解析 不等式-x 2+6x -8>0的解集为{x |2<x <4},由此可知a =2,c =4.又由A ,B ,C 依次成等差数列,知2B =A +C ,而A +B +C =π,所以B =错误!.于是S △ABC =错误!ac sin B =错误!×2×4×错误!=2错误!.故选B .7.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=200,则4a 5-2a 3的值为( )A .80B .60C .40D .20答案 A解析 ∵a 3+a 5+a 7+a 9+a 11=200,∴5a7=200,a7=40.又4a5=2(a3+a7)=2a3+2a7,∴4a5-2a3=2a7=80.故选A.8.已知S n和T n分别为数列{a n}与数列{b n}的前n项和,且a1=e4,S n=e S n+1-e5,a n=e b n,则当T n取得最大值时n的值为()A.4 B.5 C.4或5 D.5或6答案C解析由S n=e S n+1-e5,得S n-1=e S n-e5(n≥2),两式相减,得a n=e a n+1(n≥2),易知a2=e3,错误!=错误!=错误!,所以{a n}是首项为e4,公比为错误!的等比数列,所以a n=e5-n.因为a n=e b n,所以b n=5-n.由错误!即错误!解得4≤n≤5,所以当n=4或n=5时,T n取得最大值.故选C.9.已知△ABC的周长为2,角A,B,C的对边分别为a,b,c,且满足错误!=3c,则c等于()A.错误!B.1 C.1或错误!D.错误!答案D解析由正弦定理得:错误!=错误!=3c,即3c2=b+a,又∵a+b+c=2,∴3c2+c=2.解得c=错误!.故选D.10.某种生产设备购买时费用为10万元,每年的设备管理费用为9千元,这种生产设备的维护费用:第一年2千元,第二年4千元,第三年6千元,依每年2千元的增量逐年递增,则这套生产设备最多使用________年报废最划算( )A.3 B.5 C.7 D.10答案D解析设使用x年,年平均费用为y万元,则y=错误!=错误!=1+x10+错误!≥3,当且仅当x=10时等号成立.故选D.11.设{a n}是正数等差数列,{b n}是正数等比数列,且a1=b1,a2n+1=b2n+1,则()A.a n+1〉b n+1B.a n+1≥b n+1C.a n+1<b n+1D.a n+1=b n+1答案B解析a n+1=错误!≥错误!=错误!=b n+1.12.如图,一轮船从A点沿北偏东70°的方向行驶10海里至海岛B,又从B沿北偏东10°的方向行驶10海里至海岛C,若此轮船从A点直接沿直线行驶至海岛C,则此船沿________方向行驶________海里至海岛C()A.北偏东60°;10错误!B.北偏东40°;10错误!C.北偏东30°;10错误!D.北偏东20°;10错误!答案B解析由已知得在△ABC中,∠ABC=180°-70°+10°=120°,AB=BC=10,故∠BAC=30°.所以从A到C的航向为北偏东70°-30°=40°.由余弦定理得AC2=AB2+BC2-2AB·BC cos∠ABC=102+102-2×10×10×-错误!=300,所以AC=10 3.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,b=4,c=6,则bc cos A+ca cos B+ab cos C=________.答案61 2解析由余弦定理得bc cos A+ca cos B+ab cos C=错误!+错误!+错误!=错误!=错误!.14.已知数列{a n}是各项为正数,首项为1的等差数列,S n为其前n项和,若数列{错误!}也为等差数列,则错误!的最小值是________.答案错误!解析设数列{a n}的公差为d(d>0),即有a n=1+(n-1)d,S n=n+错误!n(n-1)d,错误!=错误!,由于数列{错误!}也为等差数列,可得d=2,即有a n=2n-1,S n=n2,则错误!=错误!=错误!错误!≥错误!·2错误!=2错误!,当且仅当n=2错误!取得等号,由于n为正整数,即有n=2或3取得最小值.当n=2时,取得3;n=3时,取得错误!,故最小值为错误!.15.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元,另一种是每袋24千克,价格为120元,在满足需要的条件下,最少要花费________元.答案500解析设购买35 kg的x袋,24 kg的y袋,则35x+24y≥106,x∈N*,y∈N*,共花费z=140x+120y.作出由35x+24y≥106,x∈N*,y∈N*对应的平面区域,再作出目标函数z=140x+120y对应的一组平行线,观察在点(1,3)处z最小,为500元.16.如果a〉b,给出下列不等式:①1a〈错误!;②a3>b3;③错误!〉错误!;④2ac2〉2bc2;⑤错误!>1;⑥a2+b2+1>ab+a+b.其中一定成立的不等式的序号是________.答案②⑥解析①若a>0,b〈0,则错误!>错误!,故①不成立;②∵y=x3在x∈R上单调递增,且a〉b.∴a3〉b3,故②成立;③取a=0,b=-1,知③不成立;④当c=0时,ac2=bc2=0,2ac2=2bc2,故④不成立;⑤取a=1,b=-1,知⑤不成立;⑥∵a2+b2+1-(ab+a+b)=错误![(a-b)2+(a-1)2+(b-1)2]〉0,∴a2+b2+1〉ab+a+b,故⑥成立.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b cos2错误!+a cos2错误!=错误!c.(1)求证:a,c,b成等差数列;(2)若C=π3,△ABC的面积为2错误!,求c.解(1)证明:由正弦定理得:sin B cos2A2+sin A cos2错误!=错误!sin C,即sin B·错误!+sin A·错误!=错误!sin C,∴sin B+sin A+sin B cos A+cos B sin A=3sin C,∴sin B+sin A+sin(A+B)=3sin C,∴sin B+sin A+sin C=3sin C,∴sin B+sin A=2sin C,∴a+b=2c,∴a,c,b成等差数列.(2)S=错误!ab sin C=错误!ab=2错误!,∴ab=8,c2=a2+b2-2ab cos C=a2+b2-ab=(a+b)2-3ab=4c2-24.∴c2=8,得c=2错误!.18.(本小题满分12分)已知{a n}是公差不为零的等差数列,{b n}是各项都是正数的等比数列.(1)若a1=1,且a1,a3,a9成等比数列,求数列{a n}的通项公式;(2)若b1=1,且b2,错误!b3,2b1成等差数列,求数列{b n}的通项公式.解(1)由题意可设公差为d,则d≠0.由a1=1,a1,a3,a9成等比数列,得错误!=错误!,解得d=1或d=0(舍去).故数列{a n}的通项公式为a n=1+(n-1)×1=n.(2)由题意可设公比为q,则q>0.由b1=1,且b2,错误!b3,2b1成等差数列,得b3=b2+2b1,∴q2=2+q,解得q=2或q=-1(舍去).故数列{b n}的通项公式为b n=1×2n-1=2n-1.19.(本小题满分12分)已知函数f(x)=ax2-bx+1.(1)是否存在实数a,b使不等式f(x)〉0的解集是{x|3<x<4},若存在,求实数a,b的值,若不存在,请说明理由;(2)若a为整数,b=a+2,且函数f(x)在(-2,-1)上恰有一个零点,求a的值.解(1)∵不等式ax2-bx+1>0的解集是{x|3<x〈4},∴方程ax2-bx+1=0的两根是3和4,∴错误!解得a=错误!,b=错误!.而当a=错误!>0时,不等式ax2-bx+1〉0的解集不可能是{x|3<x〈4},故不存在实数a,b使不等式f(x)〉0的解集是{x|3<x<4}.(2)∵b=a+2,∴f(x)=ax2-(a+2)x+1.∵Δ=(a+2)2-4a=a2+4>0,∴函数f(x)=ax2-(a+2)x+1必有两个零点.又函数f(x)在(-2,-1)上恰有一个零点,∴f(-2)·f(-1)〈0,∴(6a+5)(2a+3)<0,解得-错误!<a〈-错误!.∵a∈Z,∴a=-1.20.(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a =2b cos A.(1)求角B的大小;(2)若b=2错误!,求a+c的最大值.解(1)∵2c-a=2b cos A,∴根据正弦定理,得2sin C-sin A=2sin B cos A,∵A+B=π-C,可得sin C=sin(A+B)=sin B cos A+cos B sin A,∴代入上式,得2sin B cos A=2sin B cos A+2cos B sin A-sin A,化简得(2cos B-1)sin A=0,∵A是三角形的内角,可得sin A>0,∴2cos B-1=0,解得cos B=错误!,∵B∈(0,π),∴B=错误!.(2)由余弦定理b2=a2+c2-2ac cos B,得12=a2+c2-ac.∴(a+c)2-3ac=12,∴12≥(a+c)2-3错误!2,即(a+c)2≤48(当且仅当a=c=2错误!时等号成立),∵a+c>0,∴a+c≤43,∴a+c的最大值为43.21.(本小题满分12分)因发生交通事故,一辆货车上的某种液体泄漏到一池塘中,为了治污,根据环保部门的建议,现决定在池塘中投放一种与污染液体发生化学反应的药剂,已知每投放a(1≤a≤4,a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a·f(x),其中f(x)=错误!若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值.(精确到0.1,参考数据:错误!取1.4)解(1)因为a=4,所以y=错误!①当0≤x≤4时,由648-x-4≥4,解得x≥0,所以此时0≤x≤4.②当4<x≤10时,由20-2x≥4,解得x≤8,所以此时4<x≤8.综合得0≤x≤8,即若一次投放4个单位的药剂,则有效治污时间可达8天.(2)当6≤x≤10时,y=2·错误!+a错误!-1=10-x+错误!-a=(14-x)+错误!-a-4,由题意知,y≥4对于x∈[6,10]恒成立.因为14-x∈[4,8],而1≤a≤4,所以4错误!∈[4,8],故当且仅当14-x=4错误!时,y有最小值为8错误!-a-4,令8错误!-a-4≥4,解得24-162≤a≤4,所以a的最小值为24-16错误!.又24-16错误!≈1.6,所以a的最小值约为1.6.22.(本小题满分12分)已知f(x)=错误!sin x·cos x+cos2x,锐角△ABC的三个角A,B,C所对的边分别为a,b,c.(1)求函数f(x)的最小正周期和单调递增区间;(2)若f(C)=1,求m=a2+b2+c2ab的取值范围.解(1)f(x)=错误!sin x·cos x+cos2x=错误!sin2x+错误!cos2x+错误!=sin错误!+错误!.∴函数f(x)的最小正周期T=错误!=π.由2kπ-错误!≤2x+错误!≤2kπ+错误!,解得kπ-错误!≤x≤kπ+错误!.∴函数f(x)的单调递增区间错误!,k∈Z,最小正周期为π.(2)由(1)可得,f(C)=sin错误!+错误!=1,∴sin错误!=错误!,2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(一) Word版含解析∵△ABC是锐角三角形,∴错误!〈2C+错误!<错误!,∴2C+错误!=错误!,即C=错误!.由余弦定理c2=a2+b2-2ab cos C,可得c2=a2+b2-ab,∴m=错误!=错误!-1=2错误!-1.①∵△ABC为锐角三角形,∴错误!∴错误!<A<错误!.由正弦正理得错误!=错误!=错误!=错误!+错误!∈错误!.②由②式设t=错误!,则t∈错误!,那么①式化简为m=2错误!-1.由y=t+错误!≥2,t=1时取等号.∴m≥3.根据对勾函数的性质可得错误!是单调递减,(1,2)是单调递增,∴m<4,故得m=错误!∈[3,4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学必修五综合测试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设△ABC的内角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,且c=2a,则cos B等于()A.14B.34C.√24D.√23答案:B2下列结论正确的是()A.若ac>bc,则a>bB.若a8>b8,则a>bC.若a>b,c<0,则ac<bcD.若√a<√b,则a>b答案:C3等差数列{a n}的前n项和为S n,若a2+a7+a12=30,则S13的值是() A.130 B.65C.70D.75解析:因为a2+a7+a12=(a2+a12)+a7=2a7+a7=3a7=30,所以a7=10.所以S13=13(a1+a13)2=13(a7+a7)2=13a7=130.答案:A4已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若23cos2A+cos 2A=0,a=7,c=6,则b等于()A.10B.9C.8D.5解析:由23cos2A+cos 2A=0,得cos2A=125.∵A∈(0,π2),∴cos A=15.∵cos A=36+b2-492×6b ,∴b=5或b=−135(舍).故选D.答案:D5若在等比数列{a n}中,a4=7,a6=21,则a8等于()A.35B.63C.21√3D.±21√3 答案:B6若在△ABC 中,a=4,b=4√3,A=30°,则角B 的度数等于( ) A.30° B.30°或150° C.60° D.60°或120°答案:D7在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,则角B 的取值范围是( ) A .(0,π3]B.[π3,π] C .(0,π6]D.[π6,π) 答案:A8某旅行社租用A,B 两种型号的客车安排900名客人旅行,A,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,若旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A.31 200元 B.36 000元C.36 800元D.38 400元解析:设需A,B 型车分别为x ,y 辆(x ,y ∈N ),则x ,y 需满足{36x +60y ≥900,x +y ≤21,y -x ≤7,x ∈N ,y ∈N ,设租金为z ,则z=1 600x+2400y ,画出可行域如图中阴影所示,根据线性规划中截距问题,可求得最优解为x=5,y=12,此时z 最小等于36 800.故选C .答案:C9若x>0,y>0,且xy-(x+y )=1,则( )A.x+y ≥2(√2+1)B.xy ≤√2+1C.x+y ≤(√2+1)2D.xy ≥2(√2+1) 解析:∵xy=1+(x+y )≤(x+y 2)2,∴(x+y )2-4(x+y )-4≥0, ∴x+y ≥2(√2+1),当且仅当x=y =√2+1时等号成立. 答案:A10若数列{a n }满足a 1=0,a n+1=a n -√3√3a n +1(n ∈N *),则a 20等于( )A.0B .−√3C.√3D.1解析:由a 1=0,a n+1=n √3√3a +1n ∈N *),得a 2=−√3,a 3=√3,a 4=0,…由此可知数列{a n }是周期数列,周期为3,所以a 20=a 2=−√3. 答案:B11若在R 上定义运算☉:a ☉b=ab+2a+b ,则满足x ☉(x-2)<0的实数x 的取值范围为( ) A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析:由题意,得x (x-2)+2x+(x-2)<0,即x 2+x-2<0,解得-2<x<1. 答案:B12已知集合A={t|t 2-4≤0},对于满足集合A 的所有实数t ,关于x 的不等式x 2+tx-t>2x-1恒成立,则x 的取值范围是( ) A.(-∞,-1)∪(3,+∞) B.(-∞,1)∪(3,+∞) C.(-∞,-1) D.(3,+∞)解析:由题意知A={t|-2≤t ≤2},设f (t )=(x-1)t+x 2-2x+1,由条件知f (t )在区间[-2,2]上恒为正值. 于是有{f (-2)>0,f (2)>0,即{x 2-4x +3>0,x 2-1>0.解得x>3或x<-1. 答案:A二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于 .解析:由题意知每天植树的棵数组成一个以2为首项,2为公比的等比数列, 所以S n =2(1-2n )1-2=2(-1+2n )≥100.所以2n ≥51,n ≥6.答案:614已知点P (x ,y )的坐标满足条件{x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,则|PO|的最小值等于 ,最大值等于 . 答案:√2 √1015在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c =√2a ,则a 与b 的大小关系是 .解析:由余弦定理得c 2=a 2+b 2-2ab cos 120°.∵c =√2a,∴2a 2=a 2+b 2+ab ,即a 2=b 2+ab ,a 2-b 2=ab>0.∴a 2>b 2,即a>b.答案:a>b16已知数列{a n }满足a 1=t ,a n+1-a n +2=0(t ∈N *,n ∈N *).记数列{a n }的前n 项和的最大值为f (t ),则f (t )= .答案:{t 2+2t4,t 为偶数,(1+t 2)2,t 为奇数三、解答题(本大题共6小题,共74分.解答时应写出文字说明、证明过程或演算步骤)17(12分)设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解(1)由a n =a 1+(n-1)d 及a 3=5,a 10=-9,得{a 1+2d =5,a 1+9d =-9,解得{a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n. (2)由(1)知,S n =na 1+n (n -1)2a =10n-n 2.因为S n =-(n-5)2+25,所以当n=5时,S n 取得最大值.18(12分)海面上相距10海里的A,B两船,B船在A船的北偏东45°方向上.两船同时接到指令同时驶向C岛,C岛在B船的南偏东75°方向上,行驶了80分钟后两船同时到达C岛,经测算,A船行驶了10√7海里,求B船的速度.解如图所示,在△ABC中,AB=10,AC=10√7,∠ABC=120°.由余弦定理,得AC2=BA2+BC2-2BA·BC·cos 120°,即700=100+BC2+10BC,得BC=20.设B船速度为v,行驶时间为8060=43(小时),路程为BC=20海里,则有v=2043=15(海里/时),即B船的速度为15海里/时.19(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足2c-ba =cosBcosA.(1)求角A的大小;(2)若a=2√5,求△ABC面积的最大值.解(1)因为2c-ba =cosBcosA,所以(2c-b)cos A=a cos B.由正弦定理,得(2sin C-sin B)cos A=sin A cos B, 整理得2sin C cos A-sin B cos A=sin A cos B.所以2sin C cos A=sin (A+B)=sin C.在△ABC中,0<C<π,所以sin C≠0.所以cos A=12.又0<A<π,故A=π3.(2)由(1)得A=π3,又a=2√5,则cos A=b 2+c2-a22bc=12,整理得b2+c2=bc+20.由基本不等式,得b2+c2≥2bc,则bc+20≥2bc,所以bc≤20,当且仅当b=c时,等号成立,故三角形的面积S=12bcsin A=12bcsinπ3=√34bc≤√34×20=5√3.所以△ABC面积的最大值为5√3.20(12分)已知等差数列{a n}满足a2=0,a6+a8=-10.(1)求数列{a n}的通项公式;(2)求数列{a n2n-1}的前n项和.解(1)设等差数列{a n}的公差为d,由已知条件可得{a 1+d =0,2a 1+12d =-10,解得{a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n. (2)设数列{an2n -1}的前n 项和为S n , 即S n =a 1+a 22+⋯+a n 2n -1,则S 1=a 1=1,S n 2=a 12+a 24+⋯+a n2n . ∵当n>1时,S n 2=a 1+a 2-a 12+⋯+a n -a n -12n -1−a n 2n=1−(12+14+…+12n -1)−2-n 2n=1−(1-12n -1)−2-n 2n=n2n ,∴S n =n2n -1.当n=1时,S 1=1也符合该公式.综上可知,数列{an2n -1}的前n 项和S n =n2n -1.21(12分)电视台为某个广告公司特约播放两套片集,其中片集甲播映时间为20分钟,广告时间为1分钟,收视观众为60万;片集乙播映时间为10分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于86分钟的节目时间.电视台每周应播映两套片集各多少次,才能获得最高的收视率? 解设片集甲播放x 集,片集乙播放y 集,则有{x +y ≥6,21x +11y ≤86,x ≥0,x ∈N ,y ≥0,y ∈N .要使收视率最高,则只要z=60x+20y 最大即可. 由{21x +11y =86,x +y =6,得M (2,4).由图可知,当x=2,y=4时,z=60x+20y 取得最大值200万. 故电视台每周片集甲和片集乙各播映2集和4集,其收视率最高.22(14分)已知各项均不相等的等差数列{a n }的前4项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式; (2)设T n 为数列{1an a n+1}的前n 项和,若Tn ≤λa n+1对任意n ∈N *恒成立,求实数λ的最小值.解(1)设等差数列{a n }的公差为d ,由已知得{4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得d=1或d=0(舍去),因此a 1=2.故a n =n+1. (2)∵由(1)可知1an a n+1=1(n+1)(n+2)=1n+1−1n+2,∴T n =12−13+13−14+⋯+1n -1−1n+2=n2(n+2). ∵T n ≤λa n+1对任意n ∈N *恒成立,∴n 2(n+2)≤λ(n+2),即λ≥n2(n+2)2对任意n ∈N *恒成立.又n 2(n +2)2=n 2(n 2+4n +4)=12(n +4n+4)≤116,当且仅当n=2时,取“=”.∴λ的最小值为116.。