中考数学总复习-第17课时 二次函数的图象和性质
(中考数学复习)第17讲 二次函数的图象与性质(二) 课件 解析

课堂回顾 · 巩固提升
浙派名师中考
4.(2013·苏州)已知二次函数y=x2-3x+m的图象与x轴的一个
交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两
实数根是
( B )
A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
第17课 二次函数的图象与性质 (二)
浙派名师中考
1.二次函数y=a(x-h)2+k的图象和y=ax2图象的关系.
2.当满足___b_2-__4_a_c_>_0___时,抛物线y=ax2+bx+c(a≠0)与x轴 有两个交点;当满足__b_2_-__4_a_c_=__0___时,抛物线y=ax2+bx +c(a≠0)与x轴只有一个交点;当满足___b_2-__4_a_c_<_0__时,抛 物线y=ax2+bx+c(a≠0)与x轴没有交点.
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·宁波)如图17-1所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
C.a-b+c<0
D.4ac-b2<0
浙派名师中考
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长. 解:由A(0,-4)、C(4,0)得:OA=OC= 4,且△OAC是等腰直角三角形. 如图17-10所示,在OA上取ON=OB=2, 则∠ONB=∠ACB=45°; ∴∠ONB=∠NBA+∠OAB=∠ACB= ∠OMB+∠OAB,即∠NBA=∠OMB. 在△ABN、△AM1B中,∠BAN=∠M1AB, 图17-10 ∠ABN=∠AM1B,
二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
二次函数的图像与性质ppt课件

函数的凹凸性
当a>0时,函数凹;当a<0时,函数凸。
函数的零点和方程
零点是方程y=0的解,方程求解可以用二次公式。
二次函数的应用
1
抛物线运动
抛物线可以描述物体在空中的轨迹,如
弹性系数
2
抛出物体的运动轨迹。
二次函数可以表示材料的弹性特性,如
描述力和变形的关系。
3
跳水成绩预测
通过二次函数建模,可以预测跳水运动
二次函数的图像与性质 ppt课件
通过本课件,你将深入了解二次函数的定义和表达式,并学习二次函数的图 像特征,如开口方向、对称轴、最值点和零点等。还将探究二次函数的性质, 如增减性、凹凸性、最值和零点方程。从抛物线运动到报价模型,掌握二次 函数的应用。最后,了解二次函数的变形与拓展,包括平移、缩放、翻转和 混合运用。同时,我们将解决常见错误和实际问题应用。
常见错误和解决方法
1 符号错误
检查符号的正确使用,特别是a的正负。
3 图像理解错误
注意开口方向、对称轴和最值点的判断。
2 方程解法错误
仔细检查求解方程是否正确,特别是二次方 程。
4 实际问题应用
将数学模型应用到实际问题时,需考虑问题 的实际情况并合理使用二次函数。
开口方向
当a>0时,抛物线开口向上;当a<0时, 抛物线开口向下。
最值点
最值点是抛物线的最高点(当a>0)或最 低点(当a<0)。最值点的坐标为(-b/2a, f(-b/2a))。
二次函数的性质
函数的增减性
当a>0时,函数单调递增;当a<0时,函数单调 递减。
函数的最值
最值主要由最值点确定,注意开口方向和a的值 来确定最值。
中考数学复习-二次函数的图象和性质

二次函数的同象和性质【基础知识回顾】一、 二次函数的定义:一、 一般地如果y=(a 、b 、c 是常数a≠0)那么y 叫做x 的二次函数【名师提醒:二次函数y=kx 2+bx+c(a≠0)的结构特征是:1、等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是,按一次排列 2、强调二次项系数a0】二、二次函数的同象和性质:1、二次函数y=kx 2+bx+c(a≠0)的同象是一条,其定点坐标为对称轴式2、在抛物y=kx 2+bx+c(a≠0)中:1、当a>0时,y 口向,当x<-2ba时,y 随x 的增大而,当x 时,y 随x 的增大而增大,2、当a<0时,开口向当x<-2ba时,y 随x 增大而增大,当x 时,y 随x 增大而减小【名师提醒:注意几个特殊形式的抛物线的特点 1、y=ax 2 ,对称轴定点坐标2、y= ax 2 +k ,对称轴定点坐标3、y=a(x-h) 2对称轴定点坐标4、y=a(x-h) 2 +k 对称轴定点坐标】 三、二次函数同象的平移【名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可】四、二次函数y= ax 2+bx+c 的同象与字母系数之间的关系: a:开口方向向上则a0,向下则a0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用判断b=0时,对称轴是c:与y 轴的交点:交点在y 轴正半轴上,则c0负半轴上则c0,当c=0时,抛物点过点【名师提醒:在抛物线y = ax 2+bx+c 中,当x=1时,y=当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号】 【重点考点例析】考点一:二次函数图象上点的坐标特点例1 (2012•常州)已知二次函数y=a (x-2)2+c (a >0),当自变量x 分别取2、3、0时,对应的函数值分别:y 1,y 2,y 3,,则y 1,y 2,y 3的大小关系正确的是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 1<y 2 解:∵二次函数y=a (x-2)2+c (a >0), ∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x 取0时所对应的点离对称轴最远,x 取2时所对应的点离对称轴最近, ∴y 3>y 2>y 1. 故选B .对应训练1.(2012•衢州)已知二次函数y=12x 2-7x+152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1 2.A2.解:∵二次函数y=12-x2-7x+152,∴此函数的对称轴为:x=2ba-=7712()2--=-⨯-,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.考点二:二次函数的图象和性质例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.解:①∵△=4m2-4×(-3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本选项正确;②∵当x≤1时y随x的增大而减小,∴函数的对称轴x=-22m--≥1在直线x=1的右侧(包括与直线x=1重合),则22m--≥1,即m≥1,故本选项错误;③将m=-1代入解析式,得y=x2+2x-3,当y=0时,得x2+2x-3=0,即(x-1)(x+3)=0,解得,x1=1,x2=-3,将图象向左平移3个单位后不过原点,故本选项错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为x=420082+=1006,则22m--=1006,m=1006,原函数可化为y=x2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故本选项正确.故答案为①④(多填、少填或错填均不给分).对应训练2.(2012•河北)如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④1.解:①∵抛物线y2=12(x-3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2-3得,3=a(1+2)2-3,解得a=23,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2-3过原点,当x=0时,y2=12(0-3)2+1=112,故y2-y1=112,故本小题错误;④∵物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3), ∴y 1的对称轴为x=-2,y 2的对称轴为x=3,∴B (-5,3),C (5,3) ∴AB=6,AC=4,∴2AB=3AC ,故本小题正确.故选D .考点三:抛物线的特征与a 、b 、c 的关系例3 (2012•玉林)二次函数y=ax 2+bx+c (a≠0)的图象如图所示,其对称轴为x=1,有如下结论: ①c <1;②2a+b=0;③b 2<4ac ;④若方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2=2, 则正确的结论是( )A .①②B .①③C .②④D .③④解:由抛物线与y 轴的交点位置得到:c >1,选项①错误; ∵抛物线的对称轴为x=2ba-=1,∴2a+b=0,选项②正确; 由抛物线与x 轴有两个交点,得到b 2-4ac >0,即b2>4ac ,选项③错误; 令抛物线解析式中y=0,得到ax 2+bx+c=0,∵方程的两根为x 1,x 2,且2b a-=1,及ba -=2,∴x 1+x 2=ba-=2,选项④正确,综上,正确的结论有②④.故选C 对应训练3.(2012•重庆)已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .abc >0B .a+b=0C .2b+c >0D .4a+c <2b3.D3.解:A 、∵开口向上,∴a >0,∵与y 轴交与负半轴,∴c <0,∵对称轴在y 轴左侧,∴2ba -<0,∴b >0,∴abc <0,故本选项错误; B 、∵对称轴:x=2b a-=12-,∴a=b ,故本选项错误;C 、当x=1时,a+b+c=2b+c <0,故本选项错误;D、∵对称轴为x=12,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<-2,∴当x=-2时,4a-2b+c<0,即4a+c<2b,故本选项正确.故选D.考点四:抛物线的平移例4 (2012•桂林)如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1解:∵A在直线y=x上,∴设A(m,m),∵OA= 2,∴m2+m2=(2)2,解得:m=±1(m=-1舍去),m=1,∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.对应训练4.(2012•南京)已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).4.解:原式可化为:y=(x+1)2-4,由函数图象平移的法则可知,将函数y=x2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2-4,的图象,故①正确;函数y=(x+1)2-4的图象开口向上,函数y=-x2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x-1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2-4的图象,故③正确.故答案为:①③.【聚焦中考】1.(2012•泰安)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限1.解:∵抛物线的顶点在第四象限,∴-m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.2.(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于0解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误; B 、由图象知,当x=0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x=-1时,y 的值小于x=-1时,y 的值1,即当x=-1时,y 的值小于1;故本选项错误;D 、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y 的值小于0;故本选项正确.故选D . 3.(2012•菏泽)已知二次函数y=ax 2+bx+c 的图象如图所示,那么一次函数y=bx+c 和反比例函数ay x=在同一平面直角坐标系中的图象大致是( )A .B .C .D .3.解:∵二次函数图象开口向下,∴a <0, ∵对称轴x=2ba-<0,∴b <0, ∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数ay x=位于第二四象限, 纵观各选项,只有C 选项符合. 4.(2012•泰安)设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y=-(x+1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2 4.解:∵函数的解析式是y=-(x+1)2+a ,如右图, ∴对称轴是x=-1,∴点A 关于对称轴的点A′是(0,y 1),那么点A′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小, 于是y 1>y 2>y 3.故选A . 5.(2012•烟台)已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个B .2个 C .3个D .4个5.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误; ③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;6.(2012•日照)二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出下列结论:①b 2-4ac >0;②2a+b <0;③4a-2b+c=0;④a :b :c=-1:2:3.其中正确的是( ) A .①②B .②③C .③④D .①④6.解:由二次函数图象与x 轴有两个交点,∴b 2-4ac >0,选项①正确; 又对称轴为直线x=1,即2ba-=1,可得2a+b=0(i ),选项②错误; ∵-2对应的函数值为负数,∴当x=-2时,y=4a-2b+c <0,选项③错误; ∵-1对应的函数值为0,∴当x=-1时,y=a-b+c=0(ii ), 联立(i )(ii )可得:b=-2a ,c=-3a ,∴a :b :c=a :(-2a ):(-3a )=-1:2:3,选项④正确, 则正确的选项有:①④. 7.(2012•泰安)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .y=3(x+2)2+3B .y=3(x-2)2+3C .y=3(x+2)2-3D .y=3(x-2)2-3 7.A 8.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x 度的范围是18≤x≤90),记录相关数据得到下表:旋钮角度(度) 20 50 70 80 90 所用燃气量(升)73678397115(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y 升与旋钮角度x 度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式; (2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.8.解:(1)若设y=kx+b (k≠0),由7320 6750k b k b =+⎧⎨=+⎩,解得1577k b ⎧=-⎪⎨⎪=⎩,所以y=15-x+77,把x=70代入得y=65≠83,所以不符合;若设k y x =(k≠0),由73=20k,解得k=1460,所以y=1460x,把x=50代入得y=29.2≠67,所以不符合;若设y=ax 2+bx+c ,则由73400206725005083490070a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩,解得1508597abc⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以y=150x2-85x+97(18≤x≤90),把x=80代入得y=97,把x=90代入得y=115,符合题意.所以二次函数能表示所用燃气量y升与旋钮角度x度的变化规律;(2)由(1)得:y=150x2-85x+97=150(x-40)2+65,所以当x=40时,y取得最小值65.即当旋钮角度为40°时,烧开一壶水所用燃气量最少,最少为65升;(3)由(2)及表格知,采用最节省燃气的旋钮角度40度比把燃气开到最大时烧开一壶水节约用气115-65=50 设该家庭以前每月平均用气量为a立方米,则由题意得:50115a=10,解得a=23(立方米),即该家庭以前每月平均用气量为23立方米.【备考真题过关】一、选择题1.(2012•白银)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x <-1或x>3第1题图第2题图第3题图1.C2.(2012•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>3选D.3.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤33.解:∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.4.(2012•北海)已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,1)4.B5.(2012•广元)若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为()A.1 B.2C.-2D.-25图 1图5.C1.(2012•西宁)如同,二次函数y=ax 2+bx+c 的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是( ) A . 当x=0时,y 的值大于1 B . 当x=3时,y 的值小于0 C . 当x=1时,y 的值大于1 D . y 的最大值小于0 选B 6.(2012•巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是( ) A .图象的开口向下B .当x >1时,y 随x 的增大而减小C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x=-1 6.C6.解:二次函数y=2(x+1)(x-3)可化为y=2(x-1)2-8的形式, A 、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x >1时,y 随x 的增大而增大,故本选项错误;C 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x <1时,y 随x 的增大而减小,故本选项正确;D 、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误. 故选C . 7.(2012•天门)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc <0;③a-2b+4c <0;④8a+c >0.其中正确的有( ) A .3个 B .2个 C .1个 D .0个7.B7.解:根据图象可得:a >0,c <0,对称轴:2bx a=->0, ①∵它与x 轴的两个交点分别为(-1,0),(3,0),∴对称轴是x=1,∴2ba-=1,∴b+2a=0,故①错误; ②∵a >0,∴b <0,∵c <0,∴abc >0,故②错误;③∵a-b+c=0,∴c=b-a ,∴a-2b+4c=a-2b+4(b-a )=2b-3a ,又由①得b=-2a ,∴a-2b+4c=-7a <0,故正确; ④根据图示知,当x=4时,y >0,∴16a+4b+c >0,由①知,b=-2a ,∴8a+c >0;故④正确;故选:B . 8.(2012•乐山)二次函数y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <18.解:∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(-1,0),∴易得:a-b+1=0,a<0,b>0,由a=b-1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>-1,结合上面a<0,所以-1<a<0②,∴由①②得:-1<a+b<1,且c=1,得到0<a+b+1<2,∴0<t<2.故选:B.9.(2012•扬州)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=(x-2)2+2 D.y=(x-2)2-29.B10.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(-2,3)B.(-1,4)C.(1,4)D.(4,3)10.D11.(2012•陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1 B.2 C.3 D.611.解:当x=0时,y=-6,故函数与y轴交于C(0,-6),当y=0时,x2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A(-2,0),B(3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2.故选B.二、填空题12.(2012•玉林)二次函数y=-(x-2)2+94的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个(提示:必要时可利用下面的备用图画出图象来分析).12.解:∵二次项系数为-1,∴函数图象开口向下,顶点坐标为(2,94),当y=0时,-(x-2)2+94=0,解得x1=12,得x2=72.可画出草图为:(右图)图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).13.(2012•长春)在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.13.解:∵抛物线y=a (x-3)2+k 的对称轴为x=3,且AB ∥x 轴,∴AB=2×3=6,∴等边△ABC 的周长=3×6=18. 14.(2012•孝感)二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc <0;②a-b+c <0;③3a+c <0;④当-1<x <3时,y >0. 其中正确的是(把正确的序号都填上).14.根据图象可得:a <0,c >0,对称轴:x=2b a=1,2b a=-1,b=-2a ,∵a <0,∴b >0,∴abc <0,把x=-1代入函数关系式y=ax 2+bx+c 中得:y=a-b+c ,由图象可以看出当x=-1时,y <0,∴a-b+c <0,∵b=-2a ,∴a-(-2a )+c <0,即:3a+c <0,故③正确;由图形可以直接看出④错误. 故答案为:①②③. 15.(2012•苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-1)2+1的图象上,若x 1>x 2>1,则(填“>”、“<”或“=”).15.解:由二次函数y=(x-1)2+1可,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧, ∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x1>x2>1,∴y1>y2.故答案为:>. 16.(2012•成都)有七张正面分别标有数字-3,-2,-1,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,且以x 为自变量的二次函数y=x 2-(a 2+1)x-a+2的图象不经过点(1,0)的概率是.16.解:∵x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,∴△>0, ∴[-2(a-1)]2-4a (a-3)>0,∴a >-1,将(1,0)代入y=x 2-(a 2+1)x-a+2得,a 2+a-2=0,解得(a-1)(a+2)=0,a 1=1,a 2=-2. 可见,符合要求的点为0,2,3.∴P=3 7 .故答案为37. 17.(2012•上海)将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是. 17.y=x 2+x-2 18.(2012•宁波)把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为. 18.解:二次函数y=(x-1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),所以,旋转后的新函数图象的解析式为y=-(x+1)2-2.故答案为:y=-(x+1)2-2.2.(2012•贵港)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是0<m <2.考点: 二次函数的图象;反比例函数的图象。
2024年中考第一轮复习 二次函数的图象与性质 课件

∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2
∴
>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴
-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与
x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代
2020届中考数学总复习(17)二次函数-精练精析(2)及答案解析

函数——二次函数2一.选择题(共9小题)1.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个2如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①② B.①④ C.①③④D.②③④3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b4.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④ C.①③④D.①②5.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<06.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.57.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位 B.向右平移2个单位 C.向上平移2个单位 D.向下平移2个单位8.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A.(0,2)B.(0,3)C.(0,4)D.(0,7)9.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2二.填空题(共6小题)10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=_________ .11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________ .13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________ 元.14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_________ .15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是_________ .三.解答题(共8小题)16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).17.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18.已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.19.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.21.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?23.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?函数——二次函数2参考答案与试题解析一.选择题(共9小题)1.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个 C 2个D.1个考点:二次函数图象与系数的关系.专题:数形结合.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.2.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).专题:数形结合.分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故选:B.点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 Bb>0 C.2a+b≠0D.9a+c>3b考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.4.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B③④C.①③④D.①②考点:二次函数图象与系数的关系.专题:数形结合.分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c 的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(﹣2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),又∵当x>时,y随x的增大而减小,<3,∴y1<y2.故④正确;综上所述,正确的结论是①②④.故选:A.点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.5如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以C选项错误;∵当x=2时,y>0,∴4a+2b+c>0,所以D选项错误.故选:A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.6.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B﹣1 C.2 D.5考点:二次函数图象上点的坐标特征.专题:整体思想.分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.7.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位 B.向右平移2个单位C向上平移2个单位D.向下平移2个单位考点:二次函数图象与几何变换.分析:根据图象左移加,可得答案.解答:解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.点评:本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减.8.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A.(0,2)B.(0,3)C.(0,4)D.(0,7)考点:二次函数图象与几何变换.专题:几何变换.分析:先根据顶点式确定抛物线y=(x﹣1)2+3的顶点坐标为(1,3),再利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标.解答:解:抛物线y=(x﹣1)2+3的顶点坐标为(1,3),把点(1,3)向左平移1个单位得到点的坐标为(0,3),所以平移后抛物线解析式为y=x2+3,所以得到的抛物线与y轴的交点坐标为(0,3).故选:B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二.填空题(共6小题)10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2.考点:根据实际问题列二次函数关系式.专题:计算题.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4 .考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25 元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3 .考点:二次函数与不等式(组).专题:计算题.分析:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.解答:解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<3点评:此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是y=﹣(x+2)2等.考点:二次函数的性质.专题:开放型.分析:在对称轴左侧部分是上升的抛物线必然开口向下,即a<0,直线x=﹣2为对称轴可直接利用配方法的形式写出一个二次函数的解析式.解答:解:根据题意得:y=﹣(x+2)2.(答案不唯一).点评:配方法:将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.二次函数当a>0,函数开口向上,当a<0,函数开口向下.三.解答题(共8小题)16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).考点:待定系数法求二次函数解析式;二次函数的性质.专题:计算题.分析:(1)将A与B代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)利用顶点坐标公式表示出D点坐标,进而确定出E点坐标,得到DE与OE的长,根据B点坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长.解答:解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),∴将A与B坐标代入得:,解得:,则抛物线解析式为y=﹣x2+2x+3;(2)点D为抛物线顶点,由顶点坐标(﹣,)得,D(1,4),∵对称轴与x轴交于点E,∴DE=4,OE=1,∵B(﹣1,0),∴BO=1,∴BE=2,在Rt△BED中,根据勾股定理得:BD===2.点评:此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.17.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.考点:抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组).专题:待定系数法.分析:(1)根据抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案.解答:解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.点评:本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组.解题时,要注意数形结合数学思想的应用.另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程.18.已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.考点:抛物线与x轴的交点;二次函数的性质;二次函数的三种形式.专题:数形结合.分析:(1)配方后求出顶点坐标即可;(2)求出A、B的坐标,根据坐标求出AB、CD,根据三角形面积公式求出即可.解答:解:(1)y=x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1,所以顶点C的坐标是(2,﹣1),当x<2时,y随x的增大而减少;当x>2时,y随x的增大而增大;(2)解方程x2﹣4x+3=0得:x1=3,x2=1,即A点的坐标是(1,0),B点的坐标是(3,0),过C作CD⊥AB于D,∵AB=2,CD=1,∴S△ABC=AB×CD=×2×1=1.点评:本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.19.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.专题:代数几何综合题.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF是解题关键.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.专题:应用题;数形结合.分析:(1)①利用y=﹣200x2+400x=﹣200(x﹣1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解答:解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴x=1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.21.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?。
初三数学知识点:二次函数的图象与性质知识点

初三数学知识点:二次函数的图象与性质知
识点
二次函数的概念:一般地,形如ax+bx+c=0的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.
二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
二次函数的图象与性质知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!数学知识点帮助大家轻松愉快地总结功课~。
初三数学:《二次函数的图象和性质》知识点归纳

二次函数图像的性质 :1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。
(1)二次函数图像怎么画作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。
(2)二次函数与的图像和性质:2.二次函数(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是( 0,k),它与的图像形状相同,只是位置不同。
函数的图像是由抛物线向上(或下)平移|k|个单位得到的。
当a>0时,抛物线的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k 。
当a<0时,抛物线的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。
顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k 。
3.二次函数(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x= h,顶点坐标是(h,0),它与的图像形状相同,位置不同,函数(a≠0)的图像是由抛物线向右(或左)平移|h|个单位得到的。
画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。
当a>0时,抛物线的开口向上,在对称轴的左边(xh时),曲线自左向右上升,函数y 随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课件目录
首页
末页
解:(1)设抛物线的解析式为y=a(x-1)2+4(a≠0). ∵抛物线过点C(0,3),∴a+4=3.∴a=-1. ∴抛物线的解析式为y=-(x-1)2+4=-x2+2x+3. (2)由(1)易知,B(3,0),C(0,3), ∴直线BC的解析式为y=-x+3. ①∵S△PBC=S△QBC,∴PQ∥BC.
课件目录
首页
末页
类型之二 二次函数的平移
[2019·济宁]将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个
单位长度后,得到的抛物线的解析式是( D )
A.y=(x-4)2-6
B.y=(x-1)2-3
C.y=(x-2)2-2
D.y=(x-4)2-2
【解析】 y=x2-6x+5=(x-3)2-4,将其向上平移2个单位长度,再向右平移1 个单位长度后,得y=(x-3-1)2-4+2,即y=(x-4)2-2.故选D.
课件目录
首页
末页
(2)令y=0,得x2-4x+3=0.解得x1=1,x2=3. ∴当点A在点B左侧时,A(1,0),B(3,0); 当点A在点B右侧时,A(3,0),B(1,0). ∴AB=|1-3=2. 过点C作CD⊥x轴于点D(图略),则 S△ABC=12AB·CD=12×2×1=1.
课件目录
1.[2019·株洲]若二次函数y=ax2+bx的图象开口向下,则a < 或“<”).
0(填“>”“=”
【解析】 二次函数开口向下,a<0.
课件目录
首页
末页
2.[2018·岳阳]抛物线y=3(x-2)2+5的顶点坐标是( C )
A.(-2,5)
B.(-2,-5)
C.(2,5)
D.(2,-5)
3.[2018·长沙]若对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0- 3,x20-16),则符合条件的点P( B )
B.c<-2
C.c<14
D.c<1
课件目录
首页
末页
【解析】 由题意,知二次函数y=x2+2x+c有两个相异的不动点x1,x2,即为方 程x2+2x+c=x的两个实数根,且x1<1<x2, 整理,得x2+x+c=0, 则11- +41c+>c0<,0. 解得c<-2.故选B.
课件目录
首页
末页
5.[2019·益阳]已知二次函数y=ax2+bx+c如图所示,有下列结论:①ac<0;②b -2a<0;③b2-4ac<0;④a-b+c<0,其中正确的是( A )
课件目录
首页
末页
4.[2019·绍兴]在平面直角坐标系中,抛物线y=(x+5)(x-3)经过变换后得到抛物
线y=(x+3)(x-5),则这个变换可以是( B )
A.向左平移2个单位
B.向右平移2个单位
C.向左平移8个单位
D.向右平移8个单位
课件目录
首页
末页
【解析】 y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16). y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16). ∴将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5).故 选B.
A.①② C.②③
B.①④ D.②④
课件目录
首页
末页
【解析】 ∵抛物线开口向下,且与y的正半轴相交, ∴a<0,c>0,∴ac<0,①正确; ∵对称轴在-1至-2之间,∴-2<-2ba<-1, ∴4a<b<2a,∴b-2a<0,②正确; ∵抛物线与x轴有两个交点,∴Δ=b2-4ac>0,③错误; ∵当x=-1时,y=a-b+c>0,④错误. ∴正确的说法是①②.故选A.
A.有且只有1个
B.有且只有2个
C.至少有3个
D.有无穷多个
课件目录
首页
末页
【解析】
∵对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0-3,x
2 0
-16),
∴x20-16≠a(x0-3)2+a(x0-3)-2a,
∴(x0-4)(x0+4)≠a(x0-1)(x0-4),
∴(x0+4)≠a(x0-1),
课件目录
首页
末页
2.二次函数的图象及性质
课件目录
首页
末页
课件目录
首页
末页
3.二次函数的三种形式 一般式:y=ax2+bx+c(a≠0). 顶点式:y=a(x-h)2+k(a≠0). 两根式:y= a(x-x1)(x-x2) (a≠0).
课件目录
首页
末页
4.二次函数的系数a,b,c与图象的关系 a的作用:决定开口的方向和大小. (1)a>0,开口向上,a<0,开口向下; (2)|a|越大,抛物线的开口越小. b的作用:决定顶点(对称轴)的位置. (1)b与a同号时,顶点在y轴的 左 侧; (2)b与a异号时,顶点在y轴的 右 侧; (3)b=0时,顶点在 y轴上 .
课件目录
首页
末页
类型之四 二次函数与方程的关系
中考学练测·数学[人教]
第一部分 第五章 第17课时
第一部分 数与代数
第五章 函数及其图象 第17课时 二次函数的图象和性质
考点管理 中考再现 归类探究 课时作业
课件目录
首页
末页
考点管理
1.二次函数的概念 定 义:形如y= ax2+bx+c (a,b,c是常数,a≠0)的函数叫做二次函数. 注 意:二次项系数a≠0.
课件目录
首页
末页
6.二次函数与一元二次方程的关系 关 系:二次函数的图象与x轴的交点的横坐标是相应一元二次方程的实数 根. 判 别:b2-4ac>0⇔抛物线与x轴有 两个 交点; b2-4ac=0⇔抛物线与x轴有 一个 交点; b2-4ac<0⇔抛物线与x轴 没有 交点.
课件目录
首页
末页
中考再现
课件目录
首页
末页
口诀:左.(对称轴在y轴左侧)同.(a,b同号)右.(对称轴在y轴右侧)异.(a,b异号). c的作用:决定抛物线与y轴的交点的位置. (1)c>0时,抛物线与y轴的交点在y轴的 正 半轴上; (2)c<0时,抛物线与y轴的交点在y轴的 负 半轴上; (3)c=0时,抛物线过 原点 .
口诀:上.(抛物线与y轴的交点在y轴的正半轴上)正.(c>0)下.(抛物线与y轴的交点在y 轴的负半轴上)负.(c<0).
课件目录
首页
末页
5.二次函数图象的平移 平移方法:
课件目录
首页
末页
注 意:将抛物线y=ax2+bx+c(a≠0)用配方法化成y=a(x-h)2+k(a≠0)的形 式,任意抛物线y=a(x-h)2+k均可由y=ax2平移得到.
课件目录
首页
末页
解得xy11==-3+12-2171,7,
x2=3-2 17,
y2=-1+2
17 .
∴Q23+2 17,-1-2 17,Q33-2 17,-1+2 17. ∴满足条件的点Q的坐标为Q1(2,3), Q23+2 17,-1-2 17,Q33-2 17,-1+2 17.
课件目录
首页
末页
课件目录
首页
末页
5.[2019·原创]将抛物线y=x2+bx+c先向右平移2个单位长度,再向下平移3个单
位长度,得到的抛物线的解析式为y=x2-2x-3,则b,c的值分别为( B )
A.2,2
B.2,0
C.-2,-1
D.-3,2
课件目录
首页
末页
【解析】 先把y=x2-2x-3配方为y=(x-1)2-4,逆向思考:先把y=(x-1)2-4 向上平移3个单位长度,再向左平移2个单位长度得到解析式为y=(x-1+2)2-4 +3=(x+1)2-1,化为一般式是y=x2+2x.故选B.
课件目录
首页
末页
归类探究
类型之一 二次函数的图象和性质 [2019·原创]已知二次函数y=x2-4x+3.
(1)用配方法求该函数的顶点C的坐标,并描述该函数的函数值随自变量的增减而 增减的情况; (2)求函数图象与x轴的交点A,B的坐标及△ABC的面积.
课件目录
首页
末页
解:(1)y=x2-4x+3=x2-4x+4-1 =(x-2)2-1, ∴该函数的顶点C的坐标为(2,-1). 当x<2时,y随x的增大而减小; 当x>2时,y随x的增大而增大.
【点悟】 (1)二次函数图象的平移实际上就是顶点位置的变换,因此,先将二次 函数的解析式转化为顶点式,确定其顶点坐标,然后求出平移后的顶点坐标,从 而求出平移后二次函数的解析式. (2)图象的平移规律:上加下减,左加右减.
课件目录
首页
末页
类型之三 二次函数的解析式的求法 [2019·原创]如图,抛物线的顶点为P(1,4),抛物线与y轴交于点C(0,3),与x
课件目录
首页
末页
(2)令x=0,得y=73. ∴C0,73,OC=73. 令y=0,得,x1=1,x2=7. ∴B(7,0),OB=7, ∴在Rt△OBC中,tan∠ABC=OOCB=13.
课件目录
首页
末页
【点悟】 (1)当已知抛物线上三点的坐标求二次函数的解析式时,一般采用一般 式y=ax2+bx+c(a≠0). (2)当已知抛物线的顶点坐标(或对称轴或最大、最小值)求二次函数的解析式时, 一般采用顶点式y=a(x-h)2+k. (3)当已知抛物线与x轴的两个交点坐标求二次函数的解析式时,一般采用两根式y =a(x-x1)(x-x2).