有机波谱-红外光谱之2005级
有机波谱解析-第三章_红外光谱

由于红外光谱吸收强度受狭缝宽度、温度和溶剂等因素影 响,故不易精确测定,在实际分析中,只是通过与羰基等强吸 收峰对比来定性研究。
谱带强度与振动时偶极矩变化有关,偶极矩变化愈 基团极性 大,谱带强度愈大;偶极矩不发生变化,谱带强度为0, 即为红外非活性。 电子效应
红外吸收强度 偶极距变化幅度 振动偶合
伸缩振动(
as
)两种形式。
弯曲振动:原子垂直于化学键方向的运动。又可以分
它们还可以细分为摇摆、卷曲等振动形式。
为面内弯曲振动()和面外弯曲振动( )两种形式,
+和-表示垂直于纸面方向的前后振动。
亚甲基的振动形式
三、分子振动与红外吸收峰的关系
理论上具有特定频率的每一种振动都能吸收相应 频率的红外光,在光谱图对应位臵上出现一个吸收 峰。实际上,因种种原因分子振动的数目与谱图中
纵坐标为: 百分透过率(%) 横坐标为: 波长(µ m)或波 数(cm-1)。
环戊烷
也可用文字形式表示为:2955cm-1(s)为CH2的反对称伸缩振动 (υasCH2),2870cm-1(m)为CH2的对称伸缩振动(υsCH2) 1458cm-1(m) 为CH2的面内弯曲振动(δ面内CH2),895cm-1(m)为CH2的面外弯曲振动 (面外CH2)
诱导效应大于共轭效应, C=O 蓝移至 1735 cm-1
三、空间效应
(1)空间位阻 破坏共轭体系的共平面性,使共
轭效应减弱,双键的振动频率蓝移(增大)。
CH(CH3)2 O O O
CH3 CH3
CH3 CH(CH3)2
CH3
1663cm-1
1686cm-1
1693cm-1
(2)环的张力:环的大小影响环上有关基 团的频率。
有机波谱学 红外光谱总结

总结当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
所以,红外红外光谱光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。
将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。
红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。
当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。
电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。
红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。
这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。
并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。
分子的振动形式可以分为两大类:伸缩振动和弯曲振动。
前者是指原子沿键轴方向的往复运动,振动过程中键长发生变化。
后者是指原子垂直于化学键方向的振动。
通常用不同的符号表示不同的振动形式,例如,伸缩振动可分为对称伸缩振动和反对称伸缩振动,分别用 Vs 和Vas 表示。
弯曲振动可分为面内弯曲振动(δ)和面外弯曲振动(γ)。
从理论上来说,每一个基本振动都能吸收与红外光谱仪其频率相同的红外光,在红外光谱图对应的位置上出现一个吸收峰。
实际上有一些振动分子没有偶极矩变化是红外非活性的;另外有一些振动的频率相同,发生简并;还有一些振动频率超出了仪器可以检测的范围,这些都使得实际红外谱图中的吸收峰数目大大低于理论值。
《有机波谱分析》课件

1
主要内容:
有机波谱分析 ①红外光谱 ②紫外光谱 ③核磁共振谱(包括1HNMR和13CNMR) ④质谱(包括色质联谱) 。
2
第一章 红外光谱
3
1.1 概述
•
红外光谱具有测定方法简便、迅速、所需
试样量少,得到的信息量大的优点,而且仪器
价格比核磁共振谱和质谱便宜,因此红外光谱
在结构分析中得到广泛的应用。
根据存在的化学键和官能团以及其他结构 信息,通过与标准谱图的对比推断分子结构, 进行定性分析。
5
3.定量分析 红外光谱适用于一些异构体和特殊体系的
定量分析,它们的红外光谱尤其是指纹区的光 谱各有特征,因此可利用各自特征吸收峰的强 度定量。 4.鉴定无机化合物
不要认为红外光谱只能鉴定有机物,它也是 鉴定无机物很好的手段之一,例如络合物的研 究,地矿科学的研究也普遍采用红外光谱。
双原子分子中原子是通过化学键联结起来 的,可以把两个原子看成是两个小球,把化学键 看作质量可以忽略不计的弹簧,如图1-3所示。它 们在平衡位置附近作简谐振动。
图1—3 双原子分子振动示意图
A—平衡状态;B—伸展状态
16
根据虎克定律双原子分子的频率公式为:
基团和化学键的特征频率取决于化学键 的强弱和化学键所连接的两个原子的质量。
• 中红外区(波长范围2.5-25μm)(4000-400cm-1 )
分子中原子振动的基频谱带在此区。所谓基频是分子从 基态跃迁到第一激发态的共振吸收频率。此区适用于有机化 合物的结构分析和定量分析。
• 远红外区(波长范围25—1000μm)(400-10cm-1 )
主要是分子的骨架弯曲振动及无机化合物重原子之间的 振动,金属有机化合物、金属络合物的伸缩和变角振动等, 主要用于研究分子结构及气体的纯转动光谱。各类化合物在 远红外区的吸收规律不如中红外区成熟。
有机波谱第二章红外光谱解读

1.3 分子偶极变化与峰强
1.3.1 峰强度表示方法 谱带强度单位为透射率(T)或吸收强度(A)。它们
可以用透过样品的出射光强度I与入射光强度I0表示:
T = I / I0 A = lg(I0 / I) = lg(1 / T)
在单色光和溶液的实验条件下,溶液的吸收可遵从BeerLambert定律:吸收度与溶液c和吸收池的厚度l成正比,即:
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
化学键键强越强(即键的力常数 K 越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
吸收频率随键的强度的增加而增加,随键连原子的质量增 加而减少。化学键力常数:单键—4~8 双键—8~12 叁 键—12~18
1.3.2决定峰强的因素
(1)振动过程中偶极矩的变化
基频吸收谱带的强度取决于振动过程中偶极矩变化的 大小。只有具有极性的键在振动过程中才出现偶极矩的变 化,在键周围产生稳定的交变电场才能与频率相同的辐射 电磁波作用,从而吸收相应能量使振动跃迁到激发态,得 到振动光谱。这种振动称为红外活性振动。
高极性键的振动,产生强度大的吸收谱带,如羟基、羰 基、硝基等强极性基团都具有很强的红外吸收谱带。
K为 化学键的力常数, 与键能和键长有关; m 为双原子的折合质 量.
2、质量和力常数的影响
有机化合物中个别的化学键可以近似地看作是双原子 分子,这样就可以利用双原子分子的振动公式来理解化学
键的振动:
v
=
1 2πc
(K / u)1/2 = 1303
K (m1 + m2) 1 / 2 m1m2
K:力常数,m1 和 m2 分别为二个振动质点的质量数。
有机波普解析 红外光谱

2.1引言 2.1.1红外光谱的发展
红外光谱(IR)
红外光谱(Infrared Spectroscopy,简称IR) 分子光谱 拉曼光谱(Raman)
表1-1 电磁波与光谱
辐射区域 X射线 波长 0.1~10nm 分子运动 内层电子跃迁 光谱类型 X射线谱
真空紫外 10~200nm
紫外 可见 红外 微波 无线电波 200~400nm 400~800nm 0.8~1000μ m 0.1~100cm 1~1000m
谱带的强度主要由两个因素决定:
一是跃迁的几率,跃迁的几率大,吸收峰也就强。 二是振动中偶极矩变化的程度。瞬间偶极矩变化越大, 吸收峰越强。 跃迁的几率与振动方式有关:
基频(V0→V1)跃迁几率大,所以吸收较强; 倍频(V0→V2)虽然偶极矩变化大,但跃率几率很低,使 峰反而很弱。
2.4 试样的调制
波数即波长的倒数,表示单位(cm)长度光中所含光波的 数目。 波长或波数可以按下式互换:
_
( cm-1)=1/λ(cm)=104/λ(μm)
在2.5μm 处,对应的波数值为: _ 4/2.5 (cm-1)=4000cm-1 = 10
一般扫描范围在4000~400cm-1。 波长在2.5~25μm,叫中红外区。 波长0·75~2·5μm叫近红外区。 波长在25~100μm叫远红外区。
2.1.3红外光谱谱图
邻二甲苯的红外光谱图
纵坐标是百分透过率T%。 百分透过率的定义是幅射光透过样品物质的百分率,即
T%= I/I0×100%, I 是透过强度,Io为入射强度。
横坐标:上方的横坐标是波长 λ,单位μm;下方的横坐 _ 标是波数(用 表示,波数大,频率也大),单位是 cm-1。
波谱解析课件之一:红外光谱

定要红外透明,一般是NaCl、KBr等盐晶 制成.。 (2).红外样品制备
第三节 影响振动频率的因素
影响振动吸收频率的因素有两大类:一 是外因,由测试条件不同所造成;二是 内因,由分子结构不同所决定。
1 外部因素 同一种化合物,在不同条件下测试,
之间0.75-1000 m(1 m = 10-4 cm)其中: 远红外 0.75-2.5 m 中红外 2.5-25 m 4000-400 cm-1 近红外 25-1000 m
红外光波的波长常用波数(cm-1)表示。
波数的定义:每1厘米范围内所含光波的 数目。波数 = 104/(m)。因此,2.5 m 波长,相当于104/2.5 cm-1,即:4000 cm1,而25 m相当于400 cm-1。
第四峰区(1500-600cm-1),除氢外的单键 (X-Y)伸缩振动及各类弯曲振动。又称指 纹区。
1 第一峰区(3700-2500 cm-1)
此峰区为X-H伸缩振动吸收范围。X代 表O、N、C,对应于醇、酚、羧酸、胺、 亚胺、炔烃、烯烃、芳烃及饱和烃类的 O-H,N-H,C-H伸缩振动。
A=cl
A=cl
式中为吸光系数,l为吸收池的厚度,c 为溶液的浓度。若c用mol浓度表示,则 用表示,为mo1吸光系数。或仅在 定量分析时使用。红外光谱用于结构分 析及结构鉴定时,均使用相对强度T % (或A),此时所指的强吸收带或弱吸收带 是对于整个光谱图的相对强度而言。
除常规红外光谱测试外,FT—IR的优点在于:
①扫描过程的每一瞬间测量都包括了分子振动 的全部信息,检测时间大大缩短,利于动态过 程和瞬间变化的研究。
②利用计算机储存,多次累加大大提高信噪比, 与气相色谱联用解决了痕量分析问题。
有机波谱分析第二章红外光谱

湖北理工学院医学院药学系
有机波谱分析第二章红外光谱
• 共轭与诱导效应共存时的情况:
湖北理工学院医学院药学系
有机波谱分析第二章红外光谱
• 2.空间效应 • (1)场效应 F 互相靠近的基团之间通过空间传递的效应。
– 只在立体结构上靠近的基团间才能产生。 – 同 e- 排斥↑→ K ↑→ν↑
湖北理工学院医学院药学系
➢ 8)与色谱等联用(GC-FTIR)具有强大的定性功能。
湖北理工学院医学院药学系
有机波谱分析第二章红外光谱
(五)红外光谱产生的条件
分子吸收辐射产生振转跃迁必须满足两个条件:
条件一:辐射光子的能量应与振动跃迁所需能量相等。 根据量子力学原理,分子振动能量Ev 是量子化的, 即
E V =(V+1/2)h
1000 m 25 cm 1
• 红外光的三个区域:
– (1)近红外区:13000~4000cm-1
• 研究分子中的O-H、N-H、C-H键的振动倍频与组频。
– (2)中红外区:4000~400cm-1
• 研究大部分有机化合物的振动基频。
– (3)远红外区: 400~25cm-1
• 研究分子的转动光谱以及重原子成键的振动等。
凡能用于鉴定原子基团存在并有较高强度的吸收峰-特征
峰。其对应的频率称为特征频率。
一个基团除了特征峰以外,还有许多其它振动形式的吸收
峰,这些相互依存而又相互可以佐证的吸收峰-相关峰。
(3)特征区与指纹区
4000-1330 cm-1 -特征区;
湖北理工学院医学院药学系
1330-400 cm-1 -指纹区
(3)n↑→ r ↑
→△E振动↑
湖北理工学院医学院药学系
有机化合物波谱解析汇报复习指导

5、近紫外区的波长为:
A、 4-200nm B、200-300nm C、200-400nm D、300-400nm
6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:
A、R带 B、B带 C、K带 D、E1带
A、甲基 B、邻位氢 C、间位氢 D、对位氢
20、判断CH3CH2CH2CO2H分子中1H核化学位移大小顺序
a b c d
A、 a>b>c>d B 、d>c>b>a C、 c>b>a>d D、 d>a>b>c
21、当采用60MHz频率照射时,对羟苯乙羟酸分子中苯环上的四个氢呈现两组峰,分别为6.84和7.88ppm,偶合常数为8 Hz,试问该两组氢核组成何种系统?
A自旋核加热过程
B自旋核由低能态向高能态跃迁的过程
C自旋核由高能态返回低能态,多余能量以电磁辐射形式发射出去
D高能态自旋核将多余能量以无辐射途径释放而返回低能态
2、请按序排列下列化合物中划线部分的氢在NMR中化学位移的大小
a b (CH3)3COHc CH3COO CH3d
3、二氟甲烷质子峰的裂分数和强度比是
8、某化合物的IR图谱如下,其分子式为C10H14O,试推断其可能的结构式。
9、有一化合物的红外谱中2870cm-1及926 cm-1的强吸收,无2960 cm-1,试判断该化合物的正确结构,并说出理由?
10、比较下列化合物的IR的特征吸收的异同。
11、红外光谱产生的条件是什么?吸收峰的强度由那些因素决定?
C 、Hm > Hp > Ho > CH3D、 Hm > Ho > Hp > CH3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. C=O
1900~1650cm-1,峰尖锐或稍宽,其强度都较大。 羰基的吸收一般为最强峰或次强峰。
变化规律:
酰卤:吸收位于最高波数端,特征,无干扰。
酸酐:两个羰基振动偶合产生双峰,波长位移60~80 cm-1。
酯:脂肪酯--~1735 cm-1
仲酰胺:3200cm-1 附近出现一条谱带 叔酰胺:无吸收
3. C-H 烃类:3300~2700 cm-1范围,3000 cm-1是分界线。
不饱和碳(三键、双键及苯环)>3000 cm-1 饱和碳(除三元环外)<3000 cm-1
炔烃:~3300 cm-1,峰很尖锐 烯烃、芳烃:3100~3000 cm-1 饱和烃基:3000~2700 cm-1,四个峰
谱带为中等强度吸收或弱吸收。干扰少,容易识别。
1. C≡C
2280~2100cm-1 乙炔及全对称双取代炔在红外光谱中观测不到。
2. C≡N
2250~2240cm-1,谱带较 C≡C 强。 C≡N 与苯环或双键共轭,谱带向低波数位移 20~30cm-1。
2.2.3.第三峰区(2000-1500cm-1)
+
+
+ +
C
C
C
C
剪式振动(δs)
面内摇摆振动(ρ) 面外摇摆振动(ω)
扭式振动(τ)
面内
面外 弯曲振动只改变键角,不改变键长
值得注意的是:不是所有的振动都能引起红外吸收,
只有偶极矩(μ)发生变化的,才能有红外吸收。
H2、O2、N2 电荷分布均匀,振动不能引起红外吸收。 H―C≡C―H、R―C≡C―R,其C≡C(三键)振动
力常数 k(N.cm-1)
4.5
波数范围 (cm-1) 700~1200
C=C
0.134
610.9
9.6
1620~1680
C≡C
0.116
836.8
15.6
2100~2600
一些常见化学键的力常数如下表所示:
键 型 O H N HC HC HC HCN CC CO CC CO CC
k/ N . c m - 17 . 76 . 45 . 95 . 1 4 . 81 7 . 7 1 5 . 61 2 . 19 . 65 . 44 . 5
2.1.3 红外光谱的表示方法
红外光谱是研究波数在4000-400cm-1范围内不同 波长的红外光通过化合物后被吸收的谱图。谱图以波 长或波数为横坐标,以透光度为纵坐标而形成。
透光度以下式表示: T% I 100% I0
I:表示透过光的强度; I0:表示入射光的强度。
横坐标:波数(v )400~4000 cm-1;表示吸收峰的位置。
合质量越小,振动频率越大,吸收峰将出现在高波数 区(短波长区);反之,出现在低波数区(高波长区)
结论:
产生红外光谱的必要条件是:
1. 红外辐射光的频率与分子振动的频率相 当,才能满足分子振动能级跃迁所需的能 量,而产生吸收光谱。
2. 必须是能引起分子偶极矩变化的振动才能 产生红外吸收光谱。
2.2 各类有机化合物的红外特征吸收
第二章 红外光谱
可编辑ppt
1
2.1 基本原理
2.1.1波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
2.1.2 近红外、中红外和远红外
波段名称 近红外 中红外 远红外
波长 μ 0.75—2.5 2.5-25
25-1000
波数(cm-1) 13300-4000
4000-400 400-10
不饱和酸酯或苯甲酸酯--低波数位移约20 cm-1
羧酸:~1720 cm-1
若在第一区约 3000 cm-1出现强、宽吸收,可确认羧基 存在。
醛:在2850~2720 cm-1 范围有 m 或 w 吸收,出现1~2条谱
带,结合此峰,可判断醛基存在。
酮:唯一的特征吸收带
酰胺:1690~1630 cm-1 ,缔合态约 1650 cm-1 伯酰胺:~1690 cm-1(Ⅰ) ,1640 cm-1(Ⅱ) 仲酰胺:~1680 cm-1(Ⅰ),1530 cm-1(Ⅱ),
羧酸:3300~2500cm-1,中心约3000cm-1,谱带宽
2 . N-H
胺类: 游离——3500~3300cm-1
缔合——ቤተ መጻሕፍቲ ባይዱ收位置降低约100cm-1 伯胺:3500,3400cm-1,(吸收强度比羟基弱) 仲胺:3400cm-1(吸收峰比羟基要尖锐) 叔胺:无吸收
酰胺:伯酰胺:3350,3150cm-1 附近出现双峰
折合质量μ:两振动原子只要有一个的质量↓, μ↓,(v)↑,红外吸收信号将出现在高波数区。
CH
NH OH
2800-3000cm-1 3000-3600cm-1
分子振动频率习惯以v (波数)表示:
v 1 k c 2 c
由此可见:v (v)∝ k,v (v)与μ成反比。 吸收峰的峰位:化学键的力常数k越大,原子的折
纵坐标:透过率(T %),表示吸收强度。T↓,表明吸 收的越好,故曲线低谷表示是一个好的吸收带。
2.1.4 分子振动与红外光谱 1.分子的振动方式 (1)伸缩振动:
沿轴振动,只改变键长,不改变键角
C
对称伸缩振动(νs) (2853 cm-1)
C
不对称伸缩振动(vas) (2926 cm-1)
(2)弯曲振动:
2.2.1.第一峰区(4000-2500cm-1)
X-H 伸缩振动吸收范围。X代表O、N、C、S, 对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃 及饱和烃类的 O-H、N-H、C-H 伸缩振动。
1. O-H 醇与酚:游离态--3640~3610cm-1,峰形尖锐。
缔合--3300cm-1附近,峰形宽而钝
-CH3:~2960(s)、~2870 cm-1(m) -CH2-:~2925(s)、~2850 cm-1(s) >CH-:~2890 cm-1
醛基:2850~2720 cm-1,两个吸收峰
巯基:2600~2500 cm-1,谱带尖锐,容易识别
2.2.2.第二峰区(2500-2000 cm-1)
叁键、累积双键(-C≡C-、-C≡N、 >C=C =C<、 -N=C=O、-N=C=S)
也不能引起红外吸收。
2.振动方程式(Hooke定律)
振
1
2
k
m1.m2
m1 m2
式中:k — 化学键的力常数,单位为N.cm-1
μ — 折合质量,单位为 g
力常数k:与键长、键能有关:键能↑(大),键长
↓(短),k↑。
化学 键
C―C
键长 (nm)
0.154
键能 (KJ mol-1)
347.3