腐蚀学原理-第二章腐蚀热力学
合集下载
腐蚀热力学

方向进行时,阴极反应。
第二章 腐蚀热力学
(3)电极电位
➢ 双电层
电子导体相(金属)和离子导体相(溶液)都存在一个内电位(即, , ),由
于两相内电位的不同,在电极系统的离子导体相和金属导体相之间就存在电位差
( − ),导致在两相之间存在一个相界区,称为双电层
假设双电层为一个均匀电场,其电场强度可以表示为
腐蚀原电池示意图
➢ 腐蚀电池的定义是:只导致金属材料腐蚀破坏而不能对外做有用功的短路原电池
• 导致金属的腐蚀破坏
腐蚀原电池的特点
• 释放的能量不能对外做有用功
• 电极反应最大程度不可逆
第二章 腐蚀热力学
腐蚀原电池的构成及其工作过程
阳极
构成
阴极
电解质溶液
电路
➢ 工作过程
阳极过程: ⟶ + +
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
2.2 电极系统与电极反应
2.3 电化学位与电极电位
2.4 电化学腐蚀倾向的判断
2.5 Ee–pH图
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
原电池
干电池(左)以及原电池工作原理(右)示意图
➢ 阳极反应:负极上发生的反应,金属失去
负极(锌皮): → 2+ + 2
从右至左自发进行:
∆ = + + − − = >
反应平衡时:
∆ = + + − − = =
对任意含有j种物质的化学反应,化学反应达到平衡的条件
∆ = σ =
第二章 腐蚀热力学
(2)电化学位及可逆电极反应的平衡条件
第二章 腐蚀热力学
(3)电极电位
➢ 双电层
电子导体相(金属)和离子导体相(溶液)都存在一个内电位(即, , ),由
于两相内电位的不同,在电极系统的离子导体相和金属导体相之间就存在电位差
( − ),导致在两相之间存在一个相界区,称为双电层
假设双电层为一个均匀电场,其电场强度可以表示为
腐蚀原电池示意图
➢ 腐蚀电池的定义是:只导致金属材料腐蚀破坏而不能对外做有用功的短路原电池
• 导致金属的腐蚀破坏
腐蚀原电池的特点
• 释放的能量不能对外做有用功
• 电极反应最大程度不可逆
第二章 腐蚀热力学
腐蚀原电池的构成及其工作过程
阳极
构成
阴极
电解质溶液
电路
➢ 工作过程
阳极过程: ⟶ + +
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
2.2 电极系统与电极反应
2.3 电化学位与电极电位
2.4 电化学腐蚀倾向的判断
2.5 Ee–pH图
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
原电池
干电池(左)以及原电池工作原理(右)示意图
➢ 阳极反应:负极上发生的反应,金属失去
负极(锌皮): → 2+ + 2
从右至左自发进行:
∆ = + + − − = >
反应平衡时:
∆ = + + − − = =
对任意含有j种物质的化学反应,化学反应达到平衡的条件
∆ = σ =
第二章 腐蚀热力学
(2)电化学位及可逆电极反应的平衡条件
第二章电化学腐蚀热力学要点

• 上面介绍的是常见的三种宏观腐蚀电池。实际上 腐蚀现象往往是几种(包括下面将介绍的微电池) 类型的腐蚀电池共同作用的结果。
2.3.2微观腐蚀电池
• 在金属外表上由于存在许多极微小的电极 而形成的电池称为微电池。微电池是因金 属外表的电化学的不均匀性所引起的,不 均匀性的原因是多方面的。
图2.4 腐蚀电池
图2.5铜锌接触形成腐蚀电池示意图
图2.6铸铁形成腐蚀电池示意图
• 单个金属与溶液接触时所发生的金属溶解 现象称为金属的自动溶解。这种自溶解过 程可按化学机理进展,也可按电化学机理 进展。金属在电解质溶液中的自动溶解属 于电化学机理。
图2.7金属锌在稀酸溶液中的腐蚀
2.2.4金属腐蚀的电化学历程
• 金属腐蚀反响体系是一个开放体系。在反响过程 中,体系与环境既有能量的交换又有物质的交换。
金属腐蚀反响一般都是在恒温和恒压的条件下进 展的,用体系的热力学状态函数吉布斯(Gibbs)自
由能判据来判断反响的方向和限度较为方便。吉 布斯自由能用G表示,对于等温等压并且没有非
体积功的过程,腐蚀体系的平衡态或稳定态对应
• Zn2++ 2OH- → Zn(OH)2 ↓ • 这种反响产物称为腐蚀次生产物,也称腐蚀产物。某些情
况下腐蚀产物会发生进一步的变化。例如铁在中性的水中 腐蚀时Fe2+离子转入溶液遇到OH-离子就生成Fe(OH)2, Fe(OH)2又可以被溶液中的溶解氧所氧化而形成Fe(OH)3。
• 4 Fe(OH)2+O2+H2O→ 4Fe(OH)3: • 随着条件的不同(如温度、介质的pH及溶解的氧含量等)也
• 从上面讨论的腐蚀电池的形成可以看 出,—个腐蚀电池必须包括阴极、阳极、 电解质溶液和连接阴极与阳极的电子导体 等几个组成局部,缺一不可。这几个组成 局部构成了腐蚀电池工作历程的下三个根 本过程。
2.3.2微观腐蚀电池
• 在金属外表上由于存在许多极微小的电极 而形成的电池称为微电池。微电池是因金 属外表的电化学的不均匀性所引起的,不 均匀性的原因是多方面的。
图2.4 腐蚀电池
图2.5铜锌接触形成腐蚀电池示意图
图2.6铸铁形成腐蚀电池示意图
• 单个金属与溶液接触时所发生的金属溶解 现象称为金属的自动溶解。这种自溶解过 程可按化学机理进展,也可按电化学机理 进展。金属在电解质溶液中的自动溶解属 于电化学机理。
图2.7金属锌在稀酸溶液中的腐蚀
2.2.4金属腐蚀的电化学历程
• 金属腐蚀反响体系是一个开放体系。在反响过程 中,体系与环境既有能量的交换又有物质的交换。
金属腐蚀反响一般都是在恒温和恒压的条件下进 展的,用体系的热力学状态函数吉布斯(Gibbs)自
由能判据来判断反响的方向和限度较为方便。吉 布斯自由能用G表示,对于等温等压并且没有非
体积功的过程,腐蚀体系的平衡态或稳定态对应
• Zn2++ 2OH- → Zn(OH)2 ↓ • 这种反响产物称为腐蚀次生产物,也称腐蚀产物。某些情
况下腐蚀产物会发生进一步的变化。例如铁在中性的水中 腐蚀时Fe2+离子转入溶液遇到OH-离子就生成Fe(OH)2, Fe(OH)2又可以被溶液中的溶解氧所氧化而形成Fe(OH)3。
• 4 Fe(OH)2+O2+H2O→ 4Fe(OH)3: • 随着条件的不同(如温度、介质的pH及溶解的氧含量等)也
• 从上面讨论的腐蚀电池的形成可以看 出,—个腐蚀电池必须包括阴极、阳极、 电解质溶液和连接阴极与阳极的电子导体 等几个组成局部,缺一不可。这几个组成 局部构成了腐蚀电池工作历程的下三个根 本过程。
腐蚀2

金属这种不稳定的倾向,既与金属本身性质有关,又与 周围介质的特性和外界条件有关。在热力学上,它可以用 进行相应的腐蚀反应时吉布斯函数的变化ΔG来衡量,如 果ΔG是负值,则该腐蚀反应是可能的, ΔG值愈负,金属 腐蚀倾向就愈大。如果ΔG为正值,则该腐蚀过程不可能 进行。
例如金属发生氧化反应: Me+O2→MeO2 (2-1) 根据Vant Hoff等温方程式,反应的吉布斯自由能的变化为: ΔG = ΔG°+ RTlnK (2-2) 其中,K为反应的平衡常数,并有: αMeO2 K= (2-3) αMe PO2 由于MeO2、Me是固态纯物质,活度均为1,(2-3)变成:
单个电极反应的电位的绝对值 是无法测定的,只能通过测量电 池电动势的方法测定它的相对值.
Electromotive Force, EMF
为了使相对值统一,必须选 择一个电极作为比较的标准,并 且需要规定在比较时它做正极还 是负极,还要规定它的电极反应 的电位的数值为多少。
标准氢电极
标准氢电极就是将铂片先镀上一层蓬松的 铂(称为铂黑),再把它放入 H+离子浓度为1mol· L-1的稀硫酸中。然后通入压力为100kPa的纯净氢气, 并使它不断地冲打铂片。此时氢气被铂黑吸附,吸附了氢气的铂片就像由 氢气构成的电极一样。铂片上的H2和溶液中的H+离子建立了如下平衡:
非平衡电极电位
金属电极上可能同时存在两个或两个以上不同物质参与的 电化学反应,当动态平衡时,电极上不可能出现物质交换 与电荷交换均达到平衡的情况,这种情况下的电极电位称 为非平衡电极电位,或不可逆电极电位。 非平衡电极电位可以是稳定的,也可以是不稳定的。稳定 电极电位是在一个电极表面上同时进行两个不同的氧化、 还原过程,当平衡时仅仅是电荷平衡而无物质平衡的电极 电位。 Fe在稀HCl溶液中建立的电极电位就是稳态电极电位。 稳态电极电位也可称作开路电位。即外电流为零时电极电 位(Ei=0),也可称作自腐蚀电位,用ER表示。 非平衡电极电位不能用奈恩斯特公式计算,只能由实验测 定。
例如金属发生氧化反应: Me+O2→MeO2 (2-1) 根据Vant Hoff等温方程式,反应的吉布斯自由能的变化为: ΔG = ΔG°+ RTlnK (2-2) 其中,K为反应的平衡常数,并有: αMeO2 K= (2-3) αMe PO2 由于MeO2、Me是固态纯物质,活度均为1,(2-3)变成:
单个电极反应的电位的绝对值 是无法测定的,只能通过测量电 池电动势的方法测定它的相对值.
Electromotive Force, EMF
为了使相对值统一,必须选 择一个电极作为比较的标准,并 且需要规定在比较时它做正极还 是负极,还要规定它的电极反应 的电位的数值为多少。
标准氢电极
标准氢电极就是将铂片先镀上一层蓬松的 铂(称为铂黑),再把它放入 H+离子浓度为1mol· L-1的稀硫酸中。然后通入压力为100kPa的纯净氢气, 并使它不断地冲打铂片。此时氢气被铂黑吸附,吸附了氢气的铂片就像由 氢气构成的电极一样。铂片上的H2和溶液中的H+离子建立了如下平衡:
非平衡电极电位
金属电极上可能同时存在两个或两个以上不同物质参与的 电化学反应,当动态平衡时,电极上不可能出现物质交换 与电荷交换均达到平衡的情况,这种情况下的电极电位称 为非平衡电极电位,或不可逆电极电位。 非平衡电极电位可以是稳定的,也可以是不稳定的。稳定 电极电位是在一个电极表面上同时进行两个不同的氧化、 还原过程,当平衡时仅仅是电荷平衡而无物质平衡的电极 电位。 Fe在稀HCl溶液中建立的电极电位就是稳态电极电位。 稳态电极电位也可称作开路电位。即外电流为零时电极电 位(Ei=0),也可称作自腐蚀电位,用ER表示。 非平衡电极电位不能用奈恩斯特公式计算,只能由实验测 定。
材料腐蚀与防护-金属的电化学腐蚀原理(2)

已测知Zn和Cu在质量分数为0.03的NaCl水 溶液中的开路电位分别为EZn= -0.83V和 ECu=0.05V,回路电阻R=250。
此时,两电极的稳定电位差0.05+0.83=0.88V,
铜-锌腐蚀原电池示意图
电池刚接通时,毫安表指示的起始瞬间电流 值
电流变化
瞬间电流很快下降,经过一段时间 后,达到一个比较稳定的电流值, I2=0.15mA ???
腐蚀极化图
+E EeC
β
假定任何电流下,阴极阳极的极 化率为常数,称为Evans图(U. R. Evans)。 S所对应的电位Emix,称为混合电 位。由于Emix电位下的金属处于 腐蚀状态,故混合电位就是金属 的自腐蚀电位Ecorr,对应的电流 称为腐蚀电流,用Icorr表示。 I 腐蚀电位是一种不可逆非平 衡电位,需由实验测得,腐蚀 电流表示金属腐蚀的速率,对 于均匀腐蚀和局部腐蚀都适用。
CA
PA E A E A 100% 100% 100% e e PC PA PR EC E A ER EC E A
PR ER ER 100% 100% 100% e e PC PA PR EC E A ER EC E A
S2O62 +2e 2SO42
3.溶液中中性分子的还原反应 吸氧反应 氯的还原反应
如:
O2 +H2O+4e 4OH Cl2 2e 2Cl
4.不溶性化合物的还原反应
如:
Fe(OH)3 +e Fe(OH)2 OH
电路接通
腐蚀电池接通前后电位变化
过电位
电极电位的偏离值称为极化值。 通常引入一新术语--过电位或超电位(取正值)来表征电 极极化的程度。
此时,两电极的稳定电位差0.05+0.83=0.88V,
铜-锌腐蚀原电池示意图
电池刚接通时,毫安表指示的起始瞬间电流 值
电流变化
瞬间电流很快下降,经过一段时间 后,达到一个比较稳定的电流值, I2=0.15mA ???
腐蚀极化图
+E EeC
β
假定任何电流下,阴极阳极的极 化率为常数,称为Evans图(U. R. Evans)。 S所对应的电位Emix,称为混合电 位。由于Emix电位下的金属处于 腐蚀状态,故混合电位就是金属 的自腐蚀电位Ecorr,对应的电流 称为腐蚀电流,用Icorr表示。 I 腐蚀电位是一种不可逆非平 衡电位,需由实验测得,腐蚀 电流表示金属腐蚀的速率,对 于均匀腐蚀和局部腐蚀都适用。
CA
PA E A E A 100% 100% 100% e e PC PA PR EC E A ER EC E A
PR ER ER 100% 100% 100% e e PC PA PR EC E A ER EC E A
S2O62 +2e 2SO42
3.溶液中中性分子的还原反应 吸氧反应 氯的还原反应
如:
O2 +H2O+4e 4OH Cl2 2e 2Cl
4.不溶性化合物的还原反应
如:
Fe(OH)3 +e Fe(OH)2 OH
电路接通
腐蚀电池接通前后电位变化
过电位
电极电位的偏离值称为极化值。 通常引入一新术语--过电位或超电位(取正值)来表征电 极极化的程度。
第 2 章 腐蚀电化学原理简介

腐蚀反应中释放的化学能又是从何而来的?
形成腐蚀电池确实对腐蚀有加速作用。在腐蚀控制工作中仍 然要注意防止形成腐蚀电池,或减小腐蚀电池的推动力。
中国民航大学 理学院
2010/8/14
10
2.1.2 腐蚀电池的类型
◦ 按组成腐蚀电池的阴极、阳极的大小:
宏观腐蚀电池:阳极区和阴极区尺寸较大,区分明显,多数
什么是正极和负极,什么是阴极和阳极? 什么情况下正极是阳极,什么情况下正 极是阴极?
A
e
k
+
Cu 2H+
Zn
Zn2+
SO42-
中国民航大学 理学院
2010/8/14
4
总反应(电池反应) = 阳极反应 + 阴极反应 Zn+2H+→Zn2++H2↑
形 成 回 路
电流的流动 金属中:电子从阳极流向阴极。 溶液中:离子迁移。阳离子从阳极区向阴极区迁移,阴离子从 阴极区向阳极区迁移。 阳极:发生氧化反应 阴极:发生还原反应
腐蚀电池不做有用功,只造成金属的腐蚀。
腐蚀电池的电极反应、电池反应和推动力与一般原电池相同。
两个电极反应,阳极反应造成金属溶解(或腐蚀),阴极反 应是环境中的氧化剂(习惯上称去极化剂)的还原反应。
两个电极反应是共轭关系,即阳极失去的电子等量地被阴极 反应消耗。
金属的腐蚀速度、阴极去极化剂的还原速度和通过的电流之 间符合法拉第定律。
情况下肉眼可辨。
1. 电偶电池:两种不同的金属短路接触,浸入连续的电解质溶液中。 如钢铁部件用铜铆钉连接,连接区存有积水的情况。
中国民航大学 理学院
2010/8/14
形成腐蚀电池确实对腐蚀有加速作用。在腐蚀控制工作中仍 然要注意防止形成腐蚀电池,或减小腐蚀电池的推动力。
中国民航大学 理学院
2010/8/14
10
2.1.2 腐蚀电池的类型
◦ 按组成腐蚀电池的阴极、阳极的大小:
宏观腐蚀电池:阳极区和阴极区尺寸较大,区分明显,多数
什么是正极和负极,什么是阴极和阳极? 什么情况下正极是阳极,什么情况下正 极是阴极?
A
e
k
+
Cu 2H+
Zn
Zn2+
SO42-
中国民航大学 理学院
2010/8/14
4
总反应(电池反应) = 阳极反应 + 阴极反应 Zn+2H+→Zn2++H2↑
形 成 回 路
电流的流动 金属中:电子从阳极流向阴极。 溶液中:离子迁移。阳离子从阳极区向阴极区迁移,阴离子从 阴极区向阳极区迁移。 阳极:发生氧化反应 阴极:发生还原反应
腐蚀电池不做有用功,只造成金属的腐蚀。
腐蚀电池的电极反应、电池反应和推动力与一般原电池相同。
两个电极反应,阳极反应造成金属溶解(或腐蚀),阴极反 应是环境中的氧化剂(习惯上称去极化剂)的还原反应。
两个电极反应是共轭关系,即阳极失去的电子等量地被阴极 反应消耗。
金属的腐蚀速度、阴极去极化剂的还原速度和通过的电流之 间符合法拉第定律。
情况下肉眼可辨。
1. 电偶电池:两种不同的金属短路接触,浸入连续的电解质溶液中。 如钢铁部件用铜铆钉连接,连接区存有积水的情况。
中国民航大学 理学院
2010/8/14
第2章—电化学腐蚀原理(二)

2.8.1 析氢腐蚀的阴极过程步骤 在酸性溶液中,析氢过程步骤: (1)水合氢离子向阴极表面扩散并脱水: H3O+ → H+ + H2O (2)H+与电极表面的电子结合放电,形成吸附氢原子: H+ + e→Hads (3)吸附态氢原子通过复合脱附,形成H2分子: Hads + Hads → H2 或发生电化学脱附,形成H2分子: Hads + H+ + e → H2 (4)H2分子形成氢气泡,从电极表面析出。 各过程连续进行,最慢的过程控制整个反应过程。 通常(2)过程为控制过程。
电流通过腐蚀电池时,阳极的电极电位向正方向移动(升 高)的现象,称为阳极极化。 电流流过腐蚀电池时,阴极的电极电位向负方向移动(降 低)的现象,称为阴极极化。 (1)电化学极化或活化极化 在金属阳极溶解过程中,由于电子从阳极流向阴极的速度 大于金属离子放电离开晶格进入溶液的速度,因此阳极的正 电荷将随着时间发生积累,使电极电位向正方向移动,发生 电化学阳极极化。 由于电子进入阴极的速度大于阴极电化学反应放电的速度, 因此电子在阴极发生积累,结果使阴极的电极电位降低,发 生电化学阴极极化。
(1)构成腐蚀电池,即阴、阳极区之间存在电位差;
(2)存在着维持阴极过程进行的物质,即阴极去极化剂。
2.6 腐蚀电池的电极过程
2.6.1 阳极过程
(1)金属原子离开晶格转变为表面吸附原子:
M晶格 → M吸附 (2)表面吸附原子越过双电层进行放电转变为水化阳离子: M吸附+mH2O → Mn+•mH2O + ne (3)水化金属离子Mn+•mH2O从双电层溶液侧向溶液深处迁移。
2.8.2 析氢腐蚀发生的条件与特征
从热力学观点讨论金属腐蚀发生的原因

结 果:金属材料全面腐蚀
1.开始阶段:O2 在溶液中均匀分布 金属表面状态不均匀
微观腐蚀电池
划痕处金属较活泼: Fe→ Fe2+ + 2e 遇铁氰化钾变蓝
微阴极: O2 + 2H2O + 4e→4OH− 遇酚酞变红
2.一段时间后:溶液中O2 被消耗
氧浓差电池形成
宏观腐蚀电池
中心部位O2 浓度低: Fe→ Fe2+ + 2e 遇铁氰化钾变蓝
§2. 4 金属-水体系的电位-PH平衡图
一、图的绘制
( 以Fe- H2O体系为例)
1. 列出体系中可能存在的物质
Fe, Fe2+ , Fe3+
Fe2 O3, Fe 3O4 , Fe(OH)3 , Fe(OH)2 HFeO− O 2, H+,H2O,OH2. 列出各反应的平衡关系式,计算平衡数据
在电位- pH坐标图上画出各反应对应的平衡线,最后汇
φ = -0.44+0.0295lgaFe2+ (25℃)
⑥线表示反应: Fe+2H2O=HFeO2-+3H++2e φ =0.400-0.0886pH+0.0295lgaHFeO2- (25℃)
为一斜线。
⑦线表示反应: 2Fe2++3H2O=Fe2O3+6H++2e φ =0.728-0.177pH-0.059lgaFe2+ (25℃)
边缘部位O2 浓度高: O2 + 2H2O + 4e→4OH− 遇酚酞变 红
中间区域:
呈棕色
§2. 2 腐蚀过程中发生的反应类型 一、有电子得失,无H+参加的平衡反应
1.开始阶段:O2 在溶液中均匀分布 金属表面状态不均匀
微观腐蚀电池
划痕处金属较活泼: Fe→ Fe2+ + 2e 遇铁氰化钾变蓝
微阴极: O2 + 2H2O + 4e→4OH− 遇酚酞变红
2.一段时间后:溶液中O2 被消耗
氧浓差电池形成
宏观腐蚀电池
中心部位O2 浓度低: Fe→ Fe2+ + 2e 遇铁氰化钾变蓝
§2. 4 金属-水体系的电位-PH平衡图
一、图的绘制
( 以Fe- H2O体系为例)
1. 列出体系中可能存在的物质
Fe, Fe2+ , Fe3+
Fe2 O3, Fe 3O4 , Fe(OH)3 , Fe(OH)2 HFeO− O 2, H+,H2O,OH2. 列出各反应的平衡关系式,计算平衡数据
在电位- pH坐标图上画出各反应对应的平衡线,最后汇
φ = -0.44+0.0295lgaFe2+ (25℃)
⑥线表示反应: Fe+2H2O=HFeO2-+3H++2e φ =0.400-0.0886pH+0.0295lgaHFeO2- (25℃)
为一斜线。
⑦线表示反应: 2Fe2++3H2O=Fe2O3+6H++2e φ =0.728-0.177pH-0.059lgaFe2+ (25℃)
边缘部位O2 浓度高: O2 + 2H2O + 4e→4OH− 遇酚酞变 红
中间区域:
呈棕色
§2. 2 腐蚀过程中发生的反应类型 一、有电子得失,无H+参加的平衡反应
第2章—电化学腐蚀原理(二)讲解

O2 + e →
O
2
O
2
+ H+ → HO2
HO2
HO
2
+
e
→
HO
2
+ H+ → H2O2
H2O2 + H+ + e → H2O + HO
HO + H+ + e → H2O
2.9.2 扩散控制——浓差极化
J
D(
dC dx
)x0
id nFJ
id=nFD(
dC dx
)
x0
nFD
化腐蚀,或称析氢腐蚀。
析氢腐蚀反应类型: 在酸性溶液中,反应物来源于水合氢离子(H3O+),它在阴极 上放电,析出氢气:H3O+ + 2e → H2 + 2H2O
在中性或碱性溶液中,则是水分子直接接受电子析出氢气: 2H2O + 2e → H2 + 2OH-
2.8.1 析氢腐蚀的阴极过程步骤
在酸性溶液中,析氢过程步骤: (1)水合氢离子向阴极表面扩散并脱水: H3O+ → H+ + H2O (2)H+与电极表面的电子结合放电,形成吸附氢原子: H+ + e→Hads (3)吸附态氢原子通过复合脱附,形成H2分子: Hads + Hads → H2 或发生电化学脱附,形成H2分子: Hads + H+ + e → H2 (4)H2分子形成氢气泡,从电极表面析出。 各过程连续进行,最慢的过程控制整个反应过程。
2.9.2 耗氧腐蚀的步骤
耗氧腐蚀可分为两个基本过程:氧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:
电偶的概念, 危害、用途?
2.3 电位—pH图
金属的电化学腐蚀:金属同水溶液相互作 用。水溶液:H+和OH-离子。
电位—pH图 金属在水溶液中的稳定性不但与它的电极电位有 关,还与水溶液的pH值有关。若将金属腐蚀体系 的电极电位与溶液pH值的关系绘成图,就能直接 从图上判断给定条件下发生腐蚀反应的可能性。
极化图与腐蚀极化图?
金属在25℃的标准电极电位E°
Mg=Mg2++2e:-2.363 Al=A13++3e:-1.662 Ti=Ti3++3e:-1.210 Fe =Fe2++2e:-0.440V Cu=Cu2++2e:+0.337 Pd=Pd2++2e:+0.987 Au=Au++e:+1.691 注:均相对于SHE
2.4 腐蚀电池及其工作历程
(1)阳极过程 金属溶解,以离子形式进入溶液,并把当量的电子留在 金属上
(2)阴极过程 从阳极流过来的电子被阴极表面溶液中能够接受电子的 物质所吸收,即发生阴极还原反应。 阴极还原反应中能够吸收电子的氧化性物质D,在腐蚀学中通常称为 去极化剂。因为如果没有去极化剂,阴极区将由于电子的积累而发生 阴极极化而阻碍腐蚀的进行。最常见的阴极去极化剂是溶液中的O2和 H+离子。
比利时学者M.Pourbaix在1938年首先提出,又称 Pourbaix图。
Fe-H2O电位-pH图
a线为析氢电极反应:
E
E
2.3RT
lg
a2 H
2F
pH2
b线为O2与H2O间的 电化学反应:
2H2O
O2(g)+4H++4e
A点处于Fe和H2的稳定区,故不会发生腐蚀 。
B点处于腐蚀区,且在氢线以下,即处于Fe2+ 离子和H2的稳定区。
(3)电流的流动 电流的流动在金属中是依靠电子从阳极流向阴极,在 溶液中则是依靠离子的迁移,即阳离子从阳极区移向阴极区,阴离子 从阴极区移向阳极区。在阳极和阴极区界面上则分别发生上述的氧化 和还原反应,实现电子的传递。这样,整个电池体系便形成了一个回 路。
2.5腐蚀电池的类型
宏观腐蚀电池
异金属接触电池(电偶) 浓差电池(水线腐蚀、缝隙腐蚀、沉积物腐蚀、
二、按腐蚀机理分类
金属腐蚀倾向的电化学判据:
EA﹤EC 则电位为EA的金属自发进行腐蚀 EA=EC 平衡状态 EA﹥EC 电位为EA的金属不发生腐蚀
问题1
问题2
Fe│H+ Fe │O2
阴阳极反应?
电位E属于热力学概念or动 力学概念?
举例(金属在不同环境中的腐蚀情况)
铁在酸中:
Fe Fe2++2e
盐滴腐蚀和丝状腐蚀、金属管道) 温差腐蚀电池 电解池阳极腐蚀(电镀阳极、杂散电流腐蚀)
微观腐蚀电池
由于金属表面化学成分的不均匀性而产生 的微电池(含杂质金属)
由于金属组织不均匀性而产生的微电池( 晶体缺陷)--晶间腐蚀、应力腐蚀断裂
由于金属物理状态的不均匀性而产生的微 电池
由于金属表面膜不完整而产生的微电池
问题: 为什么Mg、Al、Ti在空 气中不发生剧烈腐蚀?
电偶序
金属或合金在某一特定介质中(如3%NaCl 溶液中)的腐蚀电位次序。
在3%NaCl中的电偶序
金属 Mg Zn Al Cd Fe Pb Sn Ni Cu Cr As Ti Pt
电位/V(SHE) -1.45 -0.80 -0.53 -0.52 -0.50 -0.30 -0.25 -0.30 +0.05 +0.23 +0.30 +0.37 +0.47
E0:标准电极电位(standard electrode potential)。
电位的基准E0H:标准氢电极(standarபைடு நூலகம் hydrogen electrode, SHE)
E0H =0(pH=0)
E0O=+0.815V(pH=7)
EA(anode)
阳极:氧化反应,失电子
EC(cathode)
阴极:还原反应,得电子
(2)把铁的电位升高,使之进入钝化区。这可通过阳极保护 法或在溶液中添加阳极型缓蚀剂或钝化剂来实现。应指出 ,这种方法只适用于可钝化的金属。有时由于钝化剂加入 量不足,或者阳极保护参数控制不当,金属表面保护膜不 完整,反而会引起严重的局部腐蚀。溶液中有Cl-离子存在 时还需注意防止点蚀的出现。
(3)调整溶液的pH值至9~13之间,也可使铁进入钝化区 。应注意,如果由于某种原因(如溶液中含有一定量的Cl-) 不能生成氧化膜,铁将不钝化而继续腐蚀。
E Fe
=
-0.440V
(△G°)T,p =-84920 J/mol
铜在不含氧酸中:
Cu
Cu2++2e
E Cu
=
+0.337V
铜在含氧酸中:
1/2O2+2H++2e
H2O
E
O
=1.229V
Nernst公式
E E0 2.3RT lg aO nF aR
含义: 单一电极反应,处于平衡状态下的电极电位。
亚微观腐蚀电池
每个电极表面十分微小(<10nm),遍布整 个金属表面,其中阴、阳极无规则地、统 计地分布着,且随时间不断地发生变化, 结果导致金属的均匀腐蚀。
作业
思考题: 1、5、6、7
计算题: 2、11、
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
第二章 腐蚀热力学
第一节 腐蚀倾向的热力学判据
ΔG (T,P) < 0 自发过程
ΔG (T,P) = 0 平衡过程 Energy
Gibbs Free
ΔG (T,P) > 0
非自发过程
冶炼
矿石
金属
腐蚀
第二节 电化学腐蚀倾向的判断和电动序
E:电极电位(electrode potential,E)
C点条件下,即在腐蚀区,又在氢线以上,对 于Fe2+和H2O是稳定的。铁仍会腐蚀,但不 是析氢腐蚀,而是吸氧腐蚀。
阴极反应:2H++1/2O2+2e
H2O
铁免于腐蚀的方法
(1)把铁的电极电位降低至免蚀区,即对铁施行阴极保护。 可用牺牲阳极法,即用电位负的锌或铝合金与铁连接,构 成腐蚀电偶,或用外加直流电源的负端与铁相连,而正端 与辅助阳极连接,构成回路,都可保护铁免遭腐蚀。