2014年全国高考数学分类汇编--数列
三、数列求和专项练习高考题(含知识点)

数列的前n 项和的求法1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2n n n ++++=+L ,222112(1)(21)6n n n n +++=++L ,33332(1)123[]2n n n +++++=L .例1、已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.例2、 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n a a a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 例3、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.54.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).例4、 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 例5、求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++;②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=. 例6、 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和. 解:设n n n n a n -+=++=111(裂项) 则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+-=11-+n例7、 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n6.通项转换法:先对通项进行变形,发现其在特征,再运用分组求和法求和。
2014年高考数学真题分类汇编理科-数列(理科)

1.(2014 北京理 5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(2014 大纲理 10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于( ).A .6B .5C .4D .33.(2014 福建理 3)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).A.8B.10C.12D.144.(2014 辽宁理 8)设等差数列{}n a 的公差为d ,若数列{}12na a 为递减数列,则( ).A .0d <B .0d >C .10a d <D .10a d >5.(2014 重庆理 2)对任意等比数列{}n a ,下列说法一定正确的是( ). A. 139,,a a a 成等比数列 B. 236,,a a a 成等比数列 C. 248,,a a a 成等比数列 D. 369,,a a a 成等比数列二、 填空题1.(2014 安徽理 12)数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = .2.(2014 北京理 12)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大.3.(2014 广东理 13)若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220ln ln ln a a a +++= .4.(2014 江苏理 7)在各项均为正数的等比数列{}n a 中,21a =,8642a a a =+,则6a 的值是 .5.(2014 天津理 11)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.1.(2014 安徽理 21)(本小题满分13分) 设实数0c >,整数1p >,*n ∈N .(1)证明:当1x >-且0x ≠时,(1)1p x px +>+;(2)数列{}n a 满足11pa c >,111pn n n p c a a a p p-+-=+,证明:11p n n a a c +>>. 2.(2014 大纲理 18)(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S …. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 3.(2014 大纲理 22)(本小题满分12分)函数()()()ln 11axf x x a x a=+->+. (1)讨论()f x 的单调性;(2)设()111,ln 1n n a a a +==+,证明:23+22n a n n <+…. 4.(2014 广东理 19)(14分)设数列{}n a 的前n 项和为n S ,满足2*1234,n n S na n n n +=--∈N ,且315S =.(1)求123,,a a a 的值; (2)求数列{}n a 的通项公式.5.(2014 湖北理 18)(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.6.(2014 湖南理 20)已知数列{}n a 满足11a =,1nn n a a p +-=,*N n ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求p 的值;(2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式. 7.(2014 江苏理 20)设数列{}n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2n n S = ()*n ∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得n n n a b c =+()*n ∈N 成立.8.(2014 江西理 17)(本小题满分12分) 已知首项都是1的两个数列{}n a ,{}n b ()*0,n b n ≠∈N ,满足11120n n n n n n a b a b b b +++-+=.(1)令nn na cb =,求数列{}n c 的通项公式; (2)若13n n b -=,求数列{}n a 的前n 项和n S .9.(2014 山东理 19)(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列. (1)求数列{}n a 的通项公式; (2)令n b =()1141n n n na a -+-,求数列{}nb 的前n 项和n T . 10.(2014 陕西理 21)(本小题满分14分)设函数()()()()ln 1,,0f x x g x xf x x '=+=…,其中()f x '是()f x 的导函数. (1)()()()()()11,n n g x g x g x g g x +==,n +∈N ,求()n g x 的表达式; (2)若()()f x ag x …恒成立,求实数a 的取值范围; (3)设n +∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.11.(2014 四川理 19)设等差数列{}n a 的公差为d ,点(),n n a b 在函数()2xf x =的图像上()*n ∈N .(1)若12a =-,点()87,4a b 在函数()f x 的图像上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图像在点()22,a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 12.(2014 天津理 19)(本小题满分14分)已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,,1M q =-,集合{}112,,1,2,,n n i A x x x x q x q x M i n -+∈===++.(1)当2q =,3n =时,用列举法表示集合A ; (2)设,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中,i i a b M ∈,1,2,i n =.证明:若n n a b <,则s t <.13.(2014 新课标1理17)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (1)证明:2n n a a λ+-=;(2)是否存在λ,使得{}n a 为等差数列?并说明理由. 14.(2014 新课标2理17)(本小题满分12分) 已知数列{}n a 满足11a =,131n n a a +=+. (1)证明12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式; (2)证明:1211132n a a a ++<…+. 15.(2014 浙江理 19)(本题满分14分) 已知数列{}n a 和{}n b 满足(()*122nb n a a a n =∈N .若{}na 为等比数列,且1322,6a b b ==+.(1)求n a 与n b ; (2)设()*11n n nc n a b =-∈N .记数列{}n c 的前n 项和为n S . (i )求n S ;(ii )求正整数k ,使得对任意*n ∈N ,均有k n S S ….16.(2014 重庆理 22)(本小题满分12分,(1)问4分,(2)问8分)设()*111,n a a b n +==∈N .(1)若1b =,求23,a a 及数列{}n a 的通项公式;(2)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n ∈N 成立?证明你的结论.。
2014高考数列真题汇编

2014高考数列真题汇编一、选择题1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于 ( )A .30B .40C .60D .802.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于 ( )A .7B .8C .15D .163.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是 ( )A .Π11B .Π10C .Π9D .Π84.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n 5.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2,n ∈N *),则这个数列的 第10项等于 ( ) A.1210 B.129 C.110 D.156.数列{a n }中,a 1=1,a n 、a n +1是方程x 2-(2n +1)x +1b n=0的两个根,则数列{b n }的前 n 项和S n = ( )A.12n +1B.1n +1C.n 2n +1D.n n +1二、填空题7.数列{a n }的构成法则如下:a 1=1,如果a n -2为自然数且该自然数之前未出现过,则 用递推公式a n +1=a n -2,否则用递推公式a n +1=3a n ,则a 6=________.8.已知数列{a n }满足a n +1a n=n +2n (n ∈N *),且a 1=1,则a n =________. 9.如图,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2个数是________.10.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1的前n 项和的公式是________.三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列, b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的值.12.已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.(1)求a 3,a 5; (2)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;13.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.14.在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ; (2)设b n =log 3a n ,求数列{b n }的前n 项和S n .15.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式. (2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.16. 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.17. 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.18. 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.。
2014年数学高考分类汇编——数列

2014年全国高考数学试题分类汇编(数列)1.【2014·全国卷Ⅱ(文5)】等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A2.【2014·全国大纲卷(理10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3 【答案】C .3.【2014·全国大纲卷(文8)】设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C. 63 D. 64 【答案】C4.【2014·北京卷(理5)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D5.【2014·天津卷(文5)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 【答案】D .6.【2014·福建卷(理3)】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C7.【2014·辽宁卷(文9)】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <【答案】D8.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n Aa n = .2(1)n B a n =-.2n n C a = 1.2n n D a -=【答案】C9.【2014·重庆卷(理2)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D10.【2014·重庆卷(文2)】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B11.【2014·全国卷Ⅱ(文16)】数列{}n a 满足1+n a =n a -11,2a =2,则1a =_________.【答案】2112.【2014·安徽卷(理12)】数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,则q =________. 【答案】1q =。
2014高考文科数学分类汇编——数列

数列D1 数列的概念与简单表示法17.、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)证明:对任意的n>1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.18.、[2014·江西卷] 已知函数f(x)=(4x 2+4ax +a 2)x ,其中a<0.(1)当a =-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a 的值.16.[2014·新课标全国卷Ⅱ] 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.D2 等差数列及等差数列前n 项和2.[2014·重庆卷] 在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .145.[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12 D .-1215.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.17.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .19.、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.16.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.13.[2014·江西卷] 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.9.[2014·辽宁卷] 设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( )A .d >0B .d <0C .a 1d >0D .a 1d <017.[2014·全国卷] 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.5.[2014·新课标全国卷Ⅱ] 等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n(n +1)B .n(n -1) C.n (n +1)2 D.n (n -1)217.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .16.、、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C);(2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f(x)的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.[2014·浙江卷] 已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k(m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.16.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .D3 等比数列及等比数列前n 项和12.[2014·安徽卷] 如图1-3,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;….依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.图1-317.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n ..13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.7.[2014·江苏卷] 在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.17.[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)证明:对任意的n>1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.18.、[2014·江西卷] 已知函数f(x)=(4x 2+4ax +a 2)x ,其中a<0.(1)当a =-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a 的值.8.[2014·全国卷] 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .645.[2014·新课标全国卷Ⅱ] 等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n(n +1)B .n(n -1) C.n (n +1)2 D.n (n -1)219.[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .16.、、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C);(2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.20.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数,设集合M ={0,1,2,…,q -1},集合A ={x|x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n}.(1)当q =2,n =3时,用列举法表示集合A.(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n.证明:若a n <b n ,则s <t.16.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .D4 数列求和15.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.16.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.17.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .D5 单元综合18.[2014·安徽卷] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n(n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .19.[2014·广东卷] 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n)=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.20.[2014·江苏卷] 设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈),证明:{a n }是“H 数列”.(2)设{a n }是等差数列,其首项a 1=1,公差d<0.若{a n }是“H 数列”,求d 的值.(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈)成立.17.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)证明:对任意的n>1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.18.、[2014·江西卷] 已知函数f(x)=(4x 2+4ax +a 2)x ,其中a<0.(1)当a =-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a 的值.19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f(x)的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .答案:D117.解:(1)由S n =3n 2-n 2,得a 1=S 1=1.当n≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.18.解:(1)当a =-4时,由f′(x)=2(5x -2)(x -2)x=0得x =25或x =2,由f′(x)>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞).故函数f(x)的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f′(x)=(10x +a )(2x +a )2x,a <0, 所以由f′(x)=0得x =-a 10或x =-a 2. 当x ∈⎝⎛⎭⎫0,-a 10时,f(x)单调递增;当x ∈⎝⎛⎭⎫-a 10,-a 2时,f(x)单调递减;当x ∈⎝⎛⎭⎫-a 2,+∞时,f(x)单调递增.易知f(x)=(2x +a)2x ≥0,且f ⎝⎛⎭⎫-a 2=0. ①当-a 2≤1,即-2≤a <0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a 2≤4时,即-8≤a <-2时,f(x)在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意. ③当-a 2>4时,即a <-8时,f(x)在[1,4]上的最小值可能在x =1或x =4时取得,而f(1)≠8,由f(4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f(x)在(1,4)上单调递减,f(x)在[1,4]上的最小值为f(4)=8,符合题意.综上有,a =-10.16.12D22.B5.D15.解:(1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3. 所以a n =a 1+(n -1)d =3n(n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n}的前n 项和为32n(n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n -1, 所以,数列{b n }的前n 项和为32n(n +1)+2n -1.17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d =0,解得d =0或d =4,当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2.(2)当a n =2时,S n =2n ,显然2n<60n +800,此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n[2+(4n -2)]2=2n 2. 令2n 2>60n +800,即n 2-30n -400>0,解得n>40或n<-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41.综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.16.解:(1)当n =1时,a 1=S 1=1;当n≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n. 故数列{a n }的通项公式为a n =n.(2)由(1)知,b n =2n +(-1)n n.记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n]=n.故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.13.⎝⎛⎭⎫-1,-789.D17.解:(1)由a n +2=2a n +1-a n +2,得a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1. 于是所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式a n =n 2-2n +2.5.A17.解:(1)方程x 2-5x +6=0的两根为2,3.由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32. 所以{a n }的通项公式为a n =12n +1. (2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1, 则S n =322+423+…+n +12n +n +22n +1, 12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1.19.解:(1)由题意知,(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2.故数列{a n }的通项公式为a n =2n.(2)由题意知,b n =a n (n +1)2=n(n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n×(n +1).因为b n +1-b n =2(n +1),所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n 2(4+2n )2=n (n +2)2, 当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n(n +1) =-(n +1)22. 所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.16.解: (1)∵a ,b ,c 成等差数列,∴a +c =2b.由正弦定理得sin A +sin C =2sin B. ∵sin B =sin[π-(A +C)]=sin(A +C),∴sin A +sin C =2sin(A +C).(2)由题设有b 2=ac ,c =2a ,∴b =2a.由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.19.解:(1)证明:由已知得,b n =2a n >0,当n≥1时,b n +1b n=2a n +1-a n =2d . 故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f(x)=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2. 由题意知,a 2-1ln 2=2-1ln 2, 解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n·4n . 于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n×4n ,4S n =1×42+2×43+…+(n -1)×4n +n×4n +1,因此,S n -4S n =4+42+…+4n -n·4n +1=4n +1-43-n·4n +1=(1-3n )4n +1-43,所以,S n =(3n -1)4n +1+49.19.解:(1)由题意知(2a 1+d)(3a 1+3d)=36,将a 1=1代入上式解得d =2或d =-5.因为d>0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1), 所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4.16.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).D312.1417.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 213.519.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d)2=2(2+4d), 化简得d 2-4d =0,解得d =0或d =4,当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2.(2)当a n =2时,S n =2n ,显然2n<60n +800,此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n[2+(4n -2)]2=2n 2. 令2n 2>60n +800,即n 2-30n -400>0,解得n>40或n<-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41.综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.7.417.解:(1)由S n =3n 2-n 2,得a 1=S 1=1.当n≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.18.解:(1)当a =-4时,由f′(x)=2(5x -2)(x -2)x=0得x =25或x =2,由f′(x)>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞).故函数f(x)的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f′(x)=(10x +a )(2x +a )2x ,a <0, 所以由f′(x)=0得x =-a 10或x =-a 2. 当x ∈⎝⎛⎭⎫0,-a 10时,f(x)单调递增;当x ∈⎝⎛⎭⎫-a 10,-a 2时,f(x)单调递减;当x ∈⎝⎛⎭⎫-a 2,+∞时,f(x)单调递增.易知f(x)=(2x +a)2x ≥0,且f ⎝⎛⎭⎫-a 2=0. ①当-a 2≤1,即-2≤a <0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a 2≤4时,即-8≤a <-2时,f(x)在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意. ③当-a 2>4时,即a <-8时,f(x)在[1,4]上的最小值可能在x =1或x =4时取得,而f(1)≠8,由f(4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f(x)在(1,4)上单调递减,f(x)在[1,4]上的最小值为f(4)=8,符合题意.综上有,a =-10.8.C [解析] 设等比数列{a n }的首项为a ,公比为q ,易知q≠1,根据题意可得⎩⎪⎨⎪⎧a (1-q 2)1-q=3,a (1-q 4)1-q =15,解得q 2=4,a 1-q =-1,所以S 6=a (1-q 6)1-q =(-1)(1-43)=63.5.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n(n +1).19.解:(1)由题意知,(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2.故数列{a n }的通项公式为a n =2n.(2)由题意知,b n =a n (n +1)2=n(n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n×(n +1).因为b n +1-b n =2(n +1),所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n 2(4+2n )2=n (n +2)2, 当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n(n +1) =-(n +1)22. 所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.16.解: (1)∵a ,b ,c 成等差数列,∴a +c =2b.由正弦定理得sin A +sin C =2sin B.∵sin B =sin[π-(A +C)]=sin(A +C),∴sin A +sin C =2sin(A +C).(2)由题设有b 2=ac ,c =2a ,∴b =2a.由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.20.解:(1)当q =2,n =3时,M ={0,1},A ={x|x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q-q n -1 =-1<0,所以s<t.16.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).D415.解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3. 所以a n =a 1+(n -1)d =3n(n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n}的前n 项和为32n(n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n -1, 所以,数列{b n }的前n 项和为32n(n +1)+2n -1.16.解:(1)当n =1时,a 1=S 1=1;当n≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n. 故数列{a n }的通项公式为a n =n.(2)由(1)知,b n =2n +(-1)n n.记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n]=n.故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.17.解:(1)方程x 2-5x +6=0的两根为2,3.由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32. 所以{a n }的通项公式为a n =12n +1. (2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1, 则S n =322+423+…+n +12n +n +22n +1, 12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1.19.解:(1)由题意知,(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2.故数列{a n }的通项公式为a n =2n.(2)由题意知,b n =a n (n +1)2=n(n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n×(n +1).因为b n +1-b n =2(n +1),所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n 2(4+2n )2=n (n +2)2, 当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n(n +1) =-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.D518.解: (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n=1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a n n=1+(n -1)·1=n ,所以a n =n 2, 从而可得b n =n·3n .S n =1×31+2×32+…+(n -1)×3n -1+n×3n ,①3S n =1×32+2×33+…+(n -1)3n +n×3n +1.②①-②得-2S n =31+32+…+3n -n·3n +1=3·(1-3n )1-3-n·3n +1=(1-2n )·3n +1-32, 所以S n =(2n -1)·3n +1+34.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d =0,解得d =0或d =4,当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2.(2)当a n =2时,S n =2n ,显然2n<60n +800,此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n[2+(4n -2)]2=2n 2. 令2n 2>60n +800,即n 2-30n -400>0,解得n>40或n<-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41.综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.20.解: (1)证明:由已知,当n≥1时,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m ,所以{a n }是“H 数列”.(2)由已知得,S 2=2a 1+d =2+d.因为{a n }是“H 数列”,所以存在正整数m ,使得S 2=a m ,即2+d =1+(m -1)d ,于是(m -2)d =1.因为d<0,所以m -2<0,故m =1,从而d =-1.当d =-1时,a n =2-n ,S n =n (3-n )2是小于2的整数,n ∈N *.于是对任意的正整数n ,总存在正整数m =2-S n =2-n (3-n )2,使得S n =2-m =a m ,所以{a n }是“H 数列”,因此d 的值为-1.(3)证明:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”. 同理可证{c n }也是“H 数列”.所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.17.解:(1)由S n =3n 2-n 2,得a 1=S 1=1.当n≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.18.解:(1)当a =-4时,由f′(x)=2(5x -2)(x -2)x=0得x =25或x =2,由f′(x)>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞).故函数f(x)的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f′(x)=(10x +a )(2x +a )2x,a <0, 所以由f′(x)=0得x =-a 10或x =-a 2. 当x ∈⎝⎛⎭⎫0,-a 10时,f(x)单调递增;当x ∈⎝⎛⎭⎫-a 10,-a 2时,f(x)单调递减;当x ∈⎝⎛⎭⎫-a 2,+∞时,f(x)单调递增.易知f(x)=(2x +a)2x ≥0,且f ⎝⎛⎭⎫-a 2=0. ①当-a 2≤1,即-2≤a <0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a 2≤4时,即-8≤a <-2时,f(x)在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意. ③当-a 2>4时,即a <-8时,f(x)在[1,4]上的最小值可能在x =1或x =4时取得,而f(1)≠8,由f(4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f(x)在(1,4)上单调递减,f(x)在[1,4]上的最小值为f(4)=8,符合题意.综上有,a =-10.19.解:(1)证明:由已知得,b n =2a n >0,当n≥1时,b n +1b =2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f(x)=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2. 由题意知,a 2-1ln 2=2-1ln 2, 解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n·4n . 于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n×4n ,4S n =1×42+2×43+…+(n -1)×4n +n×4n +1,因此,S n -4S n =4+42+…+4n -n·4n +1=4n +1-43-n·4n +1=(1-3n )4n +1-43, 所以,S n =(3n -1)4n +1+49.。
专题21 数列解答题丨十年(2014-2023)高考数学真题分项汇编(解析版)(共84页)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1十年(2014-2023)高考真题分项汇编—数列解答题目录题型一:数列的概念和通项公式...............................................................1题型二:等差数列的定义与性质...............................................................9题型三:等比数列的定义与性质.............................................................12题型四:数列的求和..................................................................................13题型五:数列中的新定义问题.................................................................15题型六:数列中的证明问题.....................................................................45题型七:数列与其他知识的交汇.............................................................62题型八:数列的综合应用. (81)题型一:数列的概念和通项公式1.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.2.(2014高考数学湖南理科·第20题)已知数列{}n a 满足*+∈=-=N n p a a a nn n ,,111,(Ⅰ)若{}n a 是递增数列,且3213,2,a a a 成等差数列,求p 的值;(Ⅱ)若21=p ,且{}12-n a 是递增数列,{}n a 2是递减数列,求数列{}n a 的通项公式.【答案】(1)13p =(2)141(1)332nn n a --=+⋅解析:(I)因为{}n a 是递增数列,所以11nn n n n a a a a p ++-=-=。
2014年高考数学(理)试题分项版解析专题06数列(分类汇编)Word版含解析

1. 【2014高考北京版理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. 【2014高考福建卷第3题】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D3. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .4. 【2014辽宁高考理第8题】设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >5. 【2014重庆高考理第2题】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 369.,,D a a a 成等比数列6. 【2014天津高考理第11题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.7. 【2014大纲高考理第10题】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C .8. 【2014高考广东卷理第13题】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .9. 【2014高考安徽卷理第12题】数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.10. 【2014高考北京版理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大.【答案】8。
十年(2014-2023)高考数学真题分项汇编文科专题5 数列小题(文科)(解析版)

n 项和
Sn,公差
d≠0, a1 d
1 .记
b1=S2,
bn+1=Sn+2–S2n, n N ,下列等式不可能成立的是
( )
A.2a4=a2+a6
B.2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
解析:对于 A,因为数列an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得,
由 an
a1
n
1 d
0
可得 n
1
a1 d
,取
N0
1
a1 d
1 ,则当 n
N0
时, an
0,
所以,“an 是递增数列” “存在正整数 N0 ,当 n N0 时, an 0 ”;
若存在正整数 N0 ,当 n N0 时, an 0 ,取 k N 且 k N0 , ak 0 ,
假设 d
0 ,令 an
Sn =
1 2
An An+1 ×tan q Bn Bn+1 ,都为定值,所以 Sn+1 - Sn 为定值.故选 A.
3.(2022 高考北京卷·第 15 题)己知数列an 各项均为正数,其前 n 项和 Sn 满足 an Sn 9(n 1, 2,) .给
出下列四个结论:
①an 的第 2 项小于 3; ②an 为等比数列;
2a4 a2 a6 ,A 正确;
对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 ,
∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 .
∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年全国高考数学分类汇编-数列全国2014年高考数学(理科)分类汇编1(2014福建理)3.等差数列{a n}的前n项和S.,若a i 2,S3 12,贝V a6 ()A.8B.10C.12D.142(2014广西理)10.等比数列3”}中,a4 2,35 5,则数列{lg a…}的前8项和等于()A. 6 B . 5 C . 4 D . 33(2014广西文)8.设等比数列{a”}的前”项和为S n,若S2 3,S4 15,贝V S6 ()A. 31 B . 32 C . 63 D ・644(2014重庆文)2.在等差数列{a…}中,印2,a3 a5 10,则a7 ()A.5B.8C.10D.145(2014辽宁文理)8.设等差数列啣的公差为d, 若数列{2宀为递减数列,则(A. d 0B. d 0C. a-|d 0D. a1d 06(2014天津文)5.设a…是首项为a,,公差为1的等差数列,S n为其前n项和,若s, S2, S4,成等比数列,则a1=(A.2B.-2C. 1 D . 12 27(2014课标2文)(5)等差数列a n的公差为2,若a 2, 34, a 8成等比数列,则a 的前n 项和S.= () (A ) n n 1 ( B ) n n 18(2014重庆理)2.对任意等比数列{a n},下列说法 一定正确的是 ( ) A. 31,33,39成等比数列 B. a 2,a 3,a 6成等比数列成等比数列 D -a 3,a 6,a 9成等比数列9(2014安徽理)12.数列a n是等差数列,若311, 333, 355构成公比为q 的等比数列,贝y q _____________________ .10(2014安徽文)12.如图,学科网在等腰直角三 角形ABC 中,斜边BC 2迈,过点A 作BC 的垂线,垂足为 几;过点片作AC 的垂线,垂足为 A 2;过点A 作AC的垂线,垂足为A 3;…, 以此类推,设BA 31 , AA 1 32, A 1A 2 33,•…, A 5A 6 37,贝U 37.11(2014北京理)9.若等差数列a n满足a-i a 8 a90 , a 7 a io0 , 则当n _____________________(C )呼(D) n n 12~时a”的前n项和最大.12(2014广东理)13 .若等比数列a n的各项均为正数,且a0a” a g a>2 2e5,则ln a1 In a2In a2n_________ . ______13(2014广东文)13.等比数列a n的各项均为正数,且时 5 4 ,贝U Iog2 a1 Iog2a2 Iog2a3Iog2 a4 Iog2 a5 ___________________________________14(2014江苏文理)7.在各项均为正数的等比数列{a n}中,a2 1, a8 a6 2a4,则a6 的值是____15(2014江西文)14.在等差数列{a…}中,& i,公差为d,前n项和为{an},当且仅当n 8时S取最大值,则d 的取值范围___________ .16(2014天津理)(11)设a n是首项为&,公差为-1的等差数列,S n为其前n项和.若S0S4成等比数列,则a 的值为_______________ .17(2014课标2文)(16)数列a n满足a n 1,a2=2,贝H a i = __________【答案】CCCBC DAD 9. 1 10. 111. 816.仃.1全国2014年咼考数学(文史)分类汇编 1(2014重庆文)16.已知a n 是首项为1, 公差为2的等差数列,S n表示a n的前n 项和.(I )求 a n 及 S ;(H )设b n是首项为2的等比数列,公比q 满足 q 2色1 q S 0,求b n的通项公式 及其前n 项和T n.【点拨】⑴a 2n 1,S n 2;(n )由 q 2a 41 q S 0得 q 4 ,所以 b n22n1,T n 2(4n 1)2(2014重庆理)22.设a 1 1,0.1 .a : 2a n 2b (n N*)(1)若b 1,求a 2,a 3及数列{%}的通项公式;⑵ 若b 〔,冋:是否存在实数C 使得a 2nc a 2n 1对所有 n N*成立?证明你的结论.5n2【点拨】(1) a 1,a2 2,a3 5.2 1,& 1,猜想a n 1 1(可数归完成);(2)设函数f(x) x2 2x 2 1,令f(x) x 得不动点x 4.仿(1)得a1 1,a2 0,a3 2 1,用数学归纳法可证明:a2n 1 a2m. 事实上,1O当n 1 时,32 0 4 v2 1 a3显然成立.2o.假定当n k时,a2k : 32k 1成立,那么「"当n k 1 时,Qa2k 2 f (a2k 1) (a2k 1 1)21 1(a2k 2 1)2 (32k 1 1)21 (32k 2 1)2([ 1)2 1这就是说当n k 1时,a2k2 1 a2k 3也成立.3(2014浙江文)19、已知等差数列{a n}的公差d 0, 设{a n}的前n 项和为S n,a1 1,S2 S3 36.(1)求d及S n ;⑵求m,k (m,k N*)的值,使得i 3m 1 3m 2 L 3m k 65【点拨】(1) d 2,S n n2;⑵Q3m 2m 1, (k 1)(2m 1)冬严 2 654(2014浙江理)19.已知数列{3n}和{b n}满足a&L 3n( 2)s(n N ).若{a n}为等比数列,且 3 2,& 6 b又32k 3 f (32k 2) (32k 3 1)2(32k 2 1)2 11 43k2a(k 1)(2m k 1) 5 13 k 1 5 k 4 ... 2m k 1 13 m 5⑴求a n与b n;(2)设c a _L(n N).记数列{c n}的前n 项和为S n. ( i ) 求 S ; (ii )求正整数k ,使得对任意nN ,均有& 【点拨】(1)aa 2a 3 \2 ,a i a 2得 a 3268 .从而 q 2, a n a sqn 32n.由 a i a 2L a n( 2户 2 2)2【b n(n 1)(2) G 丄1吉(丄斗).所以a n t n 2n n n 1(i) S cia a L a 古》(分组裂项)(ii)Q^ ML 1 i)鳥 1)2",易见",C 2,C 3,C 4 0,当n 5寸,c n0. 可见S 4最大,即S 4 S n . k 4■5(2014 a n 13a n1 .(I)证明(U)证明: 【点拨】(I)在a n 1 3(『2),可见数列a 1是以3为公比,以a 1 3为首项 的等比数列.故a n 2贰1叮.(H)法1(放缩法)Q^尹课标2理)17.已知数列a n满足a=1, 1是等比数列,并求a n的通项公式; 丄1…+丄3a 1 a 2 a n2 -a n1 3a n 1中两边加2:a2 3n 1 1 2 1 2 1 L 2 1 1 1 32 1 1 33 1 13n 1 112 (本题用的是"加点糖定理")法2(数学归纳法)先证一个条件更強的结论20■假疋对于n 新命题成立,即1 3 1 3a 2 2 3n1 2天津文理)19.已知q 和n 均为给定的大于 1的自然数■设集合M 0,1,2丄,q 1,集合A xx X 1 X 2q L x!q n 1,x M ,i 1,2,L ,n(1) 当q 2 , n 3时,用列举法表示集合A ; (2) ^设 s,t ? A , s ai a 2q L a nq n 1,t b bq L bq n1,其中 a,b M , i 1,2,L ,n .证明:若 3nb ,则 s< t . 【点拨】(I )解:当q 2 , n 3时,M 0,1 ,2x 2 4x s ,x 酣弓卑,2,3为 x ^x 中^ x,x 2,X 30 0 0 0勺 10 0 1 1 0 1 0 1 0 1 1 0 10 01 1 11 a2 31 2 1 1 L 132 93a n L1a3 1氏1al13n0 ^1 2 3 2 2 1 1 a新命题成立.T,那么对于n一23 21al L 1a1al1al a1-a 1a3 1al3n3n3n6(2014 _ 2 3 2 4 3 5 4 1a2可得, A 0,12,3,4,5,6,7 .(H)证明:由 s,t?A , s a a 2q L a nq n 1, t bi bq L b nq n 1, Q,b Ms ta ib a 2 b ? q L an i b n i q n 2a nq n 1.q 1 q 1 q L q 1 q n 2 q n 17(2014四川文)19.设等差数列{a n}的公差为d ,点 (命)在函数f(x) 2x的图象上(nN ). (I)证明:数列⑹为等比数列;(H) 若& 1 ,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴 上的截距为2侖,求数列{a nb 2}的前n 项和S n.【点拨】(I) 丫亍2d…(H) f (x) 2xln2 , k 刀2勺n2 .切线方程y 2a2 2判n2(x a 2),依题设有a 2爲2爲a 2 2, b 24 . ^从a n bn2n 4n(等比差数列,乘公比、错位相减)得(3n 1)4n1 4$ 98(2014四川理)19.设等差数列{a n}的公差为d , 点®,b n)在函数f(x) 2x的图象上(nN *).(I) 若4 2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n}i 1,2丄,n 及an bn,可得q 1 1 q n 1q n 1 1 o.所以, s< t .的前n 项和S n;(2) 若 a 1,函数f(x)的图象在点(a 2,b 2)处的切线在X 轴 上的截距为2需,求数列©的前n 项和T n.【点拨】(1) Q4b 72a82a8 2b r2a7d 2. S n 23n ;(2) f (x) 2Xln2, k 切2Tn2 . 切线方程 y 2a2魯n2(x a 2),依题设有a 2爲2爲 比 2 , b24 .从而 b n 21(等比差数列,乘公比、错位相减)得T n2n2n29(2014上海文)23.已知数列满足3a n a n 1 3a n ,n N 1(1) 若322,83x,a 49,求x的取值范围;(2) 若{a n}是等比数列,且a m血,求正整数m 的最小值,以及m取最小值时相应{aj 的公比;(3) 若a 1,a 2,L ,a 100成等差数列,求数列 a 1,B 2,L ,9!00的公差的取值范围.⑵易见 an0,3a n a n 1 3a n3 q 3又am10k 1 qm1 (3)m1 m 8,m 8.q 宦10 -(3) ^①当 n 1 时,a 1, [a a 1d 3a13【点拨】(1)由a 2 a 3 3a 2 a 3 a 4 3a 3x [3,6];②当 2 n 100时,印 iga.! a n3am d 2器取 n1gd i99.综上島 d 2・10(2014上海理)23.已知数列{a n }满足1 3a n an 1 3环门 N 1 -(1)若 a 22,a 3x,a 49 ,⑵没a n是公比为q 等比数列,S n a 1 a> a j L a n,ig,S, 1 3S,n N求q 的取值范围;3(3)若a 1,a 2,L ,ak成等差数列,且a 32L a k1000,求正整数k 的最大值,以及k 取最大值 时相应数列a 1,a 2,L 耳的公差.【点拨】(1)由3:(2)由加 a n q 3a n,ai 1 [3S S a 1q 3S i ,1 q 2.下面证明任意的n 2,上式都成立. ①当q 1时,显然成立. ②当q 1时,显然成立.对于右不等式等价于 亡严 0.令f (x )—q 二X1),1 q 1 q f (x) q; l J q(q 3) 0,要使 f(x) 0,只需 f(1) 0即書0 q 2 .结合q /a 3 3a2 ”x [3,6]; a 4 3a3,结合 11 (1 q n) 1(1 q n 1)3 1 q 1 q3罟,其中左不等式11(2014山东文)(19)在等差数列{a n}中,已知公 差 d 2, a 2是a 1与a 4的等比中项. (I )求数列{a n}的通项公式;(1)nb ,求 T n.【点拨】(I ) 212 , an 2n(D ) h n (n 1)(分奇偶讨论求和)(n 为奇数)1 n (n 2)(为偶数)12(2014山东理)19.已知等差数列{a n}的公差为 2,前n 项和为S n,且S 1,S 2,S 4成等比数列.(I )求数列{a n}的通项公式;(H )令b ( 1厂盘,求数列{b n}的前n 项和T n.得到【点拨】(I ) a 1,a n2n 1;n取2n1 1000 k a i(2 1) dk(k 1) 2 2 2k 1)k 1999,从而当 k 1999时,q2 1999 -(II )设 b,记T nqa3k2S n3n 2 n(n ) b n ( 1叱1 2n 1 1](分奇偶讨论,最后合并)Tn2n;m ( 1)n.13(2014课标1文)17.已知a n是递增的等差数 列,a 2,a 4是方程X 25x 6 0的根。