有机波谱分析知识点
有机波谱分析知识点

名词解析发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。
助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。
红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。
蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。
增色效应(hyperchromic effect):使吸收强度增加的作用。
减色效应(hypochromic effect):使吸收强度减弱的作用。
吸收带:跃迁类型相同的吸收峰。
指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
但该区中各种官能团的特征频率不具有鲜明的特征性。
共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。
诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。
核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。
化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。
弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。
分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。
有机波谱分析名词解释

第五章红外光谱名词解释:1.伸缩振动ν:原子沿着键的轴线的伸展和收缩,振动时键长变化,键角不变。
(对称振动νas,不对称振动νas,骨架振动)弯曲振动δ:原子垂直键轴方向的振动,振动时键长不变,键角变化。
(面内弯曲振动(剪式振动、平面摇摆振动);面外弯曲振动(扭曲振动、非平面摇摆振动))总结:νas >νs >δ♣2.IR选律:在红外光的作用下,只有偶极矩(∆μ)发生变化的振动,即在振动过程中∆μ≠0时,才会产生红外吸收。
红外“活性”振动:在振动过程中∆μ≠0,其吸收带在红外光谱中可见。
红外“非活性”振动:偶极矩不发生改变(∆μ=0)的振动,这种振动不吸收红外光,在IR谱中观测不到。
3.自由度:基本振动的数目称为振动自由度。
4.振动偶合效应:当两个或两个以上相同的基团连接在分子中同一个原子上时,其振动吸收带常发生裂分,形成双蜂,这种现象称振动偶合5.特征频率或特征吸收谱带:某些官能团有比较固定的吸收频率,可以作为鉴定官能团的依据。
6.相关峰:每个官能团都有几种振动方式,能产生红外吸收光谱的每种振动一般产生一个相应的吸收峰。
习惯上把这些相互依存又可相互佐证的吸收峰。
7.指纹区:<1333cm-1的频率区域,主要是各种单键(如C-C,C-N,C-O等)的伸缩振动与各种弯曲振动吸收区。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。
简答题:♣1.红外光谱的原理:分子吸收红外光引起的振动能级和转动能级跃迁而产生的信号。
(记忆:振、转光谱——红外光谱)♣2.红外光谱的产生条件:当红外光的频率恰好等于基团的振动频率时,分子能吸收该频率的红外光,即形成IR。
①振动分为:伸缩振动(键长)、弯曲振动(键角)②频率:化学键力常数k③红外光被吸收条件:νIR = ν振动;Δμ振动≠0 Δμ越大,吸收越强。
3.红外光谱表示方法:用仪器按照波数(或波长)记录透射光强度(或吸收光强度)→红外光谱图横坐标:波数(cm-1)或波长(μ m)纵坐标:透光率(T/%)或吸光度(A)7.理论上,每个振动自由度在红外光谱区均产生一个吸收峰,但实际的红外谱图中峰的数目比自由度少?因为:(1)有偶极矩变化的振动才会产生红外吸收,无瞬间偶极矩变化的振动则不出现红外吸收。
有机化合物的波谱分析

第七章有机化合物的波谱分析(一)概述研究或鉴圧一个有机化合物的结构,需对该化合物进行结构表征。
其基本程序如下: 分离提纯一物理常数测左一元素分析一确立分子式一确泄其可能的构适式(结构表 征(参见 P11-12)(1)结构表征的方法传统方法:(化学法)① 元素左性.泄量分析及相对分子质量测泄 —— 分子式:② 官能团试验及衍生物制备——分子中所含官能团及部分结构片断: ③ 将部分结构片断拼凑 —— 完整结构; ④ 查阅文献,对照标准样,验证分析结果。
特点:需要较多试样(半微量分析,用样虽为10-100mg ),大虽:的时间(吗啡碱,1805- 1952年).熟练的实验技巧,高超的智慧和坚韧不拔的精神。
缺点:①分子有时重排,导致错误结论;② P 及一C=C 一的构型确定困难。
波谱法:① 质谱(最好用元素分析仪验证)——分子式:② 各种谱图(UV 、IR 、NMR. MS ) —— 官能团及部分结构片断; ③ 拼凑——完整结构; ④ 标准谱图——确认。
特点:样品用量少(v30mg ),不损坏样品(质谱除外),分析速度快,对'C 及一C=C 一的 构型确左比较方便。
光谱法已成为有机结构分析的常规方法。
但是化学方法仍不可少,它与光谱法相辅相成, 相互补充,互为佐证。
(2)波谱过程分子运动:平动、振动、转动、核外电子运动等9量子化的(能量变化秘续)A 每个分子中只能存在一定数量的转? 动.振动、电子跃迁能级波谱过程可表示为:有机分子+电磁波选择性吸收 仪器记录用电磁波照射有机分子时, 分子便会吸收那些与分子内 的能级差相当的电磁波,引 起分子振动、转动或电子运 动能级跃迁,即分子可选择 性地吸收电磁波使分子内能 提高用仪器记录分子对不 同波长的电磁波的吸收情 况,就可得到光谱。
不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。
其定义为: 当一个化合物衍变为相应的绘后,与其同碳的饱和开链桂比较,每缺少2个氢为 1个不饱和度。
有机波谱知识点总结

有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。
有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。
本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。
一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。
红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。
2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。
红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。
3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。
此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。
二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。
紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。
2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。
紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。
3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。
此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。
三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。
质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。
有机波谱分析要点例题和知识点总结

有机波谱分析要点例题和知识点总结一、有机波谱分析概述有机波谱分析是研究有机化合物结构的重要手段,它主要包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振(NMR)和质谱(MS)等技术。
通过对这些波谱数据的解析,可以确定有机化合物的分子结构、官能团种类、化学键的性质等信息。
二、红外光谱(IR)(一)原理红外光谱是基于分子振动和转动能级的跃迁而产生的吸收光谱。
不同的官能团在特定的波数范围内会产生特征吸收峰。
(二)要点1、官能团的特征吸收峰例如,羰基(C=O)在 1700 1750 cm⁻¹有强吸收峰;羟基(OH)在 3200 3600 cm⁻¹有宽而强的吸收峰。
2、影响吸收峰位置的因素包括诱导效应、共轭效应、氢键等。
(三)例题例 1:某化合物的红外光谱在 1720 cm⁻¹有强吸收峰,可能含有什么官能团?答案:羰基(C=O)。
例 2:一个化合物在 3400 cm⁻¹有宽而强的吸收峰,在 1050 1100 cm⁻¹有吸收峰,推测其结构。
答案:可能含有羟基(OH)和醚键(COC)。
三、紫外可见光谱(UVVis)(一)原理基于分子中价电子的跃迁而产生的吸收光谱。
(二)要点1、生色团和助色团生色团如羰基、双键等能在紫外可见区域产生吸收;助色团如羟基、氨基等能增强生色团的吸收。
2、影响吸收波长的因素包括共轭体系的大小、取代基的性质等。
(三)例题例 1:某化合物在 250 nm 处有强吸收,可能的结构是什么?答案:可能含有共轭双键。
例 2:比较两个化合物的紫外吸收波长,一个有苯环,一个有苯环和一个羟基取代。
答案:含羟基取代的化合物吸收波长可能更长。
四、核磁共振(NMR)(一)原理利用原子核在磁场中的自旋能级跃迁产生的吸收信号。
(二)要点1、化学位移不同环境的氢原子或碳原子具有不同的化学位移值,可用于判断官能团的位置。
2、耦合常数相邻氢原子之间的相互作用导致峰的分裂,耦合常数可提供关于分子结构的信息。
第八章有机化合物的波谱分析

1H核的I=1/2,当它围绕自旋轴转动时就产生了磁场,
因质子带正电荷,根据右手定则可确定磁场方向。
氢核在外磁场中的两种取向示意图 ΔE与外磁场感应强度(B0)成正比,如下图及关系式 所示:
图 8-6 质子在外加磁场中两个能级与外磁场的关系
h E B 0 h 2
B 0 (8-4) 2
式中:γ称为磁旋比,是核的特征常数,对1H而言, 其值为2.675×108A·m2·J-1·s-1;h为Plank常量;ν无线电 波的频率。
因为只有吸收频率为ν的电磁波才能产生核磁共振, 故式(8-4)为产生核磁共振的条件。 ⑵核磁共振仪和核磁共振谱
被测样品溶解在CCl4、CDCl3、D2O等不含质子的溶 剂中,样品管在气流的吹拂下悬浮在磁铁之间并不停的旋 转,使样品均匀受到磁场作用。
化学键类型
伸 缩 振 动
-N-H sp C-H sp2 C-H sp3 C-H sp2 C-O sp3 C-O
化学键类型
特征频率/cm-1(化合物类型) 1680~1620(烯烃) 1750~1710(醛、酮) 1725~1700(羧酸) 1850~1800,1790~1740(酸酐) 1815~1770(酰卤) 1750~1730(酯) 1700~1680(酰胺) 1690~1640(亚胺、肟) 1550~1535,1370~1345(硝基化合物) 2200~2100(不对称炔烃) 2280~2240(腈)
低场
高场
外加磁场 B0
因而,质子核磁共振的条件应为:
B实 B 0(1 ) 2 2
(8-6)
对质子化学位移产生主要影响的屏蔽效应有两种: ①核外成键电子的电子云密度对所研究的质子产生的 屏蔽作用,即局部屏蔽效应。 ②分子中其它质子或基团的核外电子对所研究的质子 产生的屏蔽作用,即远程屏蔽效应(磁各向异性效应)。 综上所述,不同化学环境的质子,受到不同程度的屏 蔽效应,因而在核磁共振谱的不同位置出现吸收峰,这种 峰位置上的差异称为化学位移。
有机化学第11章 波谱(红外)

m 为成键原子的质量;k 为化学键的力常数
说明:1)k愈大,振动波数亦愈大。而化学键的键能越能大小顺序: C─C< C=C< C≡C
所以,C—C吸收出现在较低的波数区,1200~700cm-1, 而C=C在1700~1450 cm-1, C≡C在2300~2100cm-1。
9、酯
丁酸乙酯的红外光谱
C=O伸缩振动
C-O伸缩振动
-C-H伸缩振动
2)当两个振动原子中有一个为氢原子时,则因为 氢原子的质量很小,m1•m2/(m1+m2)就很小,振动频率或 波数就大。
如C-H,O-H,N-H键的伸缩振动吸收出现在高波数区。
3)不同分子中相同原子形成相同的化学键时,由
于k、μ相同,故σ相同。
四、 IR的解析 IR的解析主要是依据一些基团在相对固定的波数(或频 率)存在特征吸收峰来鉴定有机物,如在1700cm-1处有强 吸收峰,说明该有机物中可能存在羰基。
O-H在3400左右有一个宽的缔和峰,稀释后宽峰消失, 同时在3600出现一尖峰 烯烃、炔烃、苯中不饱和C-H 吸收在3000以上, 炔氢在3300cm-1,烯氢在3050~3100cm-1; 芳氢在3100cm-1。 烷烃分子中饱和C-H 吸收在2800 — 3000(低于3000) 醛基中C-H在2720和2820有两个峰 羰基吸收在1720左右有一强吸收峰。 苯环在1450 —1600处有4个峰,通常可看到3个
液态时 1715cm-1
2)分子中含有吸电子基团时,使官能团的吸收峰向高波 数区移动。
如:
O
O
O
RCH
RCCl
RCNH2
羰基伸缩振动 1730cm-1 1800cm-1 1700~1640cm-1
有机波谱分析总结

有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。
本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。
一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。
通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。
有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。
二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。
通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。
红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。
2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。
质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。
3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。
通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。
核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。
4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。
紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。
三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。
结构鉴定法常用于核磁共振谱和质谱。
2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解析发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。
助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。
红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。
蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。
增色效应(hyperchromic effect):使吸收强度增加的作用。
减色效应(hypochromic effect):使吸收强度减弱的作用。
吸收带:跃迁类型相同的吸收峰。
指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
但该区中各种官能团的特征频率不具有鲜明的特征性。
共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。
诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。
核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。
化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。
弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。
分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。
基峰:质谱图中表现为最高丰度离子的峰。
自旋偶合:是磁性核与邻近磁性核之间的相互作用。
是成键电子间接传递的,不影响磁性核的化学位移。
麦氏重排(McLafferty rearrangement):具有不饱和官能团 C=X(X为O、S、N、C 等)及其γ-H原子结构的化合物,γ-H原子可以通过六元环空间排列的过渡态,向缺电子(C=X+ )的部位转移,发生γ-H的断裂,同时伴随 C=X的β键断裂,这种断裂称为麦氏重排。
自旋偶合:是磁性核与邻近磁性核之间的相互作用。
是成键电子间接传递的,不影响磁性核的化学位移。
自旋裂分:因自旋偶合而引起的谱线增多现象称为自旋裂分。
1.紫外光谱的应用(1).主要用于判断结构中的共轭系统、结构骨架(如香豆素、黄酮等)(2).确定未知化合物是否含有与某一已知化合物相同的共轭体系。
(3).可以确定未知结构中的共轭结构单元。
(4).确定构型或构象(5).测定互变异构现象2.分析紫外光谱的几个经验规律(1).在200~800nm区间无吸收峰,结构无共轭双键。
(2).220~250nm,强吸收(εmax在104~2⨯104之间),有共轭不饱和键(共轭二烯,α,β-不饱和醛、酮)(3).250~290nm,中等强度吸收(εmax 1000~10000) ,通常有芳香结构。
(4).250~350nm,中低强度吸收 (ε10~ 100),且200 nm以上无其他吸收,则含有带孤对电子的未共轭的发色团。
(羰基或共轭羰基)(5).有多个吸收峰,有的在可见区,则结构中可能有长链共轭体系或稠环芳香发色团。
如有颜色,则至少有4~5个共轭的发色团。
(6).利用溶剂效应、pH影响:增加溶剂极性:K带红移、R带紫移,εmax变化大时,有互变异构体存在。
pH变化:碱化后谱带红移,酸化后又恢复,则有酚羟基、烯醇存在;酸化后谱带紫移,有芳胺存在。
(2).红外光谱原理分子中键的振动频率:分子的固有性质,它随着化学键力常数(K)的增大而增加,同时也随着原子折合质量(μ)的增加而降低3.红外光谱在结构解析中的应用(1).确定官能团(2).确定立体化学结构的构型(3).区分构象异构体(4).区分互变异构体与同分异构体4.1H-NMR(氢核磁共振)(1).化学位移的定义(2).常见结构类型的质子化学位移Ar-H C=CH ≡CH RH CH CH2 CH37.28 5.28 2.88 ~1 1.55 1.20 0.87-COOH -CHO ArOH ROH (RNH2)10~12 9~10 4 ~8 0.5 ~55.核磁共振(NMR spectroscopy)—碳谱(13C-NMR)(1).为结构解析提供的信息化学位移(1~250);分辨率高,谱线简单,可观察到不含质子基团;驰豫时间对碳谱是重要参数,可识别季碳,可给出化合物骨架信息。
缺点:测定需要样品量多,测定时间长,而吸收强度一般不代表碳原子个数,与种类有关。
(2).常见一些基团的化学位移δ值①.脂肪C: δ<50②.连杂原子C: C-O, C-N, C-S δ:50-100③.C-OCH3: δ 55;④.糖端基C : δ 95-105⑤.芳香碳,烯碳: δ 98-160⑥.连氧芳碳: δ 140-165⑦.C=O: δ 168-220(3).影响化学位移因素①.碳的杂化方式:δsp3 < δ sp < δ sp2②.碳核的电子云密度:电子云密度↑,↓δ高场位移③.取代基的诱导效应和数目:取代基数目↑, 影响↑,↑δ,诱导效应随相隔键的数目增加而减弱; 随取代基电负性↑,δ↑④.γ效应(γ-旁式,γ-gauch)效应:较大基团对γ-位碳上的氢通过空间有一种挤压作用,使电子云偏向碳原子,使碳化学位移向高场移动,这种效应称为γ-效应。
其中γ-顺效应更强。
⑤.共轭效应:与双键共轭,原双键端基 C2 ↓δ,内侧C1 ↑δ,与羰基共轭, C=O的↓δ⑥.分子内部作用:分子内氢键使C=O的↑δ6.质谱在有机化合物结构测定中的应用(1).测定正确的分子量(2).推断分子式(3).已知化合物的结构鉴定(4).未知化合物的结构鉴定第五章综合解析(第1-3节)1.综合解析中常用的谱学方法①.13C-NMRa.判定碳原子个数及其杂化方式b.根据DEPT谱判定碳原子的类型c.根据化学位移值判定羰基的存在与否及其种类d.根据化学位移值判定芳香族或烯烃取代基的数目并推测取代基的种类②.1H-NMRa.根据积分曲线的数值推算结构中质子个数b.根据化学位移值判定结构中是否存在羧酸、醛、芳香族、烯烃和炔烃质子c.根据化学位移值判定结构中与杂原子、不饱和键相连的甲基、亚甲基和次甲基的存在与否d.根据自旋-自旋偶合裂分判定集团的连接情况e.根据峰形判定结构中活泼质子的存在与否③.IRa.判定结构中含氧官能团的存在与否b.判定结构中含氮官能团的存在与否c.判定结构中芳香环的存在与否d.判定结构中烯烃、炔烃的存在与否和双键的类型④.MSa.根据准分子离子峰判定分子量b.判定结构中氯、溴原子的存在与否c.判定结构中氮原子的存在与否d.简单的碎片离子可与其他图谱所获得的结构片段进行比较2.结构解析的过程(1).分子式的推断①.碳原子个数的推断②.质子个数的推断③.氧原子个数的推断④.氮原子个数的推断⑤.卤素存在与否的判定⑥.硫、磷存在与否的判定⑦.不饱和度的计算3试述核磁共振产生的条件是什么?答(1)自旋量子数I≠0的原子核,都具有自旋现象,或质量数A或核电荷数二者其一为奇数的原子核,具有自旋现象。
(2)自旋量子数I=1/2的原子核是电荷在核表面均匀分布的旋转球体,核磁共振谱线较窄,最适宜于核磁共振检测,是NMR研究的主要对象。
4 什么是K带吸收?什么是R带?答(1)共轭非封闭体系烯烃的π→π*跃迁均为强吸收带,ε≧104,称为K带吸收。
(2)n→π*跃迁λmax270-300nm,ε﹤100,为禁阻跃迁,吸收带弱,称R带。
1 什么是氮规则?能否根据氮规则判断分子离子峰?答:(1)在有机化合物中,不含氮或含偶数氮的化合物,分子量一定为偶数(单电荷分子离子的质核比为偶数);含奇数氮的化合物分子量一定为奇数。
反过来,质核比为偶数的单电荷分子离子峰,不含氮或含偶数个氮。
(2)可以根据氮规则判断分子离子峰。
化合物若不含氮,假定的分子离子峰质核比为奇数,或化合物只含有奇数个氮,假定的分子离子峰的质核比为偶数,则均不是分子离子峰。
5红外光谱分为哪几个区及各区提供哪些结构信息?答:红外光谱分四个区:(1)第一峰区(3700-2500cm-1):此峰区为X-H伸缩振动吸收范围。
X代表O,N,C 对应于醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃及饱和烃类的O-H,N-H,C-H伸缩振动。
(2)第二峰区(2500-1900cm-1):三键,累积双键及B-H,P-H,I-H,Si-H等键的伸缩振动吸收谱带位于此峰区。
谱带为中等强度吸收或弱吸收。
(3)第三峰区(1900-1500cm-1):双键(包括C=O,C=C,C=N,N=O等)的伸缩振动谱带位于此峰区,对于判断双键的存在及双键的类型极为有用。
另外,N-H弯曲振动也位于此峰区。
(4)第四峰区(1500-400cm-1):此峰区又称指纹区,X-C键的伸缩振动及各类弯曲振动位于此峰区。
不同结构的同类化合物的红外光谱的差异,在此峰区会显示出来。
6.何谓化学位移?它有什么重要性?在1H-NMR中影响化学位移的因素有哪些?答:由于氢核在不同化合物中所处的环境不同,所受到的屏蔽作用也不同,由于屏蔽作用所引起的共振时磁场强度的移动现象称为化学位移.由于化学位移的大小与氢核所处的化学环境密切相关,因此有可能根据化学位移的大小来考虑氢核所处的化学环境,亦即有机物的分子结构特征.由于化学位移是由核外电子云密度决定的,因此影响电子云密度的各种因素都会影响化学位移,如与质子相邻近的元素或基团的电负性,各项异性效应,溶剂效应,氢键等。
7试说明有机化合物的紫外吸收光谱的电子跃迁有哪几种类型及吸收带类型。
答:跃迁的类型有:σ→σ*, n →σ*, π→π *,n→π *。
(1)σ→σ*跃迁:σ→σ*跃迁需要的能量高,对应波长小于150nm,近紫外光谱观测不到。
(2)n→σ*跃迁:含杂原子O,N,S,X饱和烃的衍生物,其杂原子未成键电子向σ*跃迁,其对应波长位于170-180nm,近紫外光谱观测不到。
(3)π→π* 跃迁:π电子较易激发。
非共轭跃迁,对应波长为160-190nm;共轭跃迁,π→π*能量降低,对应波长增大,红移到近紫外区或可见光区,强度大,称为K带。
(4)n→π*跃迁:发生在碳原子或其他原子与带有未成键的杂原子形成的化合物中,如C=O,C=S,N=O等,跃迁波长位于270-290nm,但该跃迁为禁阻跃迁,出现弱吸收带,称为R带。