腐蚀 第2章 腐蚀热力学讲解
合集下载
第2章 电化学腐蚀热力学

序言
研究腐蚀现象需要从两方面着手: 一方面是看腐蚀的自发倾向大小——热力学; 另一方面是看腐蚀进程的快慢——动力学。
2.1 腐蚀倾向的热力学判据
序言 注意事项: 腐蚀倾向不等于腐蚀速度。没有倾向,不 会有速度;小的倾向,不可能出现大的速 度;但大的倾向和大的速度没有必有必然 联系,它们或是、或不是和大的腐蚀速度 关联。这属于腐蚀动力学研究的内容。
第2章 电化学腐蚀热力学
2.1 腐蚀倾向的热力学判据
序言
金属材料腐蚀的根本原因:除个别金属(Au、 Pt等)外,绝大多数金属均处于热力学不稳定 状态,有自动发生腐蚀的倾向,即这些金属在 一定外界环境下会自发地由金属原子状态转变 为离子状态,生成相应的氧化物、硫化物或相 应的盐,从而发生腐蚀。
2.1 腐蚀倾向的热力学判据
(G )T , p (G )T , p (G )T , p
vi i 0 自发过程 i vi i 0 0 平衡状态 i vi i 0 非自发过程 i
2.1 腐蚀倾向的热力学判据
吉布斯自由能 i化学势变化热力学判据: i ci ) i RT ln i i RT ln(
2.2 腐蚀电池及其工作历程
二、金属腐蚀的电化学历程
腐蚀原电池特征:
短路的原电池
材料表面分为阳极和阴极,阴极和阳极具有不同电 位,位于不同位臵;
阳极和阴极之间要有两个电性连接:电子导体通道 和离子导体通道; 离子导体为腐蚀环境。
2.2 腐蚀电池及其工作历程
二、金属腐蚀的电化学历程
结论:Mg,Cu在潮湿的环境下有自发腐蚀的倾向,且 前者倾向大于后者,而Au在该类环境中则是惰性的。
腐蚀 第2章 腐蚀热力学讲解

对于孤立体系可用熵变判据; 对于等温等容下的体系,可用亥姆霍兹自由能判据; 在等温等压条件下,可用吉布斯自由能判据:
自发过程 平衡状态 非自发达程
ΔG小于零时,热力学上具有发生的可能性,其值越小发生的 倾向越大。
在25℃时,金属镁、铜、金在水溶液中:
Mg+H2O (液)+1/2O2(气) →Mg(OH)2(固) ΔG0 = - 14.2kcal
E0 Fe/Fe2+
Fe Fe2++2e
io,H2/ H+
io Fe/ Fe
i corr
lg i
平衡电位 – 热力学, E0 H2/H+ , E0 Fe/Fe2+ …. 非平衡电位 – 动力学/测量, 腐蚀电位,混合电位或偶合电位
2.2 金属在介质中的腐蚀倾向
2.2.1 腐蚀倾向热力学判断
从热力学可知,判断化学变化的方向和限度,对于不同 的条件,有不同的热力学判据。
书名: 金属腐蚀电化学热力学
—电位-PH图及其应用 作者: 杨熙珍 杨武 出版社: 化学工业出版社 出版日期: 1991年04月第1版 ISBN: 7-5025-0782-5 出版地: 北京
1、平衡电极电位与pH值关系
只与电极电位有关,与溶液的pH无关 以铁在水溶液中的某些反应为例:
Fe = Fe2+ + 2e Fe2+ = Fe3+ + e 这类反应的特点是只有电子交换,不产生氢离子 (或氢氧根离子), 其平衡电位分别为:
只与pH有关,与电极电位无关: Fe2+ + 2H2O=Fe(OH)2+2H+(沉淀反应) Fe3+ + H2O=Fe(OH)2++H+(水解反应) 化学反应:不涉及电子的得失,与电位无关。
自发过程 平衡状态 非自发达程
ΔG小于零时,热力学上具有发生的可能性,其值越小发生的 倾向越大。
在25℃时,金属镁、铜、金在水溶液中:
Mg+H2O (液)+1/2O2(气) →Mg(OH)2(固) ΔG0 = - 14.2kcal
E0 Fe/Fe2+
Fe Fe2++2e
io,H2/ H+
io Fe/ Fe
i corr
lg i
平衡电位 – 热力学, E0 H2/H+ , E0 Fe/Fe2+ …. 非平衡电位 – 动力学/测量, 腐蚀电位,混合电位或偶合电位
2.2 金属在介质中的腐蚀倾向
2.2.1 腐蚀倾向热力学判断
从热力学可知,判断化学变化的方向和限度,对于不同 的条件,有不同的热力学判据。
书名: 金属腐蚀电化学热力学
—电位-PH图及其应用 作者: 杨熙珍 杨武 出版社: 化学工业出版社 出版日期: 1991年04月第1版 ISBN: 7-5025-0782-5 出版地: 北京
1、平衡电极电位与pH值关系
只与电极电位有关,与溶液的pH无关 以铁在水溶液中的某些反应为例:
Fe = Fe2+ + 2e Fe2+ = Fe3+ + e 这类反应的特点是只有电子交换,不产生氢离子 (或氢氧根离子), 其平衡电位分别为:
只与pH有关,与电极电位无关: Fe2+ + 2H2O=Fe(OH)2+2H+(沉淀反应) Fe3+ + H2O=Fe(OH)2++H+(水解反应) 化学反应:不涉及电子的得失,与电位无关。
腐蚀热力学

方向进行时,阴极反应。
第二章 腐蚀热力学
(3)电极电位
➢ 双电层
电子导体相(金属)和离子导体相(溶液)都存在一个内电位(即, , ),由
于两相内电位的不同,在电极系统的离子导体相和金属导体相之间就存在电位差
( − ),导致在两相之间存在一个相界区,称为双电层
假设双电层为一个均匀电场,其电场强度可以表示为
腐蚀原电池示意图
➢ 腐蚀电池的定义是:只导致金属材料腐蚀破坏而不能对外做有用功的短路原电池
• 导致金属的腐蚀破坏
腐蚀原电池的特点
• 释放的能量不能对外做有用功
• 电极反应最大程度不可逆
第二章 腐蚀热力学
腐蚀原电池的构成及其工作过程
阳极
构成
阴极
电解质溶液
电路
➢ 工作过程
阳极过程: ⟶ + +
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
2.2 电极系统与电极反应
2.3 电化学位与电极电位
2.4 电化学腐蚀倾向的判断
2.5 Ee–pH图
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
原电池
干电池(左)以及原电池工作原理(右)示意图
➢ 阳极反应:负极上发生的反应,金属失去
负极(锌皮): → 2+ + 2
从右至左自发进行:
∆ = + + − − = >
反应平衡时:
∆ = + + − − = =
对任意含有j种物质的化学反应,化学反应达到平衡的条件
∆ = σ =
第二章 腐蚀热力学
(2)电化学位及可逆电极反应的平衡条件
第二章 腐蚀热力学
(3)电极电位
➢ 双电层
电子导体相(金属)和离子导体相(溶液)都存在一个内电位(即, , ),由
于两相内电位的不同,在电极系统的离子导体相和金属导体相之间就存在电位差
( − ),导致在两相之间存在一个相界区,称为双电层
假设双电层为一个均匀电场,其电场强度可以表示为
腐蚀原电池示意图
➢ 腐蚀电池的定义是:只导致金属材料腐蚀破坏而不能对外做有用功的短路原电池
• 导致金属的腐蚀破坏
腐蚀原电池的特点
• 释放的能量不能对外做有用功
• 电极反应最大程度不可逆
第二章 腐蚀热力学
腐蚀原电池的构成及其工作过程
阳极
构成
阴极
电解质溶液
电路
➢ 工作过程
阳极过程: ⟶ + +
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
2.2 电极系统与电极反应
2.3 电化学位与电极电位
2.4 电化学腐蚀倾向的判断
2.5 Ee–pH图
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
原电池
干电池(左)以及原电池工作原理(右)示意图
➢ 阳极反应:负极上发生的反应,金属失去
负极(锌皮): → 2+ + 2
从右至左自发进行:
∆ = + + − − = >
反应平衡时:
∆ = + + − − = =
对任意含有j种物质的化学反应,化学反应达到平衡的条件
∆ = σ =
第二章 腐蚀热力学
(2)电化学位及可逆电极反应的平衡条件
腐蚀学原理-第二章腐蚀热力学

问题:
电偶的概念, 危害、用途?
2.3 电位—pH图
金属的电化学腐蚀:金属同水溶液相互作 用。水溶液:H+和OH-离子。
电位—pH图 金属在水溶液中的稳定性不但与它的电极电位有 关,还与水溶液的pH值有关。若将金属腐蚀体系 的电极电位与溶液pH值的关系绘成图,就能直接 从图上判断给定条件下发生腐蚀反应的可能性。
极化图与腐蚀极化图?
金属在25℃的标准电极电位E°
Mg=Mg2++2e:-2.363 Al=A13++3e:-1.662 Ti=Ti3++3e:-1.210 Fe =Fe2++2e:-0.440V Cu=Cu2++2e:+0.337 Pd=Pd2++2e:+0.987 Au=Au++e:+1.691 注:均相对于SHE
2.4 腐蚀电池及其工作历程
(1)阳极过程 金属溶解,以离子形式进入溶液,并把当量的电子留在 金属上
(2)阴极过程 从阳极流过来的电子被阴极表面溶液中能够接受电子的 物质所吸收,即发生阴极还原反应。 阴极还原反应中能够吸收电子的氧化性物质D,在腐蚀学中通常称为 去极化剂。因为如果没有去极化剂,阴极区将由于电子的积累而发生 阴极极化而阻碍腐蚀的进行。最常见的阴极去极化剂是溶液中的O2和 H+离子。
比利时学者M.Pourbaix在1938年首先提出,又称 Pourbaix图。
Fe-H2O电位-pH图
a线为析氢电极反应:
E
E
2.3RT
lg
a2 H
2F
pH2
b线为O2与H2O间的 电化学反应:
2H2O
腐蚀第二章

④线表示反应: 2Fe3++3H2O=Fe2O3+6H+ pH=0.28-(1/3)lgaFe3+ (25℃) 为一组垂线 。 ⑤线表示反应: Fe=Fe2++2e φ = -0.44+0.0295lgaFe2+ (25℃) 为一水平线。 ⑥线表示反应: Fe+2H2O=HFeO2-+3H++2e φ =0.400-0.0886pH+0.0295lgaHFeO2- (25℃) 为一斜线。 ⑦线表示反应: 2Fe2++3H2O=Fe2O3+6H++2e φ =0.728-0.177pH-0.059lgaFe2+ (25℃) 为一组斜线。 ⑧线表示反应: 3Fe2++4H2O=Fe3O4+8H++2e φ =0.975-0.236pH-0.0886lgaFe2+ (25℃) 为一组斜线。
§2. 4 金属-水体系的电位-PH平衡图
( 以Fe- H2O体系为例) 一、图的绘制
1. 列出体系中可能存在的物质
Fe, Fe2+ , Fe3+ Fe2 O3, Fe 3O4 , Fe(OH)3 , Fe(OH)2 HFeO− O 2, H+,H2O,OH2. 列出各反应的平衡关系式,计算平衡数据
在电位- pH坐标图上画出各反应对应的平衡线,最后汇 总,即得电位- pH图。图2-7 ①线表示反应: Fe2+= Fe3++e 25℃时, a
E 0.771 0.059lg
Fe3
aFe2
当aFe2+=aFe3+时, φ =0.771V, 为一水平直线。 ②线表示反应: 3Fe+4H2O=Fe3O4+8H++8e 25℃时, φ =0.086 - 0.059pH,为一斜线。 ③线表示反应: 2Fe3O4+ H2O=3Fe2O3+2H++2e 25℃时, φ =0.215 - 0.059pH, 为一斜线。
腐蚀与防护-第二章 电化学腐蚀热力学

的电动势就等于铜电极的标准电极电势。
负极
正极
标准 氢电极
标准 铜电极
电池反应: Cu2+ + H2 ⇌ Cu + 2H+
E = θ(Cu2+/Cu) - θ(H+/H2)
= θ(Cu2+/Cu)=0.337V
• 参比电极
条件:① 电极反应是可逆的
② 电位稳定而不随时间变化 ③ 交换电流密度大,不极化或难极化 ④ 参比电极内溶液与腐蚀介质不渗污 ⑤ 温度系数小
• 腐蚀是以电化学反应为主的化学变化,用热力学 理论来刻画其变化方向,回答材料在具体环境中 是否发生腐蚀和发生腐蚀的倾向大小。 • 腐蚀热力学以电极电位作为腐蚀倾向判别函数, 建立相应理论和方法。 • 注意:腐蚀倾向不等于腐蚀速度。没有倾向,不 会有速度;小的倾向,不可能出现大的速度;但 大的倾向和大的速度没有必然。
本身不反应,是溶液中的阳离子 得电子发生还原反应。 注意: 要用到金属活动性顺序表: K,Ca,Na,Mg,Al,Zn,Fe,Sn,Pb,(H),Cu,Hg,Ag,Pt,Au…
活泼性,还原性依次 减弱。
腐蚀电池(腐蚀原电池)
• 实质上是个短路的原电池
• 包括四部分: 阳极、阴极、电解质溶液、外电路
微观腐蚀电池
• 化学成分不均匀性。如:金属中杂质。 • 杂质的组成、性质不同于基体,有的相对 基体呈阳极,减缓腐蚀;有的杂质呈阴极, 加速腐蚀。
• 如: 金属锌中的Al、Pb、Hg等杂质,呈阳 极,它们可以减缓金属锌在硫酸中腐蚀; • 金属锌中的Fe、Cu等杂质,呈阴极, 它们 加速锌在硫酸中腐蚀。
腐蚀电池工作要素
• 电化学腐蚀的本质是形成了腐蚀电池。 • 腐蚀电池起作用的要素为:
第二章-电化学腐蚀热力学

24
测量Zn的标准电极电位
25
2.2.4 非平衡电极电位
水合金属离子能够回到金属中去,水合-金属化过程速率 相等且又可逆-平衡电极电位 在实际中,与金属接触的溶液大部分不是金属自身离子 的溶液,所以涉及的电极电位大部分都是非平衡电极电 位 当金属和电解质溶液建立的双电层的电极过程为不可逆 时,其电极电位成为非平衡电极电位
j
R-理想气体常数 F-法拉第常数 T-热力学温度
20
对数项前取“+”号,反应式中含电子一侧的所有物质活 度乘积为分子,另一侧物质为分母。如果反应式中某物 质前有系数则该系数作为该物质活度的指数。 纯固体活度被规定为1。反应中浓度保持恒定的物质, 如:溶液中水的活度也规定为1。气体物质活度等于其 逸度,常压下近似等于大气压(atm)为单位的该气体分压。 能斯特方程反应了平衡电极电位与温度、参与反应的各 物质活度和压强间的关系。 能斯特方程只能用于计算平衡电极电位。
t:电流持续时间,s
在电极反应中,当1mol的氧化体转化为还原体,前者 需要从电极取得n个法拉第常数的电量的电子;而当1mol 还原体转化为氧化体时,电极从还原体得到数值等于n个 5 法拉第常数的电量的电子。
(6) 电极:电极系统中的电子导体相 阳极:发生氧化反应的电极 阳极反应:失去电子的反应 阴极:发生还原反应的电极 阴极反应:得到电子的反应 原电池产生电流:两电极之间的电位差引起 ——电极反应的驱动力:电池的电位差 阴极电位高:正极;阳极电位低:负极
8
Zn本来是电中性的,因离子进入溶液 而把电子留在金属上,这时金属Zn带 负电;在Zn2+进入溶液的同时破坏了 溶液的电中性,使溶液带正电
金属上过剩的负电荷吸引溶液中过剩 的阳离子,使之靠近金属表面,形成 带异号电荷的离子双电层,在两相界 面上产生一定的电位差
腐蚀学第二章 金属电化学腐蚀热力学课件

阴极 Cathode (+)
Zn --> Zn2+ + 2e
正极 2NH4+ +2e -->2 NH3 + H2
24
燃料电池
25
2.2.2 电化学位
电化学体系与静电学中的带电体系区别 静电学只考虑电量不考虑物质性,只考 虑库仑力不考虑非库仑力 电极反应与化学反应区别 (电极反应的电化学位)除了物质变化 外,还有电荷在两相间流动,化学能和 电能都发生变化。 电能:荷电粒子
46
电 - =Zn2+ 阳极: Zn-2e 极 反 ++2e- =H ↑ 2H 阴极: 应 2 总反应: Zn+2H+=Zn2++H ↑ 2 Zn+H2SO4=ZnSO4+H2↑
各种电化学腐蚀现象的实质相同:都是浸在电解质溶 液中的金属表面上形成了以金属为阳极的腐蚀电池。
47
腐蚀电池的基本构成
—
40
2.3 非平衡电极电位
41
2.3.1 电极反应的过电位
电极反应偏离平衡状态,电极系统的电 极电位就偏离平衡时的电位。
E Ee
42
i 0
平衡状态下,两者都为0。 非平衡状态下,两者必须同号。
体系偏离平衡状态很小时,
RF i
43
2.3.2 原电池中的不可逆过程
原电池与负载接通回路,通过电流时,两个 电极端电压为:
参比电极
标准氢电极SHE 以镀铂黑的铂片浸在含1摩尔氢离子活度、 并用1atm氢气饱和的溶液中,在任何温度 下的平衡电极电位都等于零
电极反应
2H 2e H 2 ( gas)
Zn --> Zn2+ + 2e
正极 2NH4+ +2e -->2 NH3 + H2
24
燃料电池
25
2.2.2 电化学位
电化学体系与静电学中的带电体系区别 静电学只考虑电量不考虑物质性,只考 虑库仑力不考虑非库仑力 电极反应与化学反应区别 (电极反应的电化学位)除了物质变化 外,还有电荷在两相间流动,化学能和 电能都发生变化。 电能:荷电粒子
46
电 - =Zn2+ 阳极: Zn-2e 极 反 ++2e- =H ↑ 2H 阴极: 应 2 总反应: Zn+2H+=Zn2++H ↑ 2 Zn+H2SO4=ZnSO4+H2↑
各种电化学腐蚀现象的实质相同:都是浸在电解质溶 液中的金属表面上形成了以金属为阳极的腐蚀电池。
47
腐蚀电池的基本构成
—
40
2.3 非平衡电极电位
41
2.3.1 电极反应的过电位
电极反应偏离平衡状态,电极系统的电 极电位就偏离平衡时的电位。
E Ee
42
i 0
平衡状态下,两者都为0。 非平衡状态下,两者必须同号。
体系偏离平衡状态很小时,
RF i
43
2.3.2 原电池中的不可逆过程
原电池与负载接通回路,通过电流时,两个 电极端电压为:
参比电极
标准氢电极SHE 以镀铂黑的铂片浸在含1摩尔氢离子活度、 并用1atm氢气饱和的溶液中,在任何温度 下的平衡电极电位都等于零
电极反应
2H 2e H 2 ( gas)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E0 Fe/Fe2+
Fe Fe2++2e
io,H2/ H+
io Fe/ Fe
i corr
lg i
平衡电位 – 热力学, E0 H2/H+ , E0 Fe/Fe2+ …. 非平衡电位 – 动力学/测量, 腐蚀电位,混合电位或偶合电位
2.2 金属在介质中的腐蚀倾向
2.2.1 腐蚀倾向热力学判断
从热力学可知,判断化学变化的方向和限度,对于不同 的条件,有不同的热力学判据。
Cu+ H2O (液)+1/2O2(气) →Cu (OH)2(固) ΔG0 = - 2.86kcal
Ag+3/2H2O (液)+3/4O2(气)→Ag(OH)3(固) ΔG0 = + 1.57kcal
Cu+ 2H+ →Cu2++H2
ΔG0 = 64.98kJ/mol
Cu+ 2H++1/2O2 →Cu2++H2O ΔG0 =-170.28 kJ/mol
(3)中性无氧稳定,
酸性/中性有氧不稳定
Sn-4e+0.007 Cu-2e +0.337 Co-3e +0.418 Cu-e +0.521 Pb-4e +0.784 Ag-e +0.799 pH=7 O2+4e +0.815V
(4)酸性有氧不稳定
Hg-2e +0.854
Pb-2e +0.987
Pt-2e +1.19
用电动序中的标准电位作为金属腐蚀倾向的判据,虽简单方 便,但很粗略,有局限性。主要原因有二:一是腐蚀介质中金属 离子的浓度不是1mol/L,与标准电位的条件不同;二是大多数 金属表面上有一层氧化膜,并不是裸露的纯金属。
分组判断金属材料的腐蚀热力学稳定性
(1)中性介质不稳定 Li-e -3.04V K-e -2.92 Ca-2e -2.86 Ce-3e -2.48 Mg-2e -2.36 Al-3e -1.66 Ti-2e -1.62 Zr-4e -1.52 Ti-3e -1.21 Mn-2e -1.18 Nb-3e -1.10 Cr-2e -0.91 Zr-2e -0.76 Cr-3e -0.74 Fe-2e -0.44
化学能
电能
热能
2.3.1 腐蚀电池 电化学腐蚀的实质就是浸在电解质溶液中的金属表面上, 形成了以金属阳极溶解,腐蚀剂发生阴极还原的腐蚀电池。 绝大多数情况下,这种腐蚀电池是短路了的原电池。 腐蚀电池:只能导致金属材料破坏而不能对外界作有用 功的短路的原电池。(曹)
腐蚀电池的特点: 腐蚀电池的反应所释放出来的化学能都是以热能的形式 耗散掉而不能利用的; 腐蚀电池中相应的电极反应都是以最大程度的不可逆过 程的方式进行的。
应物和产物的活度的影响关系,它们的 变化可以改变电动势的大小,也就是其 浓度的变化可能导致腐蚀倾向的改变
2.1.3 非平衡电极电位
非平衡电极电位— 电极反应达到电荷交换平衡可逆,物质交换不平衡可逆:
阳极反应 Fe Fe 2+ + 2 e ( ia)
阴极反应 2H+ + 2e H2 ( ic)
第2章 金属电化学腐蚀热力学
腐蚀热力学 (反应方向)
电极电位 (产生原因,双电层模型,腐蚀电池)
应用 (电动序,电偶序,电位-pH图)
2.1 电极体系和电极电位
2.1.1 双电层
腐蚀总是发生在相间界面,重要概念-电极电位,即电极各 相间电位差之和。双电层普遍存在-相间电位差本质原因
荷电粒子在表层吸
化学热力学- 化学位不同 相间粒子转移,粒子自发地从高化学位相转入低化学 位相,直到两相化学位相等。
iI = 0
在电场作用下,两相电化学ቤተ መጻሕፍቲ ባይዱ不同
相间粒子转移,带电粒子自发的从高电化
学位相转入低电化学位相,直到两相的电化学位相等。
iI = 0 电化学位与化学位关系:
i= I + nFI = 化学功 + 电功
带电质点两相间
的转移,两相界 面出现剩余电荷
附-界面层与溶液 相出现电荷层
偶极分子在界面的 定相排列或表面原
子或分子极化
外电路向 界面两侧
+-
+-+
+ -+
充电
+- +- +- +-
+-+ +-+ +-+ +-+
+ -+ + -+ + -+ + -+
+- +- +- +-
+-
IE
2.1.2 平衡电位
2、水电位-pH值关系
1.23V
O2稳定区
0V
H2O稳定区
H2稳定区
0
14
pH
2.4.2 电位-pH图绘制
电位-pH图制作的一般步骤: 1. 列出腐蚀过程可能的各种物质的状态及热力学数据
(化学位); 2. 列出可能的化学或电化学反应式; 3. 计算电位、浓度、pH关系式; 4. 绘制电位—pH图。
即
ia = ic
但
Fe Fe2+ + 2e
H H+ + e
非平衡电位特点: 电荷平衡,物质不平衡 不满足Nernst关系 只能通过实验获得 腐蚀电位,混合电位或偶合电位。
Fe
Fe 2+
Fe 2+ Fe H2 2H+
H2 2H+
E0 H2/H+ Ecorr
H2 2H+ +2e Fe Fe2++2e H2 2H+ +2e
pH=7: H+ +e -0.41
(2)中性介质稳定(无 氧), 酸性介质不稳定
Cd-2e -0.402 Mn-3e -0.283 Co-2e -0.277 Ni-2e -0.25 Mo-3e -0.20 Sn-2e -0.13 Pb-2e -0.126 W-2e -0.11 Fe-3e -0.037 pH=0: H+ +e 0.0V
i — i 组分内电位 i — i 组分外电位 I — i 组分表面电位
i= i + i
+
电功 i
相
当两相电化学位相等,电化学平衡建立: Me Men+ + ne
对应电位差为平衡电极电位
Fe Fe 2+ + 2e
Fe 2+ + 2e
Fe
电荷平衡: ia = ic 物质平衡: M = Mn+
Marcel Pourbaix (left) and Ulick R. Evans
1904 -1998
Atlas of Electrochemical Equilibria in Aqueous Solutions
作者:by Marcel Pourbaix 出版社:Oxford ; New York : Pergamon Press 出版日期:1966
pH=0 O2+4e +1.23V
(5)完全稳定 Au-2e +1.498 Au-4e +1.691
2.3 腐蚀原电池 原电池:使化学能变为电能的装置
1836年,英国丹尼尔对“伏打电堆”进行了改良,使 用稀硫酸作电解液,解决了电池极化问题,制造出第一个 不极化、能保持平稳电流、并可反复充电的锌-铜电池,又 称“丹尼尔电池”。
2.3.2 金属腐蚀的电化学历程
1、阳极过程: M(晶格) M(吸附) — 原子离开晶格 表面吸附原子 M(吸附) (Mn+) + ne — 表面吸附原子越过双层放电为离子 (Mn+) Mn+ — 离子从双层向本体溶液迁移扩散 (其中极性分H2O起到重要作用)
2、阴极过程更复杂/多种形式/多电子/多步骤: H++ e H H + H H2 (酸性) 1/2 O2+ H2O + 2e 2 OH- (中性) 1/2 O2 + 2H+ + 2e H2O (酸性/有氧)
4.绘制电位-pH图
Fe-H2O体系pH—电位图
粗线:固固 细线:故液 短虚线:液液 长虚线:水
对于孤立体系可用熵变判据; 对于等温等容下的体系,可用亥姆霍兹自由能判据; 在等温等压条件下,可用吉布斯自由能判据:
自发过程 平衡状态 非自发达程
ΔG小于零时,热力学上具有发生的可能性,其值越小发生的 倾向越大。
在25℃时,金属镁、铜、金在水溶液中:
Mg+H2O (液)+1/2O2(气) →Mg(OH)2(固) ΔG0 = - 14.2kcal
3、电流回路 金属部分:电子由阳极流向阴极 溶液部分:正离子由阳极向阴极迁移
以上三个环节既相互独立,又彼此制约,其中任何一个受到抑制, 都会使腐蚀电池工作强度减少。
2.3.3 腐蚀电池类型
腐蚀电池类型多,不同形态的腐蚀电池,可形成不同 的腐蚀形式 主要有: a. 宏观腐蚀电池 (阴、阳极区肉眼可分辨, 稳定)
宏观腐蚀电池
渗碳体 铁
(1) 化学组分不均一性;夹杂物
微观腐蚀电池
(2) 金属组织结构不均一性;相组织差异
微观腐蚀电池
应力集中
(3) 金属物理状态不均一性;机械损伤
微观腐蚀电池
(4) 表面膜不完整性;
微观腐蚀电池
三色环点滴试验
3%NaCl+铁氰化钾+酚酞
Fe
[初始外观] [其后外观]
蓝色: 显示 Fe2+(阳极区) 红色: 显示OH-(阴极区) 棕色: 铁锈 如果使用脱氧液滴,则不会出现初始外观。
只与pH有关,与电极电位无关: Fe2+ + 2H2O=Fe(OH)2+2H+(沉淀反应) Fe3+ + H2O=Fe(OH)2++H+(水解反应) 化学反应:不涉及电子的得失,与电位无关。