Aldmin《数学分析》3第一章 实数集与函数---§2数集和确界原理

Aldmin《数学分析》3第一章 实数集与函数---§2数集和确界原理
Aldmin《数学分析》3第一章 实数集与函数---§2数集和确界原理

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。

授课章节:第一章 实数集与函数---§2数集和确界原理

教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。

教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加

以运用。

教学重点:确界的概念及其有关性质(确界原理)。

教学难点:确界的定义及其应用。

教学方法:讲授为主。

教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课。

引言

上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章 §1实数的相关内容。下面,我们先来检验一下自学的效果如何!

1.证明:对任何x R ∈有(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. 2.证明:||||||x y x y -≤-.

3.设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.

4.设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<.

[引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一。而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用。提请注意这种差别,尽快掌握本门课程的术语和工具(至此,复习告一段落)。

本节主要内容: 1.先定义实数集R中的两类主要的数集——区间邻域;2.讨论有界集与无界集;3.由有界集的界引出确界定义及确界存在性定理(确界原理)。

一 区间与邻域

1.区间(用来表示变量的变化范围)

设,a b R ∈且a b <。

{}{}{}{}{}{}{}{}{}|(,).|[,].|[,)|(,]|[,).|(,].|(,).|(,).|.x R a x b a b x R a x b a b x R a x b a b x R a x b a b x R x a a x R x a a x R x a a x R x a a x R x R ????∈<<=????∈≤≤=??∈≤<=?????∈<≤=?????∈≥=+∞?∈≤=-∞??∈>=+∞??∈<=-∞??∈-∞<<+∞=?开区间: 有限区间闭区间: 闭开区间:半开半闭区间开闭区间:区间无限区间?????????????

2.邻域

联想:“邻居”。字面意思:“邻近的区域”。(看左图)。与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?

(1) a 的δ邻域:设,0a R δ∈>,满足不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻

域,记作(;)U a δ,或简记为()U a ,即

{}(;)||(,)U a x x a a a δδδδ=-<=-+.

(2) 点a 的空心δ邻域

{}(;)0||(,)(,)()o o U a x x a a a a a U a δδδδ=<-<=-?+ .

(3) a 的δ右邻域和点a 的空心δ右邻域

{}{}00(;)[,)();

(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ++++=+=≤<+=+=<<+

(4) 点a 的δ左邻域和点a 的空心δ左邻域

{}{}00(;)(,]();

(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ+---=-=-<≤=-=-<<

(5)∞邻域,+∞邻域,-∞邻域

{}()||,U x x M ∞=> (其中M为充分大的正数);{}(),U x x M +∞=> {}()U x x M -∞=<-

二 有界集与无界集

什么是“界”?

定义1(上、下界): 设S 为R 中的一个数集。若存在数()M L ,使得一切x S ∈都有()x M x L ≤≥,则称S为有上(下)界的数集。数()M L 称为S的上界(下界);若数集S既有上界,又有下界,则称S为有界集。

若数集S不是有界集,则称S为无界集。

注:1)上(下)界若存在,不唯一;2)上(下)界与S的关系如何?看下例:

例1 讨论数集{}|N n n +=为正整数的有界性。

分析:有界或无界←上界、下界?下界显然有,如取1L =;上界似乎无,但需要证明。

解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +无上界。证明如下:假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取0[]1,n M =+则0n N +∈,且0n M >.

综上所述知:N +是有下界无上界的数集,因而是无界集。

例2 证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集。

[问题]:若数集S有上界,上界是唯一的吗?对下界呢?(答:不唯一 ,有无穷多个)。

三 确界与确界原理

1、定义

定义2(上确界) 设S是R中的一个数集,若数η满足:(1) 对一切,x S ∈有x η≤(即η是S的上界);

(2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S的上界中最小的一个),则称数η为数集S的上确界,记作 sup .S η=

定义3(下确界)设S是R中的一个数集,若数ξ满足:(1)对一切,x S ∈有x ξ≥(即ξ是S的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S的下界中最大的一个),则称数ξ为数集S的下确界,记作inf S ξ=.

上确界与下确界统称为确界。

[作业]:P9 1(1),(2); 2; 4 (2)、(4);7

2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明 证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则 确界原理 ; Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ; Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 . 一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 1 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”: 定理 2 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对, 当时, 总有. 推论2 若是区间套确定的公共点, 则有↗, ↘, . 3. 用“区间套定理”证明“Cauchy收敛准则”: 定理 3 数列收敛是Cauchy列.

引理Cauchy列是有界列. ( 证 ) 定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅 读 . 现采用三等分的方法证明, 该证法比较直观. 4.用“Cauchy收敛准则”证明“确界原理”: 定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 . 证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确 界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是 的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则, 收敛; 同理收敛. 易见↘. 设↘.有↗. 下证.用反证法验证的上界性和最小性. 二. “Ⅱ”的证明: 1. 用“区间套定理”证明“致密性定理”: 定理6 ( Weierstrass ) 任一有界数列必有收敛子列. 证(突出子列抽取技巧) 定理7 每一个有界无穷点集必有聚点. 2.用“致密性定理”证明“Cauchy收敛准则”: 定理8 数列收敛是Cauchy列.

授课章节:第一章实数集与函数---.doc

第一章实数集与函数 §1.1实数 教学目标:使学生掌握实数的基本性质. 教学重点:(1) 了解实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式. 教学难点:实数集的概念及 其应用. 教学方法:讲授.(部分内容自学) 教学过程: 一、 实数及其性质 :叹嘗纟(阳为整数且q 主0)或有限小数和无限小数. 负分数,p 无理数:用无限不循环小数表示. R = {x\兀为实数} --全体实数的集合? 问题:有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要, 我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 对 于正有 限 小 数x = a n .其中0 b {}或存在非负整数/,使得cik=b k ,k = \,2, ,/,而%>$+】,则称尢大于y 或y 小 Tx,分别记为x 〉y 或)YX .对丁?负实数x 、y,若按上述规定分别有-x = -y 或-兀>-厂 则 有理数 (-)实数

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

1.2数集和确界原理

§1.2 数集和确界原理 授课章节:第一章 实数集与函数---§1.2数集和确界原理 教学目标:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1) 掌握邻域的概念; (2) 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用. 教学重点:确界的概念及其有关性质(确界原理). 教学难点:确界的定义及其应用. 教学方法:讲授为主. 教学过程:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课. 一、 区间与邻域 (一) 区间(用来表示变量的变化范围) 设,a b R ∈且a b <. ???有限区间区间无限区间 ,其中 {}{}{}{}|(,).|[,]. |[,)|(,]x R a x b a b x R a x b a b x R a x b a b x R a x b a b ??∈<<=??∈≤≤=??∈≤<=?????∈<≤=???开区间: 有限区间闭区间: 闭开区间:半开半闭区间开闭区间: {}{}{}{}{}|[,).|(,].|(,).|(,).|. x R x a a x R x a a x R x a a x R x a a x R x R ?∈≥=+∞?∈≤=-∞??∈>=+∞??∈<=-∞??∈-∞<<+∞=?无限区间 (二) 邻域 联想:“邻居”.字面意思:“邻近的区域”.(看左图).与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢? 1、a 的δ邻域:设,0a R δ∈>,满足不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻域,记作(;)U a δ,或简记为()U a ,即

集合与函数的概念

第一章集合与函数的概念 龙港高中林长豪 课题:§1.1 集合 1.1.1 集合的含义与表示 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系、集合相等的含义; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程: 引入课题 引例1:(数学家和牧民的故事)牧民非常喜欢数学,但不知道集合是什么,于是他请教一位数学家.集合是不定义的概念,数学家很难回答牧民的问题.有一天他来到牧场,看到牧民正把羊往羊圈里赶,等到牧民把全部羊赶入羊圈关好门.数学家灵机一动,高兴地告诉牧民:“你看这就是集合!” 2:军训时当教官一声口令:“高一(14)班同学到操场集合” 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 新课教学 (一)集合的有关概念 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。 关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(举例) 常用数集及其记法

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

数集和确界原理

§2 数集和确界原理 教学目的与要求: 使学生正确理解实数集合的定义及各种表示方法,掌握实数集合有界,有上下确界的定义,理解确界原理。 教学重点,难点: 集合有界,有上下确界的定义, 确界原理的证明及应用。 教学内容: 本节内容分两部分介绍,我们首先定义实数集R 中的两类重要数集—区间与邻域,然后讨论有界集并给出确界定义和确界原理。 一 区间与邻域 1、区间的定义 设a 、b ∈R 且a <b. 开区间(a, b )、闭区间 [a, b]、半开半闭区间([]b a b a ,),和、有限区间的定义。 几何意义。 区间[)∞+,a 、(]a ,∞-、), (∞+a 、()a ,∞-、R =∞+-∞),(、无限区间的定义。 有限区间和无限区间统称为区间。 满足绝对值不等式δ<-a x 的全体实数x 的集合称为 2、邻域的定义 设0,>∈δR a 。 点a 的δ邻域 );(δa U 或)(a U 的定义 点a 的空心δ邻域()δ;a U 或)(a U 的定义 ()δδ;);(a U a U 与 的差别 点a 的δ右邻域()δ;a U +或)(a U + 点a 的δ左邻域()δ;a U -或)(a U - 点a 的空心δ左、右邻域()a U - 、()a U - 等的定义 ∞邻域()∞U 、+∞邻域()∞+U 、∞-邻域()∞-U 。 二 有界集·确界原理 1、有阶集的定义 定义1 设S 为R 中的一个数集。若存在数M (L ),使得对一切,S x ∈都有(),L x M x ≥≤则称S 为有上界(下界)的数集,数M (L )称为S 的一个上界(下界)。 若数集S 既有上界又有下界,则称S 为有界集。若S 不是有界集,则称S 为无界集。 注:介绍有界集的几种等价定义,正面叙述无界集的概念。 例1 证明数集{} 为正整数n n N =+有下界而无上界。

实数集与函数.

第一章 实数集与函数 §1.1实数 授课章节:第一章 实数集与函数——§1.1 实数 教学目标:使学生掌握实数的基本性质. 教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用. 教学方法:讲授.(部分内容自学) 教学过程: 引言 上节课中,我们与大家共同探讨了《分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. 问题: 为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一、 实数及其性质 (一) 实数(,q p q p ??≠?? ???? 正分数,有理数为整数且q 0)或有限小数和无限小数.负分数,无理数:用无限不循环小数表示. {}|R x x =--为实数全体实数的集合. 问题: 有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 对于正有限小数01 ,n x a a a =其中009,1,2,,,0,i n a i n a a ≤≤=≠为非负整数,记 0119999n x a a a -=;对于正整数0,x a =则记0(1).9999 x a =-;对于负有限小数(包括负整 数)y ,则先将y -表示为无限小数,现在所得的小数之前加负号.0= 0.0000

Aldmin《数学分析》3第一章 实数集与函数---§2数集和确界原理

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。 授课章节:第一章 实数集与函数---§2数集和确界原理 教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。 教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加 以运用。 教学重点:确界的概念及其有关性质(确界原理)。 教学难点:确界的定义及其应用。 教学方法:讲授为主。 教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课。 引言 上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章 §1实数的相关内容。下面,我们先来检验一下自学的效果如何! 1.证明:对任何x R ∈有(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. 2.证明:||||||x y x y -≤-. 3.设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤. 4.设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<. [引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一。而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用。提请注意这种差别,尽快掌握本门课程的术语和工具(至此,复习告一段落)。 本节主要内容: 1.先定义实数集R中的两类主要的数集——区间邻域;2.讨论有界集与无界集;3.由有界集的界引出确界定义及确界存在性定理(确界原理)。 一 区间与邻域 1.区间(用来表示变量的变化范围) 设,a b R ∈且a b <。

实数集与函数解读

第一章 实数集与函数 习题 §1实数 1、 设a 为有理数,x 为无理数。证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。 2、 试在数轴上表示出下列不等式的解: (1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。 3、 设a 、b ∈R 。证明:若对任何正数ε有|a-b|<ε,则a = b 。 4、 设x ≠0,证明|x+x 1|≥2,并说明其中等号何时成立。 5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。 6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。证明 |22b a +-22c a +|≤|b-c|。 你能说明此不等式的几何意义吗? 7、 设x>0,b>0,a ≠b 。证明x b x a ++介于1与b a 之间。 8、 设p 为正整数。证明:若p 不是完全平方数,则p 是无理数。 9、 设a 、b 为给定实数。试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|0(a ,b ,c 为常数,且a

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

六大定理互相证明总结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件: (1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1] 证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

确界原理的证明

§2 数集. 确界原理 (一) 教学内容:实数的区间与邻域;集合的上、下界,上确界和下确界;确界原理 难 点: 上、下确界定义的理解、数集确界的证明 二) 教学目的: 1)正确使用区间和邻域概念,掌握集合的有界性的证明; 2)初步理解上下确界的定义及确界原理的实质。 (三)基本要求: 1)掌握实数的区间与邻域概念;分清最大值与上确界的联系与区别;结合具体集合, 能指出其确界; 2)能用定义证明集合A 的上确界为ξ.即: A x ∈?有ξ≤x ,且 ,,00A x ∈?>?ε使得 εξ->0x . (三) 教学建议: (1) 此节重点是确界概念和确界原理.不可强行要求一步到位,对多数学生可只布置 证明具体集合的确界的习题. (2) 此节难点亦是确界概念和确界原理.对较好学生可布置证明抽象集合的确界的习 题. 一 区间与邻域: 区间 邻 域 设a 与δ是两个实数,且0>δ,称点集 }|||{δ<-=a x x E 为点 a 的δ邻域,记作)(a U δ 称点集 }|{}|{)(δδδ+<<<<-=a x a x a x a x a U 为点 a 的去心δ邻域 记作)(0 a U δ . δ δ

a 的右δ邻域 }|{)(δδ+<≤=+a x a x a U a 的右δ空心邻域 }|{)(0 δδ+<<=+a x a x a U a 的左δ邻域 }|{)(a x a x a U ≤<-=-δδ a 的左δ空心邻域 }|{)(0a x a x a U <<-=-δδ ∞邻域 }||| {)(M x x U >=∞ ∞+ 邻域 }|{)(M x x U >=∞ ∞- 邻域 }|{)(M x x U -<=∞ 二 有界数集 . 确界原理: 1. 有界数集: 定义(上、下有界, 有界) 设 S 为实数R 上的一个数集,若存在一个数M ( L ), 使得对一切 S x ∈ 都有 )(L x M x ≥≤,则称S 为有上界(下界)的数集。 若集合S 既有上界又有下界,则称S 为有界集。 例如,区间 ],[b a 、(,) (,a b a b 为有限数)、邻域等都是有界数集,集合 {} ) , ( ,sin ∞+∞-∈==x x y y E 也是有界数集. 无界数集: 若对任意0M >,存在 ,||x S x M ∈>,则称S 为无界集。 例如,) , 0 ( , ) 0 , ( , ) , (∞+∞-∞+∞-,有理数集等都是无界数集, 例1 证明集合 ??? ??? ∈= =) 1 , 0 ( ,1 x x y y E 是无界数集. 证明:对任意0M >, 存在 1 1 (0,1),,11 x y E y M M M x =∈= ∈=+>+ 由无界集定义,E 为无界集。 y x M M+1

数学分析下——二元函数的极限课后习题

第二节二元函数的极限 1、试求下列极限(包括非正常极限): (1);(2); (3);(4); (5);(6)(x+y)sin; (7)x2+y2. 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=;(2)f(x,y)=(x+y)sinsin; (3)f(x,y)=;(4)f(x,y)= ; (5)f(x,y)=ysin;(6)f(x,y)=; (7)f(x,y)=. 。f(x,y)存在且等于A;2。y在b的某邻域内,有f(x,y)= 3、证明:若1 (y)则 f(x,y)=A. 4、试应用ε—δ定义证明 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) f(x,y)=A;(2)f(x,y)=A. 7、试求下列极限: (1);(2)(x2+y2)e-(x+y); (3)(1+)xsiny;(4). 8、试作一函数f(x,y)使当x+,y+时, (1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在; (4)重极限与一个累次极限存在,另一个累次极限不存在. 9、证明定理16.5及其推论3. 10、设f(x,y)在点(x0,y0)的某邻域U。()上有定义,且满足: (i)在U。()上,对每个y≠y0,存在极限f(x,y)=ψ(y); (ii)在U。()上,关于x一致地存在极限f(x,y)=(x)(即对任意ε>0,存在δ>0,当0<|y-y0|<δ时,对所有的x,只要(x,y)∈U。(),都有|f(x,y)-(x)|<成立). 试证明 f(x,y)=f(x,y).

数集 确界原理(经典课件).

§2数集?确界原理 教学内容:1.实数集的有关概念; 2.确界的概念和确界原理。 教学目的:1.使学生知道区间与邻域的表示方法; 2.使学生深刻理解确界的与确界原理,并在有关命题的证明中正确地加以运用。 教学重点:确界的概念及其有关性质(确界原理)。 教学难点:确界的定义及其应用。 教学方法:讲授为主。 教学学时:2学时。 引言: 为了以后表述的方便,本节课我们先定义实数集R中的两类重要的数集——区间邻域;并讨论有界集与无界集;最后再由有界集的界引出确界定义及确界存在性定理(确界原理)。后者是我们以后关于实数理论研究的基础,应给予充分重视。 一、区间与邻域: 1.区间(用来表示变量的变化范围): 设,a b R ∈且a b <。 {}{}{}{}{}{}{}{}{}|(,).|[,].|[,)|(,]|[,).|(,].|(,).|(,).|.x R a x b a b x R a x b a b x R a x b a b x R a x b a b x R x a a x R x a a x R x a a x R x a a x R x R ????∈<<=????∈≤≤=??∈≤<=?????∈<≤=?????∈≥=+∞?∈≤=-∞??∈>=+∞??∈<=-∞??∈-∞<<+∞=?开区间: 有限区间闭区间: 闭开区间:半开半闭区间开闭区间:区间无限区间????????????? 注:∞+读作正无穷大;∞-读作负无穷大。 2.邻域: 联想字面意思:“邻近的区域”。 设a 为任一给定实数,δ(Delta----德耳塔)为一给定正实数。 (1) 点a 的δ邻域:{}(;)||(,)U a x x a a a δδδδ=-<=-+ (2)点a 的空心δ邻域:{}),(),(||0)(δδδδ+?-=<-

通过视频自学确界原理证明的学习笔记完整整理版zfy

“R”指的是全体实数集合“?”一切 “a A ?∈”,表示对一切属于集合A的元素a 用定义证明没有最大上界 确界存在原理证明的学习笔记 北京师范大学郇中丹 这是我的学习笔记,里面的有些证明是王峻老师给出的。 确界存在定理是初学数学分析遇到的第一个学习难度大的定理,一是理解难度比较大,还有就是对定理重要性的认识不是很到位。 在看郇中丹的教学视频之前我反复看过这个定理两个不同版本数学分析教材中的证明,一个是陈纪修版,高等教育出版社的《数学分析第二版》(2004年6月第2版),一个是张筑生编著,北京大学出版社的《数学分析新讲》(1990年1月第1版)。当时我认为自己弄懂了这个定理的证明,但当我看到北京师范大学郇中丹的课堂教学视频实录(2006年9月25日的两节课,100分钟)后才发现自己还没有完全明白。郇中丹证明严谨,当然也就更难理解。我花了自己近一个月的业余时间,揣摩他的证明,弄明白了这个定理证明,整理了这份学习笔记。 采取双栏(左窄右宽)的方式是因为这个定理的证明非常长,当你从起点出发走的比较远时,你会发现已经经常会忘了自己到哪里了,又该去哪里,左边的窄栏帮你快速了解自己现在所处的位置,方便你继续前进。 一、定义上界和上确界 在证明过程中会反复用到这两个定义,尤其是上确界的定义,一定要搞明白. 1.上界 设A?R,A不是空集,b∈R,如果a A ?∈,都有a b ≤,称b是集合A的上界. 下面的问题是显然的. (1)非空有上界的实数集合A有最大上界吗? 显然没有最大的上界.理由如下: 因为若b是集合A的上界,有 1 b b >,则a A ?∈,都有1 b b a >≥,即 1 a b b ≤<,那么 1 b也是集合A的上界.所以集合A没有最大的上界. 问题2即确界存在原理

集合与函数知识点总结

集合与函数概念知识点总结 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集. 【1.1.3】集合的基本运算

A B B ?I 并集 A B U {|,x x A ∈或 }x B ∈ (1)A A A =U (2)A A ?=U (3)A B A ?U A B B ?U B A 补集 U A e {|,}x x U x A ∈?且 1 ()U A A =? I e 2()U A A U =U e (1不等式 解集 ||(0)x a a <> {|}x a x a -<< ||(0)x a a >> |x x a <-或}x a > ||,||(0)ax b c ax b c c +<+>> 把ax b +看成一个整体,化成||x a <, ||(0)x a a >>型不等式来求解 (2判别式 24b ac ?=- 0?> 0?= 0?< 二次函 数 2(0) y ax bx c a =++>的图象 O 一元二次方程 20(0) ax bx c a ++=>的根 21,242b b ac x a -±-= (其中 12) x x < 122b x x a ==- 无实根 20(0) ax bx c a ++>>的解集 1 {|x x x <或 2} x x > {| x }2b x a ≠- R 20(0) ax bx c a ++<>的解集 12{|} x x x x << ? ? 〖1.2【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B ()()()U U U A B A B =I U 痧?()()() U U U A B A B =U I 痧?

华东师范大学数学系《数学分析》讲义函数极限【圣才出品】

第3章函数极限 3.1本章要点详解 本章要点 ■函数极限的概念 ■函数极限的性质 ■函数极限的四则运算 ■函数极限存在的条件 ■两个重要的极限 ■无穷小量阶的比较 ■渐近线 重难点导学 一、函数极限概念 1.x趋于∞时函数的极限 设f为定义在[a,+∞)上的函数,A为定数.若对任给的ε>0,存在正数M(≥a),使得当x>M时有|f(x)-A|<ε,则称函数f当x趋于+∞时以A为极限,记作

2.x趋于x0时函数的极限 设函数f在点x0的某个空心邻域U°(x0;δ')内有定义,A为定数.若对任给的ε>0,存在正数δ(<δ'),使得当0<|x-x0|<δ时有|f(x)-A|<ε,则称函数f当x趋于x0时以A为极限,记作 3.单侧极限 设函数f在(或上有定义,A为定数.若 对任给的ε>0,存在正数δ(<δ′),使得当(或 时有 则称数A为函数f当x趋于x0+(或x0-)时的右(左)极限,记作 或 右极限与左极限统称为单侧极限.f在点x0的右极限与左极限又分别记为 与 4.定理

二、函数极限的性质 1.唯一性 若极限存在,则此极限是唯一的. 2.局部有界性 若存在,则f在x0的某空心邻域内有界. 3.局部保号性 若(或<0),则对任何正数r<A(或r<-A),存在,使得对一切 有 4.保不等式性 设与都存在,且在某邻域内有 ,则 5.迫敛性 设,且在某内有 则 6.四则运算法则

若极限与都存在,则函数,,当 时极限也存在,且 (1) (2) (3)若,则f/g当x→x0时极限存在,且有 三、函数极限存在的条件 1.归结原则 设f在上有定义存在的充要条件是:对任何含于 且以x0为极限的数列,极限都存在且相等. 2.设函数f在点x0的某空心右邻域有定义,的充要条 件是:对任何以x0为极限的递减数列有 3.设f为定义在上的单调有界函数,则右极限存在.4.柯西准则 设函数f在上有定义.存在的充要条件是:任给ε>0,

实数集与函数

第一章 实数集与函数 (10学时) §1.实数 教学目的:使学生掌握实数的基本性质. 教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工 具) 教学难点:实数集的概念及其应用. 学时安排: 2学时 教学方法:讲授.(部分内容自学) 教学程序: 引言 上节课中,我们与大家共同探讨了《分析》这门旅程的研究对象、主要内容等话题.从本节课开始,我 们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. [问题] 为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(《复变函数》研 究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一 实数及其性质 1、实数(,q p q p ??≠?????? 正分数,有理数为整数且q 0)或有限小数和无限小数.负分数,无理数:用无限不循环小数表示. {}|R x x =--为实数全体实数的集合. [问题] 有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有 限小数”(包括整数)也表示为“无限小数”.为此作如下规定: ;对于正整数0,x a =1).9999;对于负有限小数(包括负整数) ,则先将y -表示为无限小数,现在所得的小数之前加负号.0=0.0000 例:2.001 2.0009999→ 3 2.9999 2.001 2.009999 3 2.9999→-→--→- 利用上述规定,任何实数都可用一个确定的无限小数来表示.但新的问题又出现了:在此规定下,如何 比较实数的大小? 2.两实数大小的比较

数学分析 第一章 实数集与函数练习题

第一章 实数集与函数 一、填空题 1. 已知函数)(x f 的定义域为[]4,0,则函数)1()1()(-++=x f x f x g 的定义域为_________。 2. 设x e x f =)(,[]21)(x x g f -=,则=)(x g _______ 3.函数 2112++-= x x y 的定义域是 ; 4.函数 x x y 1arctan 3+-= 的定义域是 ; 5.设 ? ??<+≥++=1 x , 2x 1 x , 14)(3x x x f ,则 )4(+x f = ; 6.函数 2tan 32sin 2x x y += 的周期是 ; 7.把函数 32arcsin ln x y = 分解为简单函数 ; 8.函数 1 x , 1≥-= x y 的反函数是 ; 9.函数 1+=x e y 的反函数是 ; 10.设 , cos (x), )(2)(x a e x f a x +==-?则 =)]([x f ? ; 11.212arccos x x y +=的定义域是 ,值域是 ; 12.若x x f -=11)(,则=)]([x f f ,=)]}([{x f f f ; 13.若31)1(22++=+x x x x f ,则=)(x f ; 14.设?? ???<≤<≤<≤-=31 1-10 201 2)(x x x x x f x ,则)(x f 的定义域是 ,=)0(f ,)1(f = ; 15.函数x y ln 1=的定义域是 ; 16.设)(x f y =的定义域是]1,0[,则)(2x f 的定义域是 ; 17.设函数, 1)(, ln 1)(+= +=x x g x x f 则=)]([x g f ; 18.设???<≤+<<-=20 102 sin )(2x x x x x f ,则=)2(πf ;

数学分析1.2数集与确界原理

第一章实数集与函数 2 数集·确界原理 一、区间与邻域 设a、b∈R,且aa}, (?∞, +∞) ={x|?∞0。满足绝对值不等式|x-a|<δ的全体实数x的集合称为点a的δ邻域,记作U(a;δ),或简单地写作U(a),即有 U(a;δ)={ x||x-a|<δ}=(a-δ,a+δ) 点a的空心δ邻域定义为 U?(a;δ)={ x|0<|x-a|<δ} 也简单地记作U? (a). 点a的δ右邻域U+(a;δ)=[a, a+δ),简记为U+(a); 点a的δ左邻域U-(a;δ)= (a-δ, a],简记为U-(a); 去除点a后的点a的空心δ左、右邻域分别简记为U?+(a)和U?-(a). ∞邻域U(∞)= { x||x|>M},其中M为充分大的正数(下同); +∞邻域U(+∞)= { x|x>M},-∞邻域U(-∞)= { x|x<-M}. 二、有界集·确界原理 定义1:设S为R中的一个数集。若存在数M(L),使得对一切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数集,数M(L)称为S的一个上界(下界)。 若数集S既有上界又有下界,则称S为有界集。若S不是有界集,则称S为无界集。 例1:证明数集N+={n|n为正整数}有下界而无上界。 证:显然,任何一个不大于1的实数都是的N+下界,故N+为有下界的数集;