车桥耦合振动分析
浅析桥梁结构的风-车-桥耦合振动问题

浅析桥梁结构的风-车-桥耦合振动问题1 引言:随着我国经济的飞速发展,大跨度桥梁越来越多,由于柔度很大,所以在风和上面的车辆作用下,会产生较大的变形和振动会对上面的行人以及桥梁产生较大的危险。
因而对风-车-桥耦合振动的研究也越来越重要。
本文介绍了目前国内和国外风-车-桥耦合振动研究的概况以及工作中尚存的有待进一步完善的问题,并指出了风-车-桥耦合振动问题未来发展趋势。
2 国内和国外风-车-桥耦合振动研究的概况以及工作中存在的问题2.1国内风车桥耦合振动研究概况我国学者以结构动力学为基础,分析了连续梁桥结构在汽车荷载作用下的动态性能,并运用计算机模拟、讨论了不同车速、车型情况下的桥梁动态响应变化,以此分析出影响结构动态性能的主要因素2]-[3]。
为简化分析的过程,在他们的研究中将桥梁简化为线性系统,略去了桥面和横梁的约束,在计算中采用设计中常用的截面换算法,将钢筋换算成混凝土,同时将截面折算成等面积的矩形,且仅考虑梁的弯曲振动,而不计梁的转动惯量和剪切变形的效应[4]。
2005年,王解军等采用2轴车辆分析模型与梁单元,建立了适应于大跨桥梁车辆振动计算的车桥耦合单元模型,基于功率谱密度函数生成随机路面粗糙度,分析阻尼对行车荷载作用下桥梁振动性能的影响[5]。
北方交通大学夏禾教授、阎贵平教授等研究了考虑车-桥-基础相互作用系统的结构动力可靠性问题桥梁结构在多种随机荷载作用下车桥系统动力可靠性问题、脉动风与列车荷载同时作用下桥梁的动力响应问题,分析了地震荷载对桥上列车运行平稳性的影响得到了许多有价值的结论[6]。
2.2国外风车桥耦合振动研究概况20世纪60;70年代西欧和日本开始修建高速铁路对桥梁动力分析提出了更高的要求同时电子计算机的出以及有限元技术的发展使得车桥振动研究具备了强有力的分析手段这极大地促进了车桥耦合振动研究的向前发展。
美国伊利诺理工学院的K.H.Chu等人最早采用复杂的车辆模型来分析铁路车桥系统的振动响应问题即将机车车辆简化为由车体、前后转向架、各轮对等部件组成各部件看成刚体在空间具有6个自由度之间通过弹簧与阻尼联系起来[7]。
车桥耦合振动分析

j 2 EI c , j ( ) l m
下一页
古典理论
x=vt P (t) EI,m y=(vt,t) X
移动解谐荷载作用模型
Y
L
x=vt
P o sinΩ t
EI,m y=(vt,t)
X
Y
L
下一页
特征:常系数线性微分方程。 主要问题:不考虑质量。 解答:如不考虑阻尼,可解得。 适用范围:车体质量与梁体质量相比很小的情况
P / P 0.6,Q 80kN
Q 1.0 P
P / P 0.6 P / P 0.65
容许限度 危险限度
回上目录
Q 1.2 P
a)常量移动力 简谐变化移动力过桥 移动 质量过桥 弹簧质量过桥 整车模型过桥 b)竖向振动 横向振动 空间振动
c)桥梁动力响应
车,桥耦合动力响应
d)试验
试验与理论(原型试验和现场实测)
用试验结果验证理 论模型的正确性,用验证过的、正确的理论模型进行仿真分 析,研究各种参数对振动影响,分析各种运营条件下列车、 桥梁的安全性。
研究方法(理论分析与试验的结合):
回上目录
返回
运动微分方程(偏微分方程):
y ( x, t ) y ( x, t ) y ( x, t ) EI m c ( x vt ) P(t ) 4 2 t x t
S(Ω)――功率谱密度 Ω ――空间频率 Av 、Aa 、Ac――粗糙度常数 Ωc、Ωs ――截断频率 k――系数,一般取为0.25
下一页
轨道不平顺特点
输入方法: 现场实测;功率谱密度函数模拟。 桥上线路轨道不平顺 < 线路; 明桥面< 道碴桥面 轨道不平顺对车桥动力分析的结果影响很大。
公路车辆与桥梁耦合振动分析研究的开题报告

公路车辆与桥梁耦合振动分析研究的开题报告
一、研究背景和意义
公路交通作为现代交通体系的重要组成部分,在人们的日常生活和经济发展中发挥着重要作用。
但长期以来,公路桥梁的安全问题一直备受关注,其主要原因在于桥梁的振动问题。
随着公路车辆的不断增多和速度的不断提高,极易引起桥梁的共振现象,损害桥梁结构,威胁行车安全。
因此,对公路车辆与桥梁耦合振动的研究具有重要的理论和实际意义。
二、研究目的
通过对公路车辆与桥梁耦合振动机理的分析和建模,探讨其振动现象的规律和性质,为公路桥梁的安全设计提供理论参考。
三、研究内容和方法
1. 建立公路车辆与桥梁耦合振动模型:研究路面、车辆、桥梁的耦合振动模型,考虑桥梁的结构特性及车辆的质量、速度、轮胎刚度等因素的影响。
2. 分析振动特性和规律:研究公路车辆与桥梁的振动频率、幅值、相位等特性,分析共振现象的原因及其规律。
3. 探究振动对桥梁结构的影响:研究桥梁结构在振动下的应变和变形特征,评估振动对桥梁结构的破坏性影响,并提出相应的安全防范措施。
4. 计算模拟和实验验证:通过数值计算和实验验证,检验模型的准确性,并对研究成果进行分析和总结。
四、预期成果
1. 建立公路车辆与桥梁耦合振动的数学模型,掌握其振动规律和特性。
2. 研究振动对桥梁结构的影响,提出相应的安全防范措施。
3. 与该领域前沿研究成果接轨,为相关领域的研究和应用提供理论参考和技术支持。
《2024年高速铁路列车—线路—桥梁耦合振动理论及应用研究》范文

《高速铁路列车—线路—桥梁耦合振动理论及应用研究》篇一一、引言随着高速铁路的快速发展,列车—线路—桥梁的耦合振动问题已成为该领域研究的重要课题。
这一问题的深入研究不仅对保障列车运行的安全性、平稳性和舒适性具有重要意义,同时也为高速铁路的进一步发展提供了理论支持。
本文将详细探讨高速铁路列车—线路—桥梁耦合振动的理论及其实用性研究。
二、高速铁路列车—线路—桥梁耦合振动理论(一)理论基础高速铁路列车—线路—桥梁耦合振动理论主要包括动力学理论、振动传递理论以及系统动力学模型等方面。
在列车运行时,其动力学行为与线路、桥梁的相互作用,形成了一个复杂的动力学系统。
在这个系统中,各组成部分的振动相互影响,形成耦合振动。
(二)系统模型为了更好地研究高速铁路列车—线路—桥梁的耦合振动,需要建立相应的系统模型。
该模型应包括列车、线路和桥梁的动态特性,以及它们之间的相互作用。
通过建立数学模型,可以更深入地了解耦合振动的机理和特性。
三、高速铁路列车—线路—桥梁耦合振动的应用研究(一)安全性保障通过深入研究高速铁路列车—线路—桥梁的耦合振动理论,可以有效地保障列车的运行安全性。
通过对系统的动态特性进行分析,可以预测可能出现的故障和危险情况,并采取相应的措施进行防范。
(二)平稳性和舒适性提升通过对高速铁路列车—线路—桥梁的耦合振动进行优化,可以提高列车的运行平稳性和乘客的舒适性。
这不仅可以提高乘客的满意度,同时也有助于提高铁路企业的形象和声誉。
(三)工程实践应用在工程实践中,应用高速铁路列车—线路—桥梁的耦合振动理论,可以对实际工程进行指导。
例如,在设计和施工阶段,可以通过该理论对线路和桥梁的布局、结构和材料进行优化选择,以减小振动对列车和乘客的影响。
同时,在运营阶段,可以通过实时监测和分析系统的振动情况,及时发现并处理潜在问题。
四、结论与展望(一)结论本文通过对高速铁路列车—线路—桥梁的耦合振动理论进行研究,探讨了其理论基础、系统模型以及实际应用等方面的内容。
公路桥梁与车辆耦合振动的研究

影 响效果 。
2 _ 2 车辆 模 型分析
Y i 一 代表 第 i 个 轮 组 在 车 辆运 动 中所 发 生 的 桥
梁 竖 向位移 ;
R i 一代 表 第i 个 轮组 在车 辆运 动 中 , 与桥梁 发 生 作 用所 存在 的不 平顺值 。
半 车模 型或者 单轮 车辆 模型 。线性 弹簧 和阻尼 器用 于 悬 架 模拟 、 线 性 弹 簧用 于 轮 胎 模 拟 , 所 有 的 质 量
都 在车 轴上 集 中。 随着计 算 机技 术 的发展 , 目前 多 运 用计算 机分 析技 术设 计空 间整 车振 动模 型 。
面 受 力 都 是确 定 的 , 那么 , 桥 梁 在 车 辆 负 荷 作用 的 影 响下 也存在 着确 定性 。
是 不容 忽视 的 。实 际操 作 中 , 车辆 在桥 面上 行驶 , 车 轮对 于桥 面 的作 用 力可 以是任 意位 置 的 。 而 且 如果 发 生 横 向振 型和 扭 曲振 型 的 时候 , 对 桥梁 动力 的影 响极 大 。因此 , 杆 系有 限元法 研究 桥梁 模 型 , 存在 着
凝 聚法 ” 对 自由度 进 行 有 效控 制 。 因此 而 形 成 一 定
的近 似性 。在 建立 杆 系模 型 的时 候 , 会将 桥 梁 结构
进行缩减 , 模 拟 为连 续 粱 或 者 简 支 梁 , 忽 略 扭 转 振
型 以及 侧 向振 型 的 存 在 。在 不 考虑 单 个 梁 的情 况 下 ,仅 限于对 车辆 沿 中心 线行 驶 的工 况进 行 模 拟 , 这 样 就可 以获得 精确 的结 果 。特 别是 对于跨 长 均匀
高速铁路简支钢桁梁桥的车桥耦合振动分析

高速铁路简支钢桁梁桥的车桥耦合振动分析高速铁路简支钢桁梁桥的车桥耦合振动分析摘要:高速铁路桥梁作为重要的交通基础设施之一,在车桥耦合振动问题上一直备受关注。
本文以高速铁路简支钢桁梁桥为研究对象,通过模态分析和数值计算探讨了车桥耦合振动现象及其对桥梁结构的影响,旨在为桥梁设计和安全评估提供参考依据。
1. 引言随着高速铁路的迅速发展,桥梁结构在铁路交通中的重要性日益凸显。
车桥耦合振动是高速铁路桥梁设计和运行中的一个重要问题,其影响着桥梁结构的稳定性和安全性。
因此,对车桥耦合振动进行深入研究,对于高速铁路桥梁的设计和运营具有重要的意义。
2. 研究方法本文采用有限元分析方法对高速铁路简支钢桁梁桥的车桥耦合振动问题进行分析。
首先,根据实际工程参数建立桥梁的有限元模型,并进行模态分析获取桥梁的固有频率和振型;然后,将列车载荷作为外荷载加载到桥梁模型上,通过数值计算方法分析车桥耦合振动现象。
3. 桥梁模型建立与模态分析根据高速铁路简支钢桁梁桥的实际参数,采用有限元软件对桥梁模型进行建立和模态分析。
模型中考虑了主梁、横梁、纵梁、支座等部件,并根据实际情况设定了较为真实的边界条件。
通过模态分析,得到了桥梁的前几阶固有频率和相应的振型。
4. 车桥耦合振动计算在桥梁模型基础上,将列车载荷作为外荷载加载到主梁上,并采用数值计算方法计算车桥耦合的振动情况。
在车桥耦合振动计算中,考虑了列车速度、轮轴间距、载荷频率等参数,并通过分析列车轮对对桥梁的作用力,计算桥梁的振动响应。
通过对不同速度下的车桥耦合振动进行分析,探讨了车桥耦合对桥梁结构的影响。
5. 结果与讨论通过模态分析和车桥耦合振动计算,得到了高速铁路简支钢桁梁桥的固有频率、振型和车桥耦合振动响应。
结果表明,车桥耦合振动会导致桥梁产生较大的动应力和挠度,从而对桥梁的结构稳定性和安全性产生较大影响。
此外,车桥耦合振动的频率也与桥梁自身的固有频率有关,需要在设计中充分考虑。
铁路混凝土斜拉桥车桥耦合振动分析

高速列 车 , “ 2 ( 动 +拖 +动 +动 +动 +动 +拖 +动 ) ” , 分
别计算 了高 速列车 以速 度 2 5 0 、 2 7 5 、 3 0 0 、 3 2 5 、 3 5 0 、 3 7 5 、 4 0 0、
4 2 0 k m / h通过该桥时 的车桥耦合空 间响应 , 包 括桥梁的竖向 位移与横 向振 幅、 车辆竖向横向加速度 、 轮对最大横 向力 、 轮
8 9
1 0
1 . 2 8 6 6 1 . 3 1 2 2
1 . 4 4 O 9
塔横弯 塔横弯
主梁 反 对 称 竖 弯 +塔 纵 弯
从表 1 可 以看 出 , 由于该 桥是混 凝土 箱梁斜 拉桥 , 该 桥
的横 向刚度较大 。而桥塔 高达到 1 2 1 m, 虽 两个桥 塔纵 向均 设 固定支座 , 纵向刚度 仍然较小 。故 结构 的 自振模态首 先表
对脱轨 系数 、 轮重减 载率 。表 2为桥 梁振 动响应 计算 结果 , 表 3为动车 、 拖 车振动 响应计算结果 。
动响应 求 出。进 一 步 可 以 计 算 出列 车 脱 轨 系数 、 斯 佩 林 ( S p e r l i n g ) 舒 适性 指标 等 , 详细的演引过程 , 请见文献 [ 2 ] 。
现为主梁竖弯 +纵飘 , 而第 二阶振 型才表现为 主梁及塔 对称 横弯 。
建模时 , 首先求 出结 构 自由振 动的频 率和振 型 , 然后利 用振 型 的正交性 , 把 互相藕联 的数 百个节 点运 动方程解 藕 , 使其
转化为互相独立 的模态方程 。 而根据 1 . 2条的假定 2 7个 自由度 的车辆系统可 以直接 建立车辆 系统 动力 方程 。将 车辆 方 程 、 桥梁 方 程组 合在 一
钢—混组合梁桥车桥耦合振动分析及局部疲劳研究

钢—混组合梁桥车桥耦合振动分析及局部疲劳研究钢—混组合梁桥车桥耦合振动分析及局部疲劳研究摘要:随着城市交通的发展和交通运输的日益繁忙,钢—混组合梁桥作为重要的城市交通枢纽,承担着巨大的交通压力。
然而,在长期的运营过程中,钢—混组合梁桥常常会遭受车辆荷载带来的振动和局部疲劳问题,这对桥梁的安全可靠性提出了挑战。
本文通过对钢—混组合梁桥车桥耦合振动以及局部疲劳的研究,旨在为提高桥梁的耐久性和减少维修成本提供理论支持。
1.引言钢—混组合梁桥是一种采用钢结构和混凝土结构相结合的桥梁形式。
其结构特点为钢负责承受水平荷载和高弯矩力,混凝土负责承受垂直荷载和低弯矩力。
这种桥型结构是传统混凝土桥和钢桥的结合,兼具了两种材料的优点。
然而,由于车辆荷载的作用,桥梁会产生振动,从而引发局部疲劳破坏。
因此,针对钢—混组合梁桥车桥耦合振动以及局部疲劳进行研究具有重要的现实意义。
2.车桥耦合振动分析车桥耦合振动是指运行车辆的振动会导致桥梁结构的振动,并且车桥振动与桥梁振动相互影响。
车桥耦合振动可以通过数学模型进行分析和预测。
通过建立动力学方程、运用傅里叶变换等方法,可以解决车桥耦合振动的问题。
实际工程中,可以利用有限元软件对桥梁进行车桥耦合振动分析,并可以预测车桥振动对桥梁结构的影响。
3.局部疲劳研究桥梁的局部疲劳指的是在特定的应力范围下,桥梁结构发生疲劳破坏的现象。
在钢—混组合梁桥中,常常会出现焊缝和连接件等局部部位的疲劳损伤。
局部疲劳的研究需要利用疲劳试验、应力分析等方法,以确定桥梁在不同工况下的局部疲劳特性。
通过分析局部断裂机理,可以提出针对性的改进措施,增强桥梁结构的抗疲劳能力。
4.耐久性改进措施为了提高钢—混组合梁桥的耐久性和减少局部疲劳破坏,可以采取以下措施:4.1 结构优化设计:通过优化桥梁的几何形状和剖面尺寸,减小悬臂长度和跨距,以降低桥梁的自振频率,从而减少车桥耦合振动。
4.2 车辆配置优化:调整交通流量和车辆速度,减少车辆对桥梁的荷载作用,降低桥梁的振动响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P / P 0.6,Q 80kN
Q 1.0 P
P / P 0.6 P / P 0.65
容许限度 危险限度
回上目录
Q 1.2 P
a)常量移动力 简谐变化移动力过桥 移动 质量过桥 弹簧质量过桥 整车模型过桥 b)竖向振动 横向振动 空间振动
c)桥梁动力响应
车,桥耦合动力响应
b)轨道桥梁还须考虑横向刚度(振幅)
回上目录
抗脱轨安全度 (车辆运行安全性标准)
脱轨系数Q/P 、减载率△P/P 和轮对横向力Q
《新建时速200公里客货共线铁路设计暂行规定》(铁建设函[2005]285号) 《铁道车辆动力学性能评定和试验鉴定规范(GB5599-85)》
桥上评判标准: Q 0.8 P
4 2
( x ) f ( x)dx f ( ), a b
a
b
解析解:振型分解法(分离变量法)
y ( x, t ) qi (t ) i ( x)
i 1
y
2 1 i x i vu b (t u ) sin F ( u ) sin e sin c (t u )du ml i 1 c l 0 l
回上目录
a)桥梁设计刚度与车辆运营平稳性和桥梁冲系 数有很大关系 ,但确定控制刚度设计标准主要 由平稳性控制 。
我国公路、铁路桥梁设计竖向挠度允许值
结构类型 混凝土梁 混 凝 土 梁 混 凝 土 钢桁架桥 道路类型 桥 (跨中) 桥(悬臂端) 桁架桥 公路 铁路 L/600 L/800 L/300 L/800 L/800 L/800 钢板梁桥 L/600 L/700 悬索桥 L/400
美国轨道5级谱模拟的随机不平顺样本
(不平顺波长范围为1-50m)
20 15 10 5 0 -5 0 -10 -15 距离/m 10 20 30 40 50 60 70 80 90
高低不平顺/mm
10
方向不平顺/mm
5 0 0 -5 -10 距离/m 10 20 30 40 50 60 70 80 90
回上目录
外部激励: 风荷载 地震荷载
列车以一定速度过桥的重力加载
列车在曲线桥上运行时的离心力荷载 内部自激激励: 轨道不平顺 ⊙ 车辆蛇行运动 ⊙ 轮对偏心
回上目录
轨道不平顺
下一页
轨道不平顺功率谱
轨道不平顺功率谱密度函数从统计上反映了轨面不平顺的波 长、振幅的信息。它是从大量的随机不平顺信号中提炼出其 特征信息而建立起来的。
f11 GabC11 f 22 GabC22 f 23 G ab C23 2 f 22 G ab C33
3 2
a,b-接触椭圆的长短轴,可根据赫芝接触理论公式 G-轮轨材料的合成剪切模量; f11、 f22-纵向、横向蠕滑系数; f23-旋转/横向蠕滑系数; f33-旋转蠕滑系数; 下一页 Cij-无因次的Kalker系数
d)试验
试验与理论(原型试验和现场实测)
用试验结果验证理 论模型的正确性,用验证过的、正确的理论模型进行仿真分 析,研究各种参数对振动影响,分析各种运营条件下列车、 桥梁的安全性。
研究方法(理论分析与试验的结合):
回上目录
返回
运动微分方程(偏微分方程):
y ( x, t ) y ( x, t ) y ( x, t ) EI m c ( x vt ) P(t ) 4 2 t x t
回上目录
a)运动微分方程:
4 y ( x, t ) 2 y( x, t ) y( x, t ) EI m c ( x vt) P( x, t ) 4 2 t x t d 2 y ( x, t ) dy( x, t ) P ( x, t ) ( M 1 M 2 ) g M 1 k1[ Z (t ) y( x, t )] c1[ Z (t ) ] dt dt dy( x, t ) M 2 Z (t ) k1[ Z (t ) y( x, t ) x Vt ] c1[ Z (t ) x Vt ] 0 dt
下一页
美国轨道不平顺功率谱密度函数表达式
高低不平顺
方向不平顺
2 kAv c S v 2 2 c 2
2 kAa c S a 2 2 c 2
轨道水平及轨距不平顺
2 4kAc c S c 2 2 c 2 2 s
车桥耦合振动理论
任课教师:顾萍 办公地址:同济大学桥梁馆401室 Tel(office):65983116-2401 Email:gupsh@
1、车桥振动研究所解决的主要问题⊙
2、车桥振动研究的历史及古典理论⊙
3、车桥振动的现代理论⊙ 4、车辆-桥梁系统的振动性能评价⊙ 5、车桥振动研究发展的趋势和展望⊙ 6、参考文献⊙
b)特征:变系数,只能数值解,能部分地反 映车体的动力响应
下一页
考虑簧上质量作用的车辆一系悬挂模型
x=vt M vg L
M k c m
EI,m y=(vt,t)
X
M1J 1 k c k c m m
回上目录
a)揭示车桥振动的一些内在规律和机理(如影 响因素等) b)应用:主要还是靠试验 c)局限性:只考虑简支梁,不涉及横向振动, 不考虑车体的动力响应等。
TR Tx2 Ty2
u—轮轨间的摩擦系数
N-法向荷载
TR—纵向力Tx和横向力Ty的合成蠕滑力
t 2 j 2 b
j 2 EI c , j ( ) l m
下一页
古典理论
x=vt P (t) EI,m y=(vt,t) X
移动解谐荷载作用模型
Y
L
x=vt
P o sinΩ t
EI,m y=(vt,t)
X
Y
L
下一页
特征:常系数线性微分方程。 主要问题:不考虑质量。 解答:如不考虑阻尼,可解得。 适用范围:车体质量与梁体质量相比很小的情况
下一页
古典理论
x=vt P o sinΩ t EI,m y=(vt,t) X
移动质量作用模型
x=vt M vg L
Y
L
EI,m y=(vt,t)
X
d2y P t Mg M 2 d t
2 y 2 y 2 y 2 Mg M 2 t 2 tx V 2 x V
构架人工蛇行波
问题: 车桥系统为时变系统;随机因素非常多。 结构自激系统理论: 结构负阻尼力作功使结构不断积聚能量,导致结构振动响 应不断增长;最大响应发生的概率与最大输入能量的概率相同; 车桥系统响应的随机性分析用输入能量的随机性分析代替。 激振源:构架实测蛇行波。 特点:以实测资料为基础,直接研究轨道和转向架构架的关系, 绕过轮轨相互作用。 评价:方法比较简单,主要特征参数来自实测数据,对实测资料 丰富的既有桥分析比较可靠,对实测资料较少的高速铁路等有 待可完善。
S(Ω)――功率谱密度 Ω ――空间频率 Av 、Aa 、Ac――粗糙度常数 Ωc、Ωs ――截断频率 k――系数,一般取为0.25
下一页
轨道不平顺特点
输入方法: 现场实测;功率谱密度函数模拟。 桥上线路轨道不平顺 < 线路; 明桥面< 道碴桥面 轨道不平顺对车桥动力分析的结果影响很大。
下一页
end
1.1冲击系数⊙ 1.2车辆抗脱轨安全度⊙ 1.3桥梁设计的刚度标准⊙ 1.4车辆过桥的平稳性⊙
回 2页
2.1 研究历史的过程⊙ 2.2 移动力过桥⊙ 2.3 移动质量过桥⊙ 2.4 移动弹簧质量过桥⊙ 2.5古典理论研究的主要成果与存在的问题⊙
显示图片
回 2页
3.1车桥振动激振源⊙
3.2计算模型⊙ 3.3动力平衡方程⊙ 3.4车桥振动的数值分析方法⊙
显示图片 回 2页
4.1 桥梁动力性能评价及标准⊙
4.2 车辆运行安全性评价标准
(脱轨系数Q/P 减载率△P/P和横向力P )
4.3 车辆运行平稳性评价标准⊙
1、Sperling指标(德国) ⊙
2、Janeway评价标准(美国、日本) ⊙
3、ISO2631评价法 (国际标准化值组织) ⊙
回 2页
5.1模型精确化;激振力的量化研究;复杂结 构动力响应分析。 5.2大跨度桥梁车、桥、风耦合振动的研究。 5.3车、桥、地震耦合振动安全性研究。 5.4车桥振动防噪、减振的控制研究。
回上目录
蠕滑理论
特点:考虑轮轨的蠕滑作用,建立详细的轮轨相互 作用模型,用解析方法研究曲线形车轮踏面与钢 轨之间的相对位置关系和相互作用力。
1. 蠕滑率 2. 蠕滑系数 3. 蠕滑力 4. Johnson-Vermeulon理论
下一页
蠕滑率
纵向蠕滑率:
1=
车轮纵向速度-钢轨纵 向速度
名义前进速度
蠕滑力
纵向蠕滑力Tx
横向蠕滑力Ty 自旋蠕滑力矩Mx
Tx f111 Ty f 22 2 f 23 3, sp M z f 23 2 f 33 3, sp
下一页
Johnson-Vermeulon理论
Tx f111 Ty f 22 2 f 23 3, sp
10
水平不平顺/mm
5 0 -5 -10 -15 距离/m 0 10 20 30 40 50 60 70 80 90
回上目录
车辆蛇行运动
ls
左轮滚动半径:
Amax y
a
2b
r1 r0 y