数学分析之实数集与函数
华东师大第五版数学分析第一章第一节

令 = − , 则为正数且 = + , 但这与假设 < + 相矛盾. 从而
必有 ≤ .
1.2 绝对值与不等式
,
≥ 0,
定义: = ቊ
−, < 0.
实数绝对值的性质:
➢ 正定性: = − ≥ 0; 当且仅当 = 0时有 = 0.
其中0 , 0 为非负整数, , ( = 1,2, ⋯ )为整数, 0 ≤ ≤ 9, 0 ≤
≤ 9, 若有
= ,
= 0,1,2, ⋯
则称与相等,记为 = ;若0 > 0 或存在非负整数,使得
= ( = 0,1,2, ⋯ ) 而+1 > +1 ,
• 实数具有阿基米德(Archimedes)性,即对任何, ∈ R, 若 > >
0, 则存在正整数, 使得 > .
• 实数集具有稠密性, 即任何两个不相等的实数之间必有另一个实
数, 且既有有理数,也有无理数.
• 实数集与数轴上的点有着一一对应关系.
例2 设, ∈ R. 证明:若对任何正数, 有 < + , 则 ≤ .
似分别规定为
= −0 . 1 2 ⋯ − 10− 与ҧ = −0 . 1 2 ⋯ .
注:
0 ≤ 1 ≤ 2 ≤ ⋯
ҧ0 ≥ ҧ1 ≥ ҧ2 ≥ ⋯
实数的不足近似与过剩近似是用有限小数研究无限小数的重要
工具.
命题
设 = 0 . 1 2 ⋯ 与 = 0 . 1 2 ⋯为两个实数,则 >
的等价条件是:存在非负整数,使得
数学分析(考研必看)

数学分析第一章实数集与函数§1.实数一、 实数及其性质1. 实数的定义:实数,是有理数和无理数的总称。
2. 实数的六大性质:①(四则运算封闭性):实数集R 对加、减、乘、除(除数不为0)四则运算封闭,即任意两个实数的和、差、积、商(除数不为0)仍然是实数。
②(有序性):实数集是有序的,即任意两个实数a, b 必满足以下三种关系之一:a<b 、a=b 、a>b 。
③(传递性):实数的大小关系具有传递性,即若a>b, b>c 则a>c 。
④(阿基米德性):实数具有阿基米德性,即对任何a, b ∈R, 若b>a>0,则存在正整数na>b.⑤(稠密性):实数集R 具有稠密性,即任意两个不相等的实数之间必有另外一个实数,且既有有理数也有无理数。
⑥实数集R 与数轴上点一一对应。
二、 绝对值与不等式1. 实数绝对值的性质: ①0;00a a a a =-≥==当且仅当时有 ②-a a a ≤≤ ③;a h h a h a h h a h <<=>-<<≤<=>-≤≤ ④a b a b a b -≤±≤+三角不等式⑤ab a b = ⑥(0)a a b b b=≠ §2数集·确界原理一、 区间与邻域1. 有限区间:开区间:{}x a x b <<记作(),a b ;闭区间:{}x a x b ≤≤记作[],a b ;半开半闭区间:{}x a x b ≤<记作[),a b ,{}x a x b <≤记作(],a b无限区间:(]{},a x a -∞=≤,(){},a x x a -∞=≤,(){},a x x a +∞=>,(){},x x R -∞+∞=-∞<<+∞=2. 邻域:设a R ∈,0>,满足绝对值不等式x a -<的全体实数x 的集合称为点a 的邻域,记作();U a 或写作()U a ,即有(){}();,U a x x a a a =-<=-+。
数学分析讲义 - CH01(实数集与函数)

“集合”和“元素”是不定义的名词,“属于”也是不定义的关系。 2、集合的关系
解释下面记号: A B(B A) , A B (定义是 A B, B A )
3、映射
设V 和V 是任意两个非空集合,如果存在某个对应关系T ,使得对 V ,在V 中 有唯一的元素 与之对应,则称 T 是V 到V 的一个映射。记为
na b 。
(2)实数具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数,
也有无理数。
2、绝对值
实数 a 的绝对值定义为
a
a, a 0 a, a 0
从数轴上看,数 a 的绝对值 a 就是点 a 到原点的距离.
实数的绝对值有如下一些性质:
1 o a a 0;当且仅当 a 0 时有 a 0
2
4
n i 1
xi2
n i 1
yi2
0
如果 xi kyi (i 1, 2,, n) ,则不等式显然以等号形式成立。 反之,如果等号成立,则 0 ,上面二次函数(抛物线)有零点(与 x 有交点),即
n
存在 t R 使 (xit yi )2 0 ,于是 yi txi kxi 。 i 1
sin(x) x 得 sin x x 。
综上,我们又得到不等式
sin x x , x R
其中等号仅当 x 0 时成立.
4、区间与邻域[一些记号]
a,b {x | a x b} ,a,b , (a,b] ,[a,b)
(a, ) ,[a, ) , (, a) , (, a] , (, ) R
4、可数集与不可数集 引例:古阿拉伯人,只会数 1,如何知道谁口袋里的贝壳(钱)多? 问:对于两个无穷集,如何比较“多少”?
《数学分析》第一章 实数集与函数 1

( ∞ , b ) = { x x < b}
无限区间
x obxFra bibliotek区间长度的定义: 区间长度的定义: 两端点间的距离(线段的长度 称为区间的长度 两端点间的距离 线段的长度)称为区间的长度 线段的长度 称为区间的长度.
3.邻域: 3.邻域: 设a与δ是两个实数 , 且δ > 0. 邻域
数集{ x x a < δ }称为点a的δ邻域 ,
o a x b 称为闭区间, { x a ≤ x ≤ b} 称为闭区间 记作 [a , b] o a
b
x
{ x a ≤ x < b} { x a < x ≤ b}
称为半开区间, 称为半开区间 记作 [a , b ) 称为半开区间, 称为半开区间 记作 (a , b] 有限区间
[a ,+∞ ) = { x a ≤ x }
a a≥0 a = a a < 0 运算性质: 运算性质 ab = a b ;
5.绝对值: 5.绝对值: 绝对值
( a ≥ 0)
a a = ; b b
绝对值不等式: 绝对值不等式
a b ≤ a ± b ≤ a + b.
x ≤ a ( a > 0) x ≥ a ( a > 0)
a ≤ x ≤ a;
点a叫做这邻域的中心 , δ 叫做这邻域的半径 .
U δ (a ) = { x a δ < x < a + δ }.
δ
δ
x
a aδ a+δ 0 点a的去心的 δ邻域 , 记作 U δ (a ).
U δ (a ) = { x 0 < x a < δ }.
4.常量与变量: 4.常量与变量: 常量与变量 在某过程中数值保持不变的量称为常量 在某过程中数值保持不变的量称为常量, 常量 而数值变化的量称为变量 变量. 而数值变化的量称为变量 注意 常量与变量是相对"过程"而言的. 常量与变量是相对"过程"而言的 常量与变量的表示方法: 常量与变量的表示方法: 通常用字母a, 等表示常量, 通常用字母 b, c等表示常量 等表示常量 用字母x, 等表示 等表示变 用字母 y, t等表示变量.
数学分析(华东师大)第一章实数集与函数

第一章实数集与函数§1 实数数学分析研究的基本对象是定义在实数集上的函数.为此, 我们先简要叙述实数的有关概念.一实数及其性质在中学数学课程中, 我们知道实数由有理数与无理数两部分组成.有理数可用分数形式p( p、q 为整数, q≠0 ) 表示, 也可用有限十进小数或无限十进循环q小数来表示; 而无限十进不循环小数则称为无理数.有理数和无理数统称为实数.为了以下讨论的需要, 我们把有限小数( 包括整数) 也表示为无限小数.对此我们作如下规定: 对于正有限小数( 包括正整数) x , 当x = a0 . a1 a2 a n 时, 其中0≤a i ≤9 , i = 1 , 2 , , n , a n ≠0 , a0 为非负整数, 记x = a0 . a1 a2 ( a n - 1) 999 9 ,而当x = a0 为正整数时, 则记x = ( a0 - 1 ) .999 9 ,例如2 .001 记为2.000 999 9 ; 对于负有限小数( 包括负整数) y , 则先将- y 表示为无限小数, 再在所得无限小数之前加负号, 例如- 8 记为- 7.999 9 ; 又规定数0 表示为0.000 0 .于是, 任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系.定义1 给定两个非负实数x = a0 . a1 a2 a n , y = b0 .b1 b2 b n ,其中a0 , b0 为非负整数, a k , b k ( k = 1 , 2 , ) 为整数, 0≤a k ≤9 , 0≤b k ≤9 .若有a k =b k , k = 0 , 1 , 2 , ,则称x 与y 相等, 记为x = y; 若a0 > b0 或存在非负整数l , 使得a k =b k ( k = 0 , 1 , 2 , , l ) 而a l + 1 > b l + 1 ,则称x 大于y 或y 小于x , 分别记为x > y 或y < x .2 第一章实数集与函数对于负实数x , y, 若按上述规定分别有- x = - y 与- x > - y , 则分别称x = y 与x < y( 或y > x) .另外, 自然规定任何非负实数大于任何负实数.以下给出通过有限小数来比较两个实数大小的等价条件.为此, 先给出如下定义.定义 2 设x = a0 . a1 a2 a n 为非负实数.称有理数x n = a0 . a1 a2 a n为实数x 的n位不足近似, 而有理数x n = x n + 称为x 的n位过剩近似, n = 0 , 1 , 2 , . 1 10 n对于负实数x = - a0 .a1 a2 a n , 其n 位不足近似与过剩近似分别规定为1x n = - a0 .a1 a2 a n - n 与x n = - a0 .a1 a2 a n .10注不难看出, 实数x 的不足近似x n 当n 增大时不减, 即有x0 ≤x1 ≤x2 ≤, 而过剩近似x n 当n 增大时不增, 即有x0 ≥x1 ≥x2 ≥.我们有以下的命题设x = a0 .a1 a2 与y = b0 . b1 b2 为两个实数, 则x > y 的等价条件是: 存在非负整数n , 使得x n > y n ,其中x n 表示x 的n 位不足近似, y n 表示y 的n 位过剩近似.关于这个命题的证明, 以及关于实数的四则运算法则的定义, 可参阅本书附录Ⅱ第八节.例1 设x、y 为实数, x < y .证明: 存在有理数r 满足x < r < y .证由于x < y , 故存在非负整数n , 使得x n < y n .令r = 1( x n + y n ) ,2则r 为有理数, 且有即得x < r < y .x ≤ x n < r < y n ≤y,为方便起见, 通常将全体实数构成的集合记为R , 即R = { x x 为实数} .实数有如下一些主要性质:1 . 实数集R 对加、减、乘、除( 除数不为0 ) 四则运算是封闭的, 即任意两个§1 实数3实数的和、差、积、商( 除数不为0) 仍然是实数.2 . 实数集是有序的, 即任意两实数a、b 必满足下述三个关系之一: a < b,a = b, a >b .3 . 实数的大小关系具有传递性, 即若a > b, b > c, 则有a > c .4 . 实数具有阿基米德( Archimedes ) 性, 即对任何a、b∈R , 若b > a > 0 , 则存在正整数n , 使得na > b .5 . 实数集R 具有稠密性, 即任何两个不相等的实数之间必有另一个实数, 且既有有理数( 见例1 ) , 也有无理数.6 . 如果在一直线( 通常画成水平直线) 上确定一点O 作为原点, 指定一个方向为正向( 通常把指向右方的方向规定为正向) , 并规定一个单位长度, 则称此直线为数轴.任一实数都对应数轴上唯一的一点; 反之, 数轴上的每一点也都唯一地代表一个实数.于是, 实数集R 与数轴上的点有着一一对应关系.在本书以后的叙述中, 常把“实数a”与“数轴上的点a”这两种说法看作具有相同的含义.例2 设a、b∈R .证明: 若对任何正数ε有a < b + ε, 则a≤b .证用反证法.倘若结论不成立, 则根据实数集的有序性, 有a > b .令ε= a - b, 则ε为正数且 a = b + ε, 但这与假设 a < b + ε相矛盾.从而必有a≤b .关于实数的定义与性质的详细论述, 有兴趣的读者可参阅本书附录Ⅱ .二绝对值与不等式实数a 的绝对值定义为a = a , a ≥0 ,- a , a < 0 .从数轴上看, 数a 的绝对值| a | 就是点 a 到原点的距离.实数的绝对值有如下一些性质:1 . | a | = | - a | ≥0; 当且仅当 a = 0 时有| a | = 0 .2 . - | a | ≤ a≤ | a | .3 . | a | < h! - h < a < h; | a | ≤ h! - h≤ a≤ h ( h > 0) .4 . 对于任何a、b∈R 有如下的三角形不等式:a -b ≤ a ±b ≤ a + b .5 . | ab | = | a | | b| .6 . ab| a || b|( b≠ 0) .下面只证明性质4 , 其余性质由读者自行证明. 由性质2 有=4 第一章实数集与函数两式相加后得到- a ≤ a ≤ a , - b ≤ b ≤ b .- ( a + b ) ≤ a + b ≤ a + b .根据性质3 , 上式等价于a +b ≤ a + b . ( 1) 将(1 ) 式中 b 换成- b, ( 1) 式右边不变, 即得| a - b | ≤| a | + | b | , 这就证明了性质4 不等式的右半部分.又由| a | = | a - b + b | , 据(1 ) 式有a ≤ a -b + b .从而得a -b ≤ a - b . ( 2) 将(2 ) 式中 b 换成- b, 即得| a | - | b | ≤| a + b | .性质4 得证.习题1 . 设a 为有理数, x 为无理数.证明:( 1) a + x 是无理数; ( 2)当a≠0 时, ax 是无理数.2 . 试在数轴上表示出下列不等式的解:( 1) x ( x2 - 1) > 0; ( 2) | x - 1 | < | x - 3 | ;( 3) x - 1 - 2 x - 1≥ 3 x - 2 .3 . 设a、b∈R .证明:若对任何正数ε有| a - b| < ε, 则a = b .4 . 设x ≠0 ,证明x + 1 x5 . 证明: 对任何x ∈R 有≥2 , 并说明其中等号何时成立.( 1) | x - 1 | + | x - 2 | ≥1; ( 2) | x - 1 | + | x - 2 | + | x - 3 | ≥2 .6 . 设a、b、c∈R+ ( R+ 表示全体正实数的集合) .证明a2 + b2- a2+ c2 ≤ b - c .你能说明此不等式的几何意义吗?7 . 设x > 0 , b > 0 , a≠b .证明a + x介于 1 与a之间.b + x b8 . 设p 为正整数.证明:若p 不是完全平方数, 则p是无理数.9 . 设a、b 为给定实数.试用不等式符号(不用绝对值符号) 表示下列不等式的解:( 1) | x - a| < | x - b | ; ( 2) | x - a | < x - b; (3) | x2 - a | < b .§2 数集·确界原理本节中我们先定义R 中两类重要的数集———区间与邻域, 然后讨论有界集§2 数集·确界原理5并给出确界定义和确界原理.一区间与邻域设a、b∈R , 且 a < b .我们称数集{ x | a < x < b} 为开区间, 记作( a , b) ; 数集{ x | a≤x≤b} 称为闭区间, 记作[ a , b] ; 数集{ x | a≤x < b} 和{ x | a < x ≤b} 都称为半开半闭区间, 分别记作[ a , b) 和( a , b] .以上这几类区间统称为有限区间.从数轴上来看, 开区间( a , b) 表示a、b 两点间所有点的集合, 闭区间[ a, b] 比开区间( a , b) 多两个端点, 半开半闭区间[ a, b) 比开区间( a, b) 多一个端点 a 等.满足关系式x ≥a 的全体实数x 的集合记作[ a , + ∞) , 这里符号∞读作“无穷大”, + ∞读作“正无穷大”.类似地, 我们记( - ∞ , a] = { x x ≤ a} , ( a , + ∞ ) = { x x > a} ,( - ∞, a) = { x x < a} , ( - ∞, + ∞) = { x - ∞< x < + ∞} = R , 其中- ∞读作“负无穷大”.以上这几类数集都称为无限区间.有限区间和无限区间统称为区间.设a∈R , δ> 0 .满足绝对值不等式| x - a | < δ的全体实数x 的集合称为点a 的δ邻域, 记作U ( a;δ) , 或简单地写作U( a ) , 即有U( a; δ) = { x x - a < δ} = ( a - δ, a + δ) .点a 的空心δ邻域定义为U°(a;δ) = { x 0 < x - a < δ} ,它也可简单地记作U°( a) .注意, U°( a;δ) 与U( a;δ) 的差别在于: U°( a;δ) 不包含点 a .此外, 我们还常用到以下几种邻域:点a 的δ右邻域U + ( a;δ) = [ a , a + δ) , 简记为U + ( a) ;点a 的δ左邻域U - ( a;δ) = ( a - δ, a] , 简记为U - ( a) ;( U- ( a ) 与U+ ( a ) 去除点 a 后, 分别为点 a 的空心δ左、右邻域, 简记为U°- ( a) 与U°+ ( a) .)∞邻域U( ∞) = { x | x | > M} , 其中M 为充分大的正数( 下同) ;+ ∞邻域U( + ∞) = { x | x > M}; - ∞邻域U( - ∞) = { x | x < - M} .二有界集·确界原理定义1 设S 为R 中的一个数集.若存在数M ( L ) , 使得对一切x ∈S , 都有x ≤M( x≥L) , 则称S 为有上界( 下界) 的数集, 数M( L) 称为S 的一个上界( 下界) .6 第一章实数集与函数若数集S 既有上界又有下界, 则称S 为有界集.若S 不是有界集, 则称S 为无界集.例1 证明数集N + = { n | n 为正整数}有下界而无上界.证显然, 任何一个不大于1 的实数都是N + 的下界, 故N + 为有下界的数集.为证N + 无上界, 按照定义只须证明: 对于无论多么大的数M, 总存在某个正整数n0 ( ∈N + ) , 使得n0 > M .事实上, 对任何正数M ( 无论多么大) , 取n0 = [ M ] + 1 ①, 则n0 ∈N + , 且n0 > M .这就证明了N + 无上界.读者还可自行证明: 任何有限区间都是有界集, 无限区间都是无界集; 由有限个数组成的数集是有界集.若数集S 有上界, 则显然它有无穷多个上界, 而其中最小的一个上界常常具有重要的作用, 称它为数集S 的上确界.同样, 有下界数集的最大下界, 称为该数集的下确界.下面给出数集的上确界和下确界的精确定义.定义2 设S 是R 中的一个数集.若数η满足:( i) 对一切x∈S , 有x≤η, 即η是S 的上界;( ii) 对任何α< η, 存在x0 ∈S , 使得x0 > α, 即η又是S 的最小上界,则称数η为数集S 的上确界, 记作η = sup S② .定义3 设S 是R 中的一个数集.若数ξ满足:( i) 对一切x∈S , 有x≥ξ, 即ξ是S 的下界;( ii) 对任何β> ξ, 存在x0 ∈S , 使得x0 < β, 即ξ又是S 的最大下界,则称数ξ为数集S 的下确界, 记作ξ= inf S .上确界与下确界统称为确界.例2 设S = { x |x 为区间(0 , 1 ) 中的有理数} .试按上、下确界的定义验证: sup S = 1 , inf S = 0 .解先验证sup S = 1 :( i) 对一切x∈S , 显然有x≤1 , 即1 是S 的上界.( ii) 对任何α< 1 , 若α≤0 , 则任取x0 ∈S 都有x0 > α; 若α> 0 , 则由有理数集在实数集中的稠密性, 在( α, 1) 中必有有理数x0 , 即存在x0 ∈S , 使得x0 > α.类似地可验证inf S = 0 .读者还可自行验证: 闭区间[0 , 1 ]的上、下确界分别为1 和0 ; 对于数集①[ x] 表示不超过数x 的最大整数, 例如[ 2 .9 ] = 2 , [ - 4 .1 ] = - 5 .②sup 是拉丁文supremum ( 上确界) 一词的简写; 下面的inf 是拉丁文infimum ( 下确界) 一词的简写.E = ( - 1 ) §2 数集·确界原理7nn n = 1 , 2 , , 有 sup E = N + = 1 , 而没有上确界 . 1 2 , inf E = - 1 ; 正整数集 N + 有下确界 inf 注 1 由上 ( 下 ) 确界的定义可见 , 若数集 S 存在上 ( 下 ) 确界 , 则一定是唯一 的 .又若数集 S 存在上、下确界 , 则有 inf S ≤s up S .注 2 从上面一些例子可见 , 数集 S 的确界可能属于 S , 也可能不属于 S . 例 3 设数集 S 有上确界 .证明η = sup S ∈ S !η = max S ① .证 ª ) 设 η= sup S ∈ S , 则对一切 x ∈ S 有 x ≤η, 而 η∈ S , 故 η是数集 S 中最大的数 , 即 η= max S .Ï ) 设 η= max S , 则 η∈ S ; 下面验证 η= sup S:( i ) 对一切 x ∈ S , 有 x ≤η, 即 η是 S 的上界 ;( ii ) 对任何 α< η, 只 须取 x 0 = η∈ S , 则 x 0 > α .从 而满 足 η= sup S 的 定 义 .关于数集确界的存在性 , 我们给出如下确界原理 .定理 1 .1 ( 确界原理 ) 设 S 为非空数集 .若 S 有上界 , 则 S 必有上确界 ; 若 S 有下界 , 则 S 必有下确界 .证 我们只证明关于上确界的结论 , 后一结论可类似地证明 .为叙述的方便起见 , 不妨设 S 含有非负数 .由于 S 有上界 , 故可找到非负整 数 n , 使得1) 对于任何 x ∈ S 有 x < n + 1 ;2) 存在 a 0 ∈ S , 使 a 0 ≥ n .对半开区间 [ n , n + 1) 作 10 等分 , 分点为 n .1 , n .2 ,, n .9 , 则存在 0 , 1 , 2 , , 9 中的一个数 n 1 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 + 1 ; 102) 存在 a 1 ∈ S , 使 a 1 ≥ n . n 1 .再对半开区间 [ n . n 1 , n . n 1 + 1 ) 作 10 等 分 , 则 存在 0 , 1 , 2 , , 9 中的一 个 10数 n 2 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 n 2 + 1 ; 1022) 存在 a 2 ∈ S , 使 a 2 ≥ n . n 1 n 2 .① 记号 max 是 maxim um( 最大 ) 一 词的 简写 , η= max S 表 示数 η是 数集 S 中 最大 的数 .以下 将出 现 的记号 min 是 minimu m( 最小 ) 一 词的简 写 , min S 表示 数集 S 中 最小 的数 .8 第一章实数集与函数继续不断地10 等分在前一步骤中所得到的半开区间, 可知对任何k = 1 , 2 , , 存在0 , 1 , 2 , , 9 中的一个数n k , 使得1) 对于任何x∈S 有x < n . n1 n2 n k + 1; ( 1)10 k2) 存在a k ∈S , 使a k ≥n . n1 n2 n k .将上述步骤无限地进行下去, 得到实数η= n . n1 n2 n k .以下证明η= sup S .为此只需证明:( i) 对一切x∈S 有x≤η; ( ii ) 对任何α< η, 存在a′∈S 使α< a′.倘若结论( i ) 不成立, 即存在x ∈S 使x > η, 则可找到x 的k 位不足近似x k , 使从而得x k > 珔ηk = n . n1 n2 n k +1,10 kx > n . n1 n2 n k +1,10 k但这与不等式(1 ) 相矛盾.于是( i) 得证.现设α< η, 则存在k 使η的k 位不足近似ηk > 珔αk , 即n . n1 n2 n k > 珔αk .根据数η的构造, 存在a′∈S 使a′≥ηk , 从而有a′≥ηk > 珔αk ≥α,即得到α< a′.这说明( ii) 成立.在本书中确界原理是极限理论的基础, 读者应给予充分的重视.例4 设 A 、B为非空数集, 满足: 对一切x∈A 和y∈B 有x ≤y .证明: 数集A 有上确界, 数集 B 有下确界, 且sup A ≤ inf B . ( 2) 证由假设, 数集 B 中任一数y 都是数集 A 的上界, A 中任一数x 都是 B 的下界, 故由确界原理推知数集 A 有上确界, 数集 B 有下确界.现证不等式(2 ) .对任何y∈B , y 是数集A 的一个上界, 而由上确界的定义知, sup A 是数集A 的最小上界, 故有sup A≤y .而此式又表明数sup A 是数集B 的一个下界, 故由下确界定义证得sup A≤inf B .例5 设 A 、B为非空有界数集, S = A ∪ B .证明:( i) sup S = max{sup A , sup B};( ii) inf S = min{inf A , inf B} .证由于S = A ∪B 显然也是非空有界数集, 因此S 的上、下确界都存在.( i) 对任何x∈S , 有x∈A 或x∈Bªx≤sup A 或x≤sup B , 从而有x ≤§2 数集·确界原理9max{sup A , sup B} , 故得sup S≤max{ sup A , sup B} .另一方面, 对任何x∈A , 有x ∈S ªx ≤sup S ªs up A ≤sup S ; 同理又有sup B≤sup S .所以sup S≥max{sup A , sup B} .综上, 即证得sup S = max{sup A , sup B} .( ii) 可类似地证明.若把+ ∞和- ∞补充到实数集中, 并规定任一实数 a 与+ ∞、- ∞的大小关系为: a < + ∞, a > - ∞, - ∞< + ∞, 则确界概念可扩充为:若数集S 无上界, 则定义+ ∞为S 的非正常上确界, 记作sup S = + ∞;若S 无下界, 则定义- ∞为S 的非正常下确界, 记作inf S = - ∞.相应地, 前面定义2 和定义3 中所定义的确界分别称为正常上、下确界.在上述扩充意义下,我们有推广的确界原理任一非空数集必有上、下确界( 正常的或非正常的) .例如, 对于正整数集N+ 有inf N+ = 1 , sup N+ = + ∞; 对于数集S = { y y = 2 - x2 , x ∈R } ( 3) 有inf S = - ∞, sup S = 2 .习题1 . 用区间表示下列不等式的解:( 1) | 1 - x | - x ≥0; ( 2) x + 1x≤6 ;( 3) ( x - a) ( x - b) ( x - c) > 0( a , b , c 为常数, 且 a < b < c) ;( 4) sin x ≥ 2 .22 . 设S 为非空数集.试对下列概念给出定义:( 1) S 无上界; ( 2) S 无界.3 . 试证明由(3 )式所确定的数集S 有上界而无下界.4 . 求下列数集的上、下确界, 并依定义加以验证:( 1) S = { x | x2 < 2} ; (2 ) S = { x | x = n !, n∈ N+ } ;( 3) S = { x | x 为(0 , 1 )内的无理数} ;( 4) S = { x | x = 1 - 1, n∈N+ } .2 n5 . 设S 为非空有下界数集.证明:inf S = ξ∈ S!ξ = min S .6 . 设S 为非空数集, 定义S - = { x | - x ∈S} .证明:( 1) inf S - = - sup S; ( 2) sup S - = - inf S .7 . 设A 、B皆为非空有界数集, 定义数集A +B = { z | z = x + y, x ∈ A , y ∈ B} .10 第一章实数集与函数证明: (1) sup( A + B) = sup A + sup B; ( 2) inf( A + B) = inf A + inf B .8 . 设a > 0 , a≠1 , x 为有理数.证明sup{ a r | r 为有理数, r < x} , 当a > 1 ,a x =inf{ a r | r 为有理数, r < x} , 当a < 1 .§3 函数概念关于函数概念, 在中学数学中我们已有了初步的了解, 本节将对此作进一步的讨论.一函数的定义定义1 给定两个实数集 D 和M , 若有对应法则 f , 使对D 内每一个数x , 都有唯一的一个数y∈M 与它相对应, 则称 f 是定义在数集D 上的函数, 记作f : D → M ,( 1)x 組y .数集 D 称为函数 f 的定义域, x 所对应的数y , 称为f 在点x 的函数值, 常记为f ( x) .全体函数值的集合f ( D) = { y y = f ( x ) , x ∈ D} ( ÌM)称为函数f 的值域.(1 ) 中第一式“D→M”表示按法则 f 建立数集D到M 的函数关系; 第二式“x 組y”表示这两个数集中元素之间的对应关系, 也可记为“x 組f ( x) ”.习惯上, 我们称此函数关系中的x 为自变量, y 为因变量.关于函数的定义, 我们作如下几点说明:1 . 定义1 中的实数集M 常以R 来代替, 于是定义域 D 和对应法则 f 就成为确定函数的两个主要因素.所以, 我们也常用y = f ( x ) , x ∈D表示一个函数.由此, 我们说某两个函数相同, 是指它们有相同的定义域和对应法则.如果两个函数对应法则相同而定义域不同, 那么这两个函数仍是不相同的.例如 f ( x ) = 1 , x ∈R 和g( x) = 1 , x∈R \ {0 } 是不相同的两个函数.另一方面, 两个相同的函数, 其对应法则的表达形式可能不同, 例如φ( x) = x , x ∈R 和ψ( x) = x2 , x ∈R .2 . 我们在中学数学中已经知道,表示函数的主要方法是公式法, 即用数学运算式子来表示函数.这时, 函数的定义域常取使该运算式子有意义的自变量值的全体,通常称为存在域.在这种情况下,函数的定义域( 即存在域) D 可省略不写,而只用对应法则 f 来表示一个函数,此时可简单地说“函数y = f ( x)”或“函数f”.§3 函 数 概 念113 . 函数 f 给出了 x 轴上的点集 D 到 y 轴上 点集 M 之间 的单值 对应 , 也 称 为映射 .对于 a ∈ D, f ( a) 称为映射 f 下 a 的象 , a 则称为 f ( a) 的原象 .4 . 在函数定义中 , 对每一个 x ∈ D , 只能有唯一的 一个 y 值 与它对 应 , 这 样 定义的函数称为单值函数 .若同 一个 x 值 可以 对应 多于 一 个的 y 值 , 则 称这 种 函数为多值函数 .在本书范围内 , 我们只讨论单值函数 .二 函数的表示法在中学课程里 , 我们已经知道函数 的表 示法主 要有 三种 , 即 解析法 ( 或称 公 式法 ) 、列表法和图象法 . 有些函数在其定义域的不同部 分用 不同的 公式 表达 , 这 类函数 通常 称为 分 段函数 .例如 , 函数sgn x =1 , x > 0 , 0 ,x = 0 ,- 1 , x < 0是分段函数 , 称为符号函数 , 其图象如图 1 - 1 所示 . 又如函数 f ( x ) = | x | 也可 用 如下 的 分 段函 数 形式 来表示 :图 1 - 1f ( x) =x ,x ≥ 0 ,- x , x < 0 .它还可表示为 f ( x) = x sgn x .函数 y = f ( x ) , x ∈ D 又可用如下有序数对的集合 :G = { ( x , y) y = f ( x ) , x ∈ D} 来表示 .在坐标平面上 , 集合 G 的每一个元素 ( x , y ) 表 示平面上 的一个点 , 因 而 集合 G 在坐标平面 上 描绘 出 这 个函 数 的图 象 .这 就 是用 图 象法 表 示 函数 的 依 据 .有些函数难以用解析法、列表法 或图 象法来 表示 , 只 能用 语言来 描述 .如 定 义在 R 上的狄利克雷 ( Dirichlet ) 函数1 , 当 x 为有理数 ,D( x) =0 , 当 x 为无理数 和定义在 [0 , 1 ] 上的黎曼 ( Riemann ) 函数1 , 当 x = p ( p , q ∈ N + , p为既约真分数 ) ,R ( x) =q qq0 ,当 x = 0 , 1 和 (0 , 1 ) 内的无理数 .三 函数的四则运算给定两个函数 f , x ∈ D 1 和 g , x ∈ D 2 , 记 D = D 1 ∩ D 2 , 并设 D ≠¹?.我们定* 2 12第一章 实数集与函数义 f 与 g 在 D 上的和、差、积运算如下 :F( x ) = f ( x) + g ( x ) , x ∈ D,G( x) = f ( x ) - g( x) , x ∈ D,H( x ) = f ( x) g( x) , x ∈ D .若在 D 中剔除使 g( x) = 0 的 x 值 , 即令D = D 1 ∩ { x g( x) ≠ 0 , x ∈ D 2 } ≠ ¹?,可在 D *上定义 f 与 g 的商的运算如下 :L( x ) = f ( x) , x ∈ D *.g( x )注 若 D = D 1 ∩ D 2 = ¹?, 则 f 与 g 不能进行四则运算 .例如 , 设f ( x) = 1 - x 2, x ∈ D 1 = { x x ≤ 1} , g( x) =x 2- 4 , x ∈ D = { xx ≥ 2 } ,由于 D 1 ∩ D 2 = ¹?, 所以表达式f ( x ) + g( x) =1 - x 2+x 2- 4是没有意义的 .以后为叙述方便 , 函数 f 与 g 的和、差、积、商常分别写作f +g , f - g, fg , f.g四 复合函数设有两函数y = f ( u) , u ∈ D, u = g( x ) , x ∈ E .( 2)记 E * = { x | g( x ) ∈ D } ∩ E .若 E *≠¹?, 则对每一个 x ∈ E *, 可通过函数 g 对 应 D 内唯一的一个值 u , 而 u 又通过函数 f 对应唯一的一个值 y .这就确定了一 个定义在 E *上的函数 , 它以 x 为自变量 , y 为因变量 , 记作y = f ( g( x ) ) , x ∈ E *或 y = ( f g) ( x) , x ∈ E *, 称为函数 f 和 g 的 复合函 数 .并称 f 为 外函数 , g 为内函 数 , ( 2) 式中 的 u 为 中 间变量 .函数 f 和 g 的复合运算也可简单地写作 f g . 例 1 函数 y = f ( u ) = u , u ∈ D = [0 , + ∞ ) 与 函数 u = g( x ) = 1 - x 2, x ∈ E = R 的复合函数为y = f ( g( x ) ) =1 - x2或 ( f g) ( x ) =1 - x 2,其定义域 E *= [ - 1 , 1] Ì E .复合函数也可由多个函数相继复 合而 成 .例如 , 由三 个函 数 y = sin u , u =§3 函数概念13v 与v = 1 - x2 ( 它们的定义域取为各自的存在域)相继复合而得的复合函数为y = sin 1 - x2 , x ∈[ - 1 , 1] .注当且仅当 E * ≠¹?( 即D∩g ( E) ≠¹?) 时, 函数 f 与g 才能进行复合. 例如, 以y = f ( u) = arc sin u , u∈D = [ - 1 , 1 ] 为外函数, u = g( x ) = 2 + x2 , x ∈E = R 为内函数, 就不能进行复合.这是因为外函数的定义域 D = [ - 1 , 1 ] 与内函数的值域g( E ) = [ 2 , + ∞) 不相交.五反函数函数y = f ( x ) 的自变量x 与因变量y 的关系往往是相对的.有时我们不仅要研究y 随x 而变化的状况, 也要研究x 随y 而变化的状况.对此, 我们引入反函数概念.设函数y = f ( x ) , x ∈ D ( 3) 满足: 对于值域 f ( D) 中的每一个值y, D 中有且只有一个值x 使得f ( x) = y,则按此对应法则得到一个定义在 f ( D) 上的函数, 称这个函数为 f 的反函数, 记作f - 1 : f ( D) → D,y 組x或x = f - 1 ( y) , y ∈ f ( D) . ( 4) 注1 函数 f 有反函数, 意味着 f 是D 与 f ( D) 之间的一个一一映射.我们称 f - 1 为映射 f 的逆映射, 它把集合 f ( D) 映射到集合D, 即把 f ( D) 中的每一个值 f ( a) 对应到 D 中唯一的一个值 a .这时称a 为逆映射 f - 1 下f ( a) 的象,而f ( a ) 则是 a 在逆映射f - 1 下的原象.从上述讨论还可看到, 函数 f 也是函数 f - 1 的反函数.或者说, f 与f - 1 互为反函数.并有f - 1 ( f ( x ) ) ≡ x , x ∈ D ,f ( f - 1 ( y) ) ≡ y , y ∈ f ( D) .注2 在反函数 f - 1 的表示式( 4) 中, 是以y 为自变量, x 为因变量.若按习惯仍用x 作为自变量的记号, y 作为因变量的记号, 则函数( 3 ) 的反函数( 4 ) 可改写为y = f - 1 ( x ) , x ∈ f ( D) . ( 5) 例如, 按习惯记法, 函数y = ax + b ( a≠0 ) , y = a x ( a > 0 , a ≠1 ) 与y = sin x ,14第一章 实数集与函数x ∈ - π , π的反函数分别是2 2x - b a , y = log a x 与 y = arcsin x . 应该注意 , 尽管反函数 f - 1的表示式 (4 ) 与 ( 5) 的形式不同 , 但它 们仍表示 同 一个函数 , 因 为它 们的定 义域 都是 f ( D) , 对应 法则 都是 f - 1, 只是 所用 变量 的 记号不同而已 .六 初等函数在中学数学中 , 读者已经熟悉基本初等函数有以下六类 : 常量函数 y = c ( c 是常数 ) ; 幂函数 y = x α(α为实数 ) ; 指数函数 y = a x( a > 0 , a ≠ 1) ; 对数函数 y = log a x ( a > 0 , a ≠1 ) ;三角函数 y = sin x( 正弦函数 ) , y = cos x ( 余弦函数 ) ,y = tan x( 正切函数 ) , y = cot x( 余切函数 ) ; 反三角函数y = arcsin x( 反正弦函数 ) , y = arccos x ( 反余弦函数 ) ,y = arctan x ( 反正切函数 ) , y = arccot x( 反余切函数 ) .这里我们要指 出 , 幂函 数 y = x α和指数 函数 y = a x都涉 及乘幂 , 而 在中 学 数学课程中只给出了有理指数乘幂的定 义 .下面 我们借 助确 界来 定义无 理指 数 幂 , 使它与有理指数幂一起构成实指数乘幂 , 并保持有理指数幂的基本性质 .定义 2 给定实数 a > 0 , a ≠1 .设 x 为无理数 , 我们规定a x= sup { arr 为有理数 } , 当 a > 1 时 ,r < xinf { arr 为有理数 } , 当 0 < a < 1 时 .r < x( 6)( 7)注 1 对任一无理数 x , 必有有理数 r 0 , 使 x < r 0 , 则当有理数 r < x 时有 r < r 0 , 从而由有理数乘幂的性质 , 当 a > 1 时有 a r< ar.这表明非空数集{ a r r < x , r 为有理数 }有一个上界 a r 0 .由确界原理 , 该数集有上确界 , 所以 ( 6) 式右边是一个确定的数 . 同理 , 当 0 < a < 1 时 (7 ) 式右边也是一个定数 .注 2 由§2 习题 8 可知 , 当 x 为有理数时 , 同样可 按 ( 6 ) 式和 (7 ) 式来表 示 a x, 而且与我们以前所熟知的有理数乘幂的概念是 一致的 .这样 , 无论 x 是有 理 数还是无理数 , a x都可用 (6 ) 式和 ( 7) 式来统一表示 .定义 3 由基本初等函 数 经过 有限 次四 则运 算 与复 合运 算所 得到 的 函数 ,y =§3 函数概念15统称为初等函数.不是初等函数的函数, 称为非初等函数.如在本节第二段中给出的狄利克雷函数和黎曼函数, 都是非初等函数.习题1 . 试作下列函数的图象:( 1) y = x2 + 1 ; (2) y = ( x + 1) 2 ;( 3) y = 1 - ( x + 1 )2 ; (4) y = sgn( sin x) ;3 x , | x | > 1 ,( 5) y = x3 , | x | < 1 ,3 , | x | = 1 .2 . 试比较函数y = a x 与y = log a x 分别当 a = 2 和 a = 1 时2的图象.3 . 根据图1 - 2 写出定义在[ 0 , 1 ] 上的分段函数f1 ( x ) 和f2 ( x )的解析表示式.4 . 确定下列初等函数的存在域:( 1) y = sin( sin x) ; ( 2) y = lg( lg x) ;( 3) y = arcsin lg x105 . 设函数f ( x) = ; ( 4) y = lg arcsinx.102 + x , x ≤0 ,2 x , x > 0 .图 1 - 2求: (1 ) f ( - 3) , f (0 ) , f ( 1) ; (2 ) f (Δx) - f ( 0) , f ( - Δx) - f ( 0) (Δx > 0) .6 . 设函数 f ( x ) = 1, 求1 + xf (2 + x) , f ( 2 x) , f ( x2 ) , f ( f ( x) ) , f 1.f ( x )7 . 试问下列函数是由哪些基本初等函数复合而成:( 1) y = (1 + x) 20 ; (2 ) y = ( arcsin x2 ) 2 ;2 ( 3) y = lg(1 + 1 + x2 ) ; (4 ) y = 2sin x .8 . 在什么条件下,函数的反函数就是它本身? y =ax + bcx + d9 . 试作函数y = arcsin (sin x )的图象.10 . 试问下列等式是否成立:16 第一章实数集与函数( 1) tan( arctan x) = x , x∈R ;( 2) arctan( tan x) = x , x≠kπ+ 11 . 试问y = | x | 是初等函数吗? π2, k = 0 , ±1 ,±2 , .12 . 证明关于函数y = [ x ]的如下不等式:( 1) 当x > 0 时, 1 - x < x 1x≤1;( 2) 当x < 0 时, 1≤x 1x< 1 - x .§4 具有某些特性的函数在本节中, 我们将介绍以后常用到的几类具有某些特性的函数.一有界函数定义 1 设f 为定义在 D 上的函数.若存在数M( L) , 使得对每一个x∈D 有f ( x ) ≤ M ( f ( x) ≥ L) ,则称 f 为 D 上的有上( 下) 界函数, M( L) 称为 f 在D 上的一个上( 下) 界.根据定义, f 在D 上有上( 下) 界, 意味着值域 f ( D) 是一个有上( 下) 界的数集.又若M( L) 为 f 在D 上的上( 下) 界, 则任何大于( 小于) M ( L) 的数也是 f 在D 上的上( 下) 界.定义2 设f 为定义在 D 上的函数.若存在正数M , 使得对每一个x ∈D 有则称f 为D 上的有界函数.f ( x ) ≤M , ( 1)根据定义, f 在D 上有界, 意味着值域 f ( D) 是一个有界集.又按定义不难验证: f 在D 上有界的充要条件是f 在D 上既有上界又有下界.( 1) 式的几何意义是: 若 f 为D 上的有界函数, 则 f 的图象完全落在直线y = M 与y = - M 之间.例如, 正弦函数sin x 和余弦函数cos x 为R 上的有界函数, 因为对每一个x∈R 都有| sin x | ≤1 和| cos x | ≤1 .关于函数 f 在数集D上无上界、无下界或无界的定义, 可按上述相应定义的否定说法来叙述.例如, 设 f 为定义在D 上的函数, 若对任何M( 无论M 多大) , 都存在x0 ∈D , 使得 f ( x0 ) > M , 则称 f 为D 上的无上界函数.作为练习, 读者可自行写出无下界函数与无界函数的定义.§4 具有某些特性的函数 17例 1 证明 f ( x) = 1为 (0 , 1 ] 上的无上界函数 .x证 对任何正数 M , 取 ( 0 , 1] 上一点 x 0 = 1, 则有M + 1f ( x 0 ) = 1x 0= M + 1 > M .故按上述定义 , f 为 ( 0 , 1] 上的无上界函数 .前面已经指出 , f 在 其 定 义域 D 上 有上 界 , 是 指 值域 f ( D) 为 有 上 界 的 数 集 .于是 由 确界 原 理 , 数 集 f ( D) 有上 确 界 .通 常 , 我 们 把 f ( D) 的 上 确 界 记 为 sup f ( x ) , 并称之为 f 在 D 上的上确界 .类似地 , 若 f 在其定义域 D 上有下界 , 则x ∈ Df 在 D 上的下确界记为 inf f ( x) .x ∈ D例 2 设 f , g 为 D 上的有界函数 .证明 : (i ) ) inf f ( x) + inf g( x) ≤ inf { f ( x) + g( x) } ;x ∈ Dx ∈ Dx ∈ D(i )) sup { f ( x) + g( x) } ≤sup f ( x ) + sup g( x ) .x ∈ D证 ( i ) 对任何 x ∈ D 有x ∈ Dx ∈ Dinf f ( x ) ≤ f ( x) , inf g( x ) ≤ g( x) ª inf f ( x) + inf g( x ) ≤ f ( x) + g( x) .x ∈ Dx ∈ Dx ∈ Dx ∈ D上式表明 , 数 inf f ( x ) + inf g( x ) 是函数 f + g 在 D 上的一个下界 , 从而x ∈ Dx ∈ Dinf f ( x) + inf g( x) ≤ inf { f ( x ) + g( x) } .x ∈ D( ii ) 可类似地证明 ( 略 ) .x ∈ Dx ∈ D注 例 2 中的两个不等式 , 其严格的不等号有可能成立 .例如 , 设f ( x ) = x , g( x ) = - x , x ∈ [ - 1 , 1 ] ,则有 inf | x | ≤ 1f ( x ) = inf | x | ≤ 1g( x) = - 1 , sup | x | ≤ 1f ( x) = sup | x | ≤ 1g( x ) = 1 , 而inf | x| ≤ 1{ f ( x) + g ( x ) } = sup { f ( x ) + g( x) } = 0 .| x | ≤ 1二 单调函数定义 3 设 f 为定义在 D 上的函数 .若对任何 x 1 , x 2 ∈ D , 当 x 1 < x 2 时 , 总 有( i ) f ( x 1 ) ≤ f ( x 2 ) , 则称 f 为 D 上的增函数 , 特别当成立严格不等式 f ( x 1 ) < f ( x 2 ) 时 , 称 f 为 D 上的严格增函数 ;(ii ) f ( x 1 ) ≥ f ( x 2 ) , 则 称 f 为 D 上 的 减 函 数 , 特 别 当 成 立 严 格 不 等 式 f ( x 1 ) > f ( x 2 ) 时 , 称 f 为 D 上的严格减函数 ;增函数和减函数统称为单调函 数 , 严格 增函 数和严 格减 函数统 称为 严格 单 调函数 .例 3 函数 y = x 3在 R 上是 严格 增的 .因为 对任 何 x 1 , x 2 ∈ R , 当 x 1 < x 21 2- 1 - 1 - 11 2 1 2 1 1 218第一章 实数集与函数时总有x33x 123 2即 x 3< x 3.2- x 1 = ( x 2 - x 1 ) x 2 + 2+ 4x 1 > 0 ,例 4 函数 y = [ x ] 在 R 上是增的 .因为对任何 x 1 , x 2 ∈R , 当 x 1 < x 2 时 显然有 [ x 1 ] ≤ [ x 2 ] .但 此 函 数 在 R 上 不 是 严 格 增 的 , 若 取 x 1 = 0 , x 2 = 12 , 则 有[ x 1 ] = [ x 2 ] = 0 , 即定义中所要求的严格不等式不成立 .此函数的图象如图 1 - 3 所示 .严格单调 函 数 的 图 象与 任 一 平 行 于 x 轴 的 直 线至多有一个交 点 , 这一 特性 保 证了 它 必定 具 有反 函数 .定理 1 .2 设 y = f ( x ) , x ∈ D 为严 格增 ( 减 ) 函数 , 则 f 必有反函数 f - 1, 且 f - 1在其定义域 f ( D) 上也是严格增 ( 减 ) 函数 .证 设 f 在 D 上 严格 增 .对任 一 y ∈ f ( D) , 有 x ∈ D 使 f ( x) = y .下面证明这样的 x 只能有一个 .图 1 - 3事实上 , 对于 D 内任一 x 1 ≠ x , 由 f 在 D 上的严格增性 , 当 x 1 < x 时 f ( x 1 ) < y, 当 x 1 > x 时有 f ( x 1 ) > y, 总之 f ( x 1 ) ≠ y .这就说 明 , 对 每一个 y ∈ f ( D) , 都 只 存在唯 一的 一个 x ∈ D, 使 得 f ( x ) = y , 从而 函 数 f 存在 反函 数 x = f - 1( y) , y ∈ f ( D) .现证 f - 1也是 严格 增的 .任取 y , y ∈ f ( D) , y < y .设 x = f- 1( y ) , x = f - 1 ( y 2 ) , 则 y 1 = f ( x 1 ) , y 2 = f ( x 2 ) .由 y 1 < y 2 及 f 的严 格增 性 , 显然 有 x 1< x 2 , 即 f ( y 1 ) < f ( y 2 ) .所以反函数 f 是严格增的 .例 5 函数 y = x 2在 ( - ∞ , 0 ) 上是 严格减 的 , 有反 函数 ( 按习惯 记法 ) y = - x , x ∈ ( 0 , + ∞ ) ; y = x 2在 [0 , + ∞ ) 上是 严格 增的 , 有 反 函数 y = x , x ∈ [0 , + ∞ ) 。
数学分析教案(华东师大版)第一章实数集与函数

第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
Chapter01-实数集与函数

数学分析
17
北方工业大学数学系
[a, ){ x|ax}, (, b]{ x|xb}, (a, ){ x|a<x},
(, b){ x|x<b},
(, ){ x| |x|<}.
数学分析
S有上确界,则 h sup S S h max S . 例 3:
北方工业大学数学系
S有下确界,则 h inf S S h min S .
证:仅证下确界的情况。
必要性:
h inf S , 故x S , x h . 而h S , 故h min S .
则x>y的等价条件是:存在非负整数n,使得
x n yn ,
其中 x n 表示x的n位不足近似,y n 表示y的n位 过剩近似。
证明:见附录。
数学分析
9
北方工业大学数学系
例1 设 x, y为实数,x<y. 证明:存在有理
数r 满足 x<r<y.
(此例说明任意两个不等的实数之间,都 有一个有理数)
例:命题“对任意的实数x, 都存在实数y,使得x+y=1” 可表示为“xR, yR, 使得x+y=1”
数学分析
2
北方工业大学数学系
3. 我们用符号“”表示“充分条件”或“推出”;
比如“ p q ”表示“ 若 p 成立, 则 q 也成立”。 即p 是 q 成立的充分条件.
4. 我们用符号“”表示“当且仅当”或“充要条件”;
显然 , 任何一个不大于 1的实数都是 N 的下界 . M 0, 取 n0 [ M ] 1, 则 n0 M , 即 N 无上界 .
数学分析课后答案

第一章 实数集与函数§1实数1、设a 为有理数,x 为无理数,试证明:⑴x a +是无理数.⑵当0≠a 时,ax 是无理数.证: ⑴ 假设x a +是有理数,则x a x a =-+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.⑵假设ax 是有理数,则x aax =为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.1、 试在数轴上表示出下列不等式的解:⑴ 0)1(2>-x x ;⑵⑶2、 设a 、R b ∈.证明:若对任何正数ε有ε<-b a ,则b a =.证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <;若b a >,则又由绝对值定义知:b a b a -=-.令b a -=ε,则ε为正数,但这与ε<-=-b a b a 矛盾;若b a <,则又由绝对值定义知:a b b a -=-.令a b -=ε,则ε为正数,但这与ε<-=-a b b a 矛盾;从而必有b a =.3、 设0≠x ,证明21≥+xx ,并说明其中等号何时成立. 证:因x 与x1同号,从而21211=⋅≥+=+x x x x x x , 等号当且仅当x x 1=,即1±=x 时成立.4、 证明:对任何R x ∈,有⑴ 121≥-+-x x ;⑵2321≥-+-+-x x x证: ⑴因为21111-=+-≤--x x x , 所以121≥-+-x x . ⑵因为21132-+-≤-≤--x x x x , 所以2321≥-+-+-x x x5、 设a 、b 、+∈R c (+R 表示全体正实数的集合),证明:c b c a b a -≤+-+2222 证:对任意的正实数a 、b 、c 有)(22222c b a bc a +≤,两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++, 即))(()(222222c a b a bc a ++≤+ bc c a b a a 2))((2222222-≤++-,两端再同加22c b +,则有c b c a b a -≤+-+2222其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边.当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立6、 设0,0>>b x ,且b a ≠,证明x b x a ++介于1与b a 之间. 证:因为x b a b x b x a +-=++-1,)()(x b b a b x b a x b x a +-=-++,且0,0>>b x 所以当b a >时, ba xb x a <++<1; 当b a <时, 1<++<xb x a b a ; 故x b x a ++总介于1与b a 之间.7、 设p 为正整数,证明:若p 不是完全平方数,则p 是无理数 证:假设p 是有理数,则存在正整数m 、n 使n m p =,且m 与n 互素. 于是22m p n =.可见n 能整除2m .由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .从而m mnv u m =+2因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n 因此2m p =.这与p 不是完全平方数相矛盾, 故p 是无理数8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解:⑴ b x a x -<-;⑵b x a x -<-;⑶b a x <-2. 解: ⑴原不等式等价于11<---bx b a 这又等价于20<--<b x b a 即⎩⎨⎧-<-<>b x b a b x 220或⎩⎨⎧->-><b x b a b x 220 即⎪⎪⎩⎪⎪⎨⎧>+>>b a b a x b x 2或⎪⎪⎩⎪⎪⎨⎧<+<<ba b a x b x 2 故当b a >时,不等式的解为2b a x +> 当b a <时,不等式的解为2b a x +< 当b a =时,不等式无解.⑵原不等式等价于⎩⎨⎧-<->b x a x b x 且⎩⎨⎧-<->b x x a b x 即⎩⎨⎧>>b a b x 且⎪⎩⎪⎨⎧+>>2b a x b x 故当b a >时,21b x +>; 当b a ≤时,不等式无解.⑶当0≤b 时,显然原不等式无解,当0>b 时原不等式等价于b a x b a +<<-2 因此①当0≤+b a 或0≤b 时,无解 ②当0>+b a 且0>b 时,有解Ⅰ 如果b a ≥,则解为b a x b a +<<- 即b a x b a +<<-或b a x b a +>>--Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现在的“信息与计算科学专业”由信息科 学、计算数学、运筹学与控制论三个主干方 向组成。
“计算数学”是本专业中有最长历史的 学科。1955年,北京大学等学校开始在数 学系设立“计算数学专业”,并招收研究生。 1958年后愈来愈多的综合性大学相继开设 了“计算数学专业”。在综合大学成立计算 数学专业的同时,部分理工科大学在“应用 数学专业”下也开设计算数学专业方向。
数学与应用数学专业
主要课程 数学分析、高等代数、解析几何、 概率论、数理统计、常微分方程、复变函数、 运筹学、数学模型、数学实验、金融数学、 经济预测与决策、多元统计分析、利息理论、 保险精算、计量经济学、证券投资统计分析、 国际金融学、西方经济学等。
信息与计算科学专业
2003年,“信息与计算科学专业”的专业 点达到366个,招生25000人。居高校理科 专业点的第一位。
信息与计算科学专业
主要课程:数学分析、高等代数、解析几何、 概率论、数理统计、常微分方程、复变函数、 偏微分方程、运筹学、数学模型、数学实验、 数据库原理与应用、数值分析、多元统计分析、 信息论基础、离散数学、网络程序设计、计量 经济学、西方经济学、证券投资统计分析、国 际金融学等。
1990年的“兰州会议”(全国高等理科 教育工作会议),提出建设“规模适宜,布 局合理,结构优化,加强基础,重视应用, 分流培养”的理念,强调理科专业要向应用 性理科发展。同时设立“国家理科基地”; 成立国家教育部数学与力学教学指导委员会。
1998年教育部调整专业,将原来的八个 专业合并为数学与应用数学专业、信息与计
通过学习数学,不仅积累数学的知识和 方法,掌握必要的工具和技巧,而且提高将 数学有效地用于解决现实世界中种种实际问 题的自觉性和主动性,并具备一定的能力, 今后能够和他人合作或想到和他人合作,运 用数学思想和工具来解决自己在工作中碰到 的一些关键问题。在这方面,要求在一定的 程度上熟练掌握关键的数学知识和方法,也 要求用数学来解决实际问题的意识和能力, 并要求将二者结合起来。
通过学习数学,对数学这个学科有一个正 确的认识和理解,对数学有一种仰慕和敬重, 有一种向往和热爱,有一种亲和力。如果觉得 数学纸上谈兵、毫无用处,觉得数学高不可攀、 难以理解,觉得数学枯燥无味,甚至面目可憎, 对其敬而远之、退避三舍,这样的数学教与学, 无疑是彻底失败了。
通过学习数学,特别是通过数学严格的训 练,能逐步领会到数学的精神实质和思想方 法,在潜移默化中积累起一些优良的素质,造 就自己的数学教养,不仅变得更加聪明起来, 而且对今后一生的发展都会起着重要的积极 作用。这一点,特别体现了数学教育本身就 是一种素质教育。忽略了这一点,就失去了 数学教育的灵魂。
在工作中真正需要用到的具体数学分支 学科,具体的数学定理、公式和结论,其实 并不很多,学校里学过的一大堆数学知识很 多都似乎没有派上什么用处,有的甚至已经 淡忘,但所受的数学训练,所领会的数学思 想和精神,所积累的数学素养,却无时无刻 不在发挥着积极的作用,成为取得成功的最 重要的因素。
仅仅将数学作为知识来学习,而忽略了 数学思想对学生的熏陶以及学生数学素质的提 高,忽略了数学作为一种先进的文化所起的特 殊而重要的作用,就失去了数学课程最本质的 特点和要求,失去了开设数学课程的意义。这 就像练武之人,单单学会了一些招式,而不懂 得这些招式的意图和来龙去脉,只知剑招,不 知剑意,最多只能依样画葫芦,是不可能真正 得心应手地加以运用的,更谈不上达到融会贯 通的境界了。
1998年,教育部把原数学类中的计算数学 及其应用软件专业、信息科学和运筹学与控 制论专业合并成立了新的“信息与计算科学 专业”。这对国内信息科学的人才培养与研 究起到了巨大的推动作用。
信息与计算科学专业
培养德智体美全面发展,具有良好的数 学素养,掌握信息科学和计算科学的基本理 论与方法,掌握一定的经济理论知识,受到 科学研究的初步训练,能利用计算机解决实 际问题的高级专业人才。能适应在科研部门、 企事业单位、学校、经济管理部门从事科研、 教学与应用软件开发及管理工作等社会需要 的应用型人才,并为更高层次的研究生教育 输送优秀人才。
20世纪70年代,国内仅有少量电子计 算机,所以开办计算数学专业的大学并不多。 但到80年代,随着计算机的逐渐普及和对计 算数学专业毕业生需求的急剧增加,许多大 学都开始兴办计算数学专业。应用数学(含 计算数学)专业一时间成为高等学校中最大 专业之一。开办近50年来,为国家培养了大 批优秀人才。特别是我国的许多计算机科学 家如制论”对现代科学技术和 现代工业的作用是不言而喻的。但国内开设 运筹学与控制论专业的学校并不多。少部分 学校在该专业方面有较强的师资力量。
“信息科学”是20世纪80年代新发展起 来的方向。国内能开办这个专业方向的学校 较少或较弱。当时的国内数学系里,能够开 办信息科学专业的学校为数不多,很多学校 还没有形成力量雄厚的教学与科研队伍。
算科学专业,以及统计学专业。(两个半)
数学与应用数学专业
通过讲授数学科学的基本理论、基本方法、 数学试验的实际操作技能以及其他相关的经 济、金融、计算机类学科内容,使其掌握应 用数学、经济学、金融学的基础知识以及使 用计算机解决实际问题的能力,将其培养成 为能在科技、教育和经济部门从事研究教学 工作或在生产经营及管理部门从事实际应用 开发研究和管理工作的应用型人才,并为高 层次教育输送人才。
数学分析
华东师范大学 数学系
这种单纯以学习知识为目的的观点,将 教育仅仅看成是知识的传授,是很片面的, 也是不可取的。
如果将数学教学仅仅看成是知识的传授 (特别是那种照本宣科式的传授),那么即 使包罗了再多的定理和公式,可能仍免不了 沦为一堆僵死的教条,难以发挥作用;而掌 握了数学的思想方法和精神实质,就可以由 不多的几个公式演绎出千变万化的生动结论, 显示出无穷无尽的威力。