吸收塔化工原理课程设计

吸收塔化工原理课程设计
吸收塔化工原理课程设计

化工原理课程设计

-------水吸收二氧化硫过程填料吸收塔设计说明书

学院:

班级:

姓名:

学号:

指导教师:

设计时间:

化工原理课程设计任务书(2)

一、设计题目

水吸收二氧化硫过程填料吸收塔设计

二、设计任务及操作条件

1、设计任务

①生产能力(入塔炉气流量) 2500 m3/h

②二氧化硫吸收率 96%

③入塔炉气组成(含二氧化硫) (摩尔分率)

2、操作条件

①入塔炉气温度25℃

②洗涤除去二氧化硫的清水温度20℃

③操作压强常压

④吸收温度基本不变,可近似取为清水的温度

3、填料类型阶梯环填料,填料规格自选

4、厂址齐齐哈尔地区

三、设计内容

1、设计方案的选择及流程说明

2、吸收塔的物料衡算

3、吸收塔工艺尺寸计算

4、填料层压降的计算

5、液体分布器简要设计

6、填料吸收塔装配图(1号图纸)

7、设计评述

8、参考资料

目录

1 绪论 (1)

吸收技术概况 (1)

吸收设备的发展 (1)

2 设计方案的确定 (2)

方案的确定 (2)

流程的确定 (2)

3 填料选择 (2)

4 吸收塔的工艺计算 (2)

基础物性数据 (2)

4.1.1 液相物性数据 (2)

4.1.2 气相物性数据 (2)

4.1.3 气液相平衡数据 (3)

物料衡算 (3)

填料塔的工艺尺寸计算 (4)

4.3.1塔径的计算 (4)

4.3.2传质单元高设计 (7)

4.3.3传质单元数的计算 (7)

4.3.4填料层高度 (9)

填料层压降 (10)

5 填料塔的附属结构 (11)

液体分布器简要置 (11)

液体再分配置 (11)

填料支撑结构 (12)

5.3.1填料支撑结构应满足三个基本条件 (12)

5.3.2较常用的支撑结构 (12)

6结果汇表 (12)

7符号说明 (14)

8参考文献 (17)

9设计心得 (18)

1绪论

吸收技术概况

吸收操作利用气体混合物各组分在某种溶剂中溶解度不同而达到分离的目的。化工生产中,经常需将气体混合物中的各个组分加以分离。气体的吸收是用适当的液体吸收剂与气体混合物接触,吸收气体混合物中一个或几个组分,使其中的各组分得以分离的一种操作。在化工生产中它主要用于原料气的净化、有用组分的回收、制取气体的溶液作为成品以及废气的治理等方面,因此吸收操作是一种重要的分离方法,在化学工业中应用相当普遍。气体吸收是物质自气相到液相的转移,这是一种传质过程。混合气体中某一组分能否进入液相,既取决于气体中该组分的分压,也取决于溶液里该组分的平衡蒸汽压。如果混合气体中该气体的分压大于溶液中该组分的平衡蒸汽压,这个组分便可自气相转移到液相,即被吸收。转移的结果,溶液里这个组分的浓度便升高,它的平衡蒸汽压也随着升高,到最后,可以升高到等于它的气相中的分压,传质过程于是停止,这时称为气液两相达到平衡。反之,如果溶液中某一组分的平衡蒸汽压大于混合气体中该组分的分压,这个组分便要从溶液中释放出来。即从液相转移到气相,这种情况称为解吸。所以,根据两相的平衡关系可以判断传质过程的方向与极限。另外,传质速率与推动力成正比,与阻力成反比,两相的浓度距离平衡浓度越大,则传质的推动力越大,传质速率也越大。吸收操作的分析,应该从气液两相的平衡关系与传质速率关系着手,本章的许多公式和结

论,正是在这个基础上得到的。

吸收设备的发展

可用作吸收的设备种类很多,如填料塔、板式塔、喷洒塔和鼓泡塔等,工业上较多地使用填料塔。填料吸收塔的设计,在保证实现工艺指标的前提下,要求结构尺寸合理,价格低廉,动力消耗低,操作故障少,维修管理方便等,在整个设计过程中这些因素都要加以考虑。

2 设计方案的确定

方案的确定

用水吸收二氧化硫属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。因用水作为吸收剂,且二氧化硫不作为产品,故采用纯溶剂。

流程的确定

在吸收操作中,除了制取溶液产品等少数情况只需单独进行吸收之外,一般都需对吸收后的溶液予以解吸,使溶剂再生,以便循环使用,同时也得到有价值的溶质。这样,除了吸收塔之外,还需要与其他设备一起组成一个完整的流程。

3.填料的选择

对于水吸收二氧化硫的过程,操作温度及压力较低,工业上通常采用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用Dn38聚丙烯阶梯环填料。

4 吸收塔的工艺计算

基础物性数据

4.1.1液体物料数据

对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查的,20℃时水的有关物性数据如下: 密度:3

L 998.2Kg/m

粘度:h)3.6Kg/(m s 0.001Pa L ?=?=μ

表面张力:==72.6dyn/cm L δ940896kg/h 2

SO 2在水中扩散系数为/h m 105.29/s cm 101.47D 2-62-5L ?=?= 4.1.2气相物性数据

混合气体的平均摩尔质量为

∑=?+?==10.312994.006.6406.0yiMi M Vm

混合气体的平均密度

3/272.1298

314.810

.313.101m Kg RT PM Vm Vm =??==

ρ 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气度为)(065.0.1081.15h m kg s Pa ?=?=-μν 查手册得SO 2在空气中的扩散系数为

220.108/0.039/v D cm s m h ==

4..气液相平衡数据

由手册差得,常压下20℃时,SO 2在水中的亨利常数为

kPa E 31055.3?=

相平衡常数为

04.353

.1011055.33

=?=

=P E m 溶解度系数为

).(0156.002

.181055.32

.99833m kpa kmol E H S

L

=??=

=

M

P 物料衡算

进塔气相摩尔比为

=

Y 1

0638.006

.0106

.011

1

=-=

-y

y

出塔气相摩尔比为

00255.0)96.01(0638.0)1(1

2

=-=-=?A

Y

Y

进塔惰性气相流量为

h kmol 11.96)06.01(25

273273

4.222500V =-+?=

该吸收过程属低浓度吸收,平衡关系为直线,最小液气量比可按下式计算,即

12min 12

()/Y Y L

V Y m X -=- 对于纯溶剂吸收过程,进塔液相组成为

20X =

64.330

04.35/6380.0255

00.06380.0)(min =--=

V L 取操作液气比为:

min )(4.1V L V L = 7.10464.334.1=?=V

L

h kmol L /526.7846.1197.104=?=

1212()()V Y Y L X X -=-

()0.00134526.78

0.00255)

-3896.11(0.06L

-V X Y Y X 2211==

+=

填料塔的工艺尺寸计算 4.3.1塔径计算

采用Eckert 通过关联图计算泛点气速 气相质量流量为

3180kg/h 1.2722500w V =?=

液相质量流量可近似按纯水的流量计算,即

/h 81572.58kg 18.024526.78w L =?=

Eckert 通过关联图的横坐标为

169.0)2

.998722.1(31801572.588)(5

.05.0==L V V L w w ρρ 查图8—23得

023.02

.02=L L

V F F g μρρψφμ

查表5—11 填料类

填料因子,1/m

型 DN16 DN25 DN38 DN50 DN76 金属阶梯环 —

160

140

塑料鲍尔环 550 280 184 140 92

塑料阶梯环

— 260 170 127 —

瓷距鞍 1100 550 200 226 — 瓷拉西环 1300

832

600

410

得:

-1F 170m =φ s m g U L

V F L

F /210.11722.111702

.99881.9023.0023.02

.02

.0=?????=

=

μψρφρ

取0.715m /s 1.0210.70.7u u F =?== 由112.115

7.014.33600

/250044=??==

u

V D s

π

圆整塔径,取 1.2m D = 泛点率校核: s m D V u S /61.02

.114.33600

/2500442

2=??==

π

%.7559%10021

0.161.0=?=F u u (在允许的范围内)

附录五

填料规格校核:

858.3138

1200>==d D 液体喷淋密度校核:

填料类型

公称直径mm

外径×高×厚

/mm

比表面积m 2 /m 3

空隙率

个数

m -2

堆积密度kg/m 3

干填料因子

m -1

塑料阶梯环

25 25×× 228

90% 81500 312 38

38×19×10

91%

27200

175

50 50×25×

% 10740

143

76 76×38×

90 % 3420

112

取最小润湿速率为

h /m 0.08m )(L 3min W ?=

查附录五 得 :

32t /m 132.5m =a

h /m 10.6m 132.50.08)(23min min ?=?==t w a L U

min 2

2

9.2722.1785.02

.998/8.5815724

U U D

w

L

L

>=?=

=

πρ

经以上校核可知,填料塔直径选用1200mm D =合理。 4.3.2填料层高度计算

0.0456=0.001335.04=m X =Y 1*1? 0=mX = Y 2*

2

脱吸因数为

744.078

.452611

.9604.35=?==

L mV S 4.3.3气相总传质单元数为

])1[(11*2

2*21S Y Y Y Y S n S N OG

+---I -= ]744.00

00255.00

0638.0)744.01ln[(744.011+----=

=

气相总传质单元高度采用修正的恩田关联式计算

})()()()(45.1exp{12.02

05.0221.075.0t L L L

L t L L

t L L c t w a U g U a U a a σρρασσμ

---= 查表5—13

常见材质的临界表面张力值

材质

玻璃 聚丙烯 聚氯乙

钢 石蜡

表面张力,dyn/cm 56 61 73 33 40 75 20

得:

2/427680/33h kg cm dyn c ==σ

液体质量通量为

)/(58.721622

.1785.058.815722

2

h m kg U L ?=?=

1

.075.0)6

.35.13258.72162()940896427680(45.1ex p{1?--=t w a a 598.0})5.1329408962.99858.72162()10

27.12.9985.13258.72162(2.0205.08

22=?????- 气膜吸收系数由下式计算:

)()()(

237.0317.0RT

D a D a U k V

t V V V V t V G ρμμ= 气体质量通量为:

)/(99.27792

.1785.0257.125002

2

h m kg U V ?=??=

)293314.8039

.05.132()039.0272.1065.0()065.05.13299.2779(237.0317.0????=G k

)/(0314.02kPa h m kmol ??=

液膜吸收系数由下式计算:

3

12132)()()(

0095.0l

L L L L L W L L g D a U k ρμρμμ-= 3

18216

32)2.9981027.16.3()10

29.52.9986.3()6.35.132598.058.72162(0095.0??????=--

h m /122.1=

由 1.1ψW G G a k a k = , 表5—14 常见填料的形状系数

填料类型 球形

棒形

拉西环

弧鞍

开孔换

ψ值

1

得:

45.1=ψ

则 1.1ψW G G a k a k =

)/(01.9245.15.132598.00314.031.1kPa h m kmol ??=???=

4

.0L

ψW L a k a k = h l /103.1545.15.132985.0221.14.0=???=

%50%75.59>=F

u u

由 a k u u

a k G F

G

])5.0(5.91[4.1'

-+=, a k u u

a k L F

L ])5.0(

6.21[2.2'-+=, 得 )

(3.9602.901])5.09755.0(5.91[34.1'kPa h m kmol a k G ??=?-+=

h l a k L /104.75103.15])5.09755.0(6.21[2.2'=?-+=

则 a Hk a k a K L G G '

'1

1

1+=

)/(751.1104.750156.01

3.96011

3kPa h m kmol ??=?+

=

由 Ω

=Ω=

aP K V

a K V H G Y OG m 725.02

.1785.03.101571.1 6.11

92

=???=

由 5.5687.68725.0=?==OG OG N H Z

m Z 6.965.56825.1'=?=

4.3.4 设计取填料层高度为

m Z 7'=

由于m h 6max '

Z => ,故填料层分两段。其中一段为3000mm,另一段为4000mm 。 填料层压降计算

采用Eckert 通用关联图计算填料层压降。 横坐标为

916.0)(5

.0=L

V V L ρρωω 查表8—17得,1116-=Φm P 纵坐标为

0052.012

.99872.2181.9111659.02

.022.02=????=ΦL L V P g u μρρψ

查表5—18

散装填料压降填料因子平均值

填料类型

填料因子,1/m

D N 16

D N 25 D N 38 D N 50 D N 76 金属鲍尔环 306

114

98

金属环矩

138

71 36

鞍 金属阶梯环 —

118

82

塑料鲍尔环 343

232

114

125

62

塑料阶梯环 —

176

116

89

瓷矩鞍环

700

215 140 160 — 瓷拉西环 1050 576

450

288

得:

m Pa Z

P

/91.107=? 填料层压降为

Pa P 7.3755791.107=?=?

5 填料塔的附属结构

填料塔的设计中,除了正确的进行填料层本身的计算外,一些附属结构的设计也很重要,如果设计不良,容易造成气液分布不均,严重影响效率,或者由于附属构件(例如支撑板)阻力过大,影响塔的生产能力。 液体分布器简要设置

多孔盘官式喷淋器适用于直径较大的的塔,盘管中心线的直径

为塔径的~倍.

液体再分配装置

液体填料层向下流时往往有逐渐靠塔壁方向集中的趋势,使总的传质效率大为降低,因此每个一段距离必须设置液体再分配装置,以避免此现象发生。根据我组数据,我们选择截锥式再分配器,只需将截锥体焊(或搁置)在塔体中,用这种简单的结构,截锥上

填料支撑结构

5.3.1填料支撑结构应满足三个基本条件

①使气液能顺利通过,对于普通填料塔,支撑件上的流体通过的自由截面,应为塔截面的50%以上,且应大于填料空隙率;此外,应考虑到装上调料后会将支撑板的自由截面堵去一些,所以设计时应取尽可能大的自由截面,自由截面太小,在操作中会产生拦液现象,增加压降,降低效率,甚至形成液泛;

②要有足够的强度承受填料重量,并考虑填料空隙中的持液重量,以及可能加于系统的压力波动、机械振动、温度波动等因素;

③要有一定的耐腐蚀性能。

5.3.2 较常用的支撑结构

栅板,其由竖立扁钢条构成,结构简单,制造方便。栅板可以制成整块的或是分块的,由于我们计算的直径在900mm—1200mm之间,所以分成三块,是每块宽度在300mm—400mm之间,以便通过塔的人孔装卸。

6结果汇总表

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计水吸收氨填料吸收塔设计正式版分解

《化工原理》课程设计 水吸收氨气过程填料塔的设计学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日 目录 设计任务书 (4)

参考文献 (15) 对本设计的评述及心得 (15)

附表:附表附表

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算;

3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=(m3kPa)。 第一节前言 填料塔的有关介绍 填料塔洗涤吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。本文简述聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。 填料塔的主体结构如下图所示: 图1 填料塔结构图 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小、有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所

化工原理课程设计报告

课程设计任务书 设计题目:水冷却环己酮换热器的设计 一、设计条件 1、处理能力53万吨/年 2、设备型式列管式换热器 3、操作条件 a.环己酮:入口温度120℃,出口温度为43℃ b.冷却介质:自来水,入口温度20℃,出口温度40℃ c.允许压强降:不大于1×105Pa d.每年按330天计,每天24小时连续运行 4、设计项目 a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 b.换热器的工艺计算:确定换热器的传热面积。 c.换热器的主要结构尺寸设计。 d.主要辅助设备选型。 e.绘制换热器总装配图。 二、设计说明书的内容 1、目录; 2、设计题目及原始数据(任务书); 3、论述换热器总体结构(换热器型式、主要结构)的选择; 4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直 径等); 5、设计结果概要(主要设备尺寸、衡算结果等); 6、主体设备设计计算及说明;

目录 1. 前言 (1) 1.换热器简介 (1) 2. 列管式换热器分类: (2) 2. 设计方案简介 (2) 2.1换热器的选择 (2) 2.2流程的选择 (2) 2.3物性数据 (2) 3. 工艺计算 (3) 3.1试算 (3) 3.1.1计算传热量 (3) 3.1.2计算冷却水流量 (3) 3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3) 3.1.5假设K值 (4) 3.1.6估算面积 (5) 3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5) 3.1.9计算总管数 (5) 3.1.10管子的排列 (6) 3.1.11折流板 (6) 3.2核算传热系数 (6) 3.2.1计算管程传热系数 (6) 3.2.2计算壳程传热系数 (7) 3.2.3污垢热阻 (7) 3.2.4计算总传热系数 (7) 3.3核算传热面积 (7) 3.3.1计算估计传热面积 (7) 3.3.2计算实际传热面积 (8) 3.4压降计算 (8) 3.4.1计算管程压降 (8) 3.4.2计算壳程压降 (8) 3.5附件 (9) 3.5.1接管 (9) 3.5.2拉杆 (9) 4. 换热器结果一览总表 (10) 5. 设计结果概要 (11) 1.结果 (11) 6. 致谢 (12)

化工原理课程设计精馏塔详细版

广西大学化学化工学院 化工原理课程设计任务书 专业:班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 6.操作回流比R=(1.1——2.0)R 。 min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间

1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大

化工原理课程设计 吸收塔汇总

《化工原理》课程设计 课题: 设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔设计者:王涛 学号:1043082002 指导老师:曹丽淑

目录 第一章设计任务????????????????????????????????????????????????????????????????????????????????????????????3 1.1设计题目????????????????????????????????????????????????????????????????????????????????????????????3 1.2设计任务及操作条件???????????????????????????????????????????????????????????????????????????3 1.3设计内容???????????????????????????????????????????????????????????????????????????????????????????????3 第二章设计方案???????????????????????????????????????????????????????????????????????????????????????????4 2.1设计流程的选择及流程图??????????????????????????????????????????????????????????????????????4 第三章填料塔的工艺设计??????????????????????????????????????????????????????????????????????????????4 3.1气液平衡关系????????????????????????????????????????????????????????????????????????????????????????4 3.2吸收剂用量???????????????????????????????????????????????????????????????????????????????????????????5 3.3计算热效应???????????????????????????????????????????????????????????????????????????????????????????5 3.4定塔径??????????????????????????????????????????????????????????????????????????????????????????????????6 3.5喷淋密度的校核?????????????????????????????????????????????????????????????????????????????????????6 3.6体积传质系数的计算??????????????????????????????????????????????????????????????????????????????7 3.7填料层高度的计算??????????????????????????????????????????????????????????????????????????????????8 3.8附属设备的选择???????????????????????????????????????????????????????????????????????????????????9第四章设计结果概要??????????????????????????????????????????????????????????????????????????????????15第五章设计评价 ?????????????????????????????????????????????????????????????????????????????????? 17

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

清水吸收二氧化硫化工原理课程设计毕业设计(论文)

摘要 在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触是发生传质,实现气液混合物的分离。在化学工业中,经常需将气体混合物中的各个组分加以分离,其目的是: ①回收或捕获气体混合物中的有用物质,以制取产品; ②除去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染大气。根据不同性质上的差异,可以开发出不同的分离方法。吸收操作仅为其中之一,它利用混合物中各组分在液体中溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。 一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一,越来越受到青睐。二氧化硫填料吸收塔,以水为溶剂,经济合理,净化度高,污染小。此外,由于水和二氧化硫反应生成硫酸,具有很大的利用。 本次化工原理课程设计,我设计的题目是:炉气处理量为m3 4200炉气吸过程填料吸收塔设计。本次任务为用水吸收二氧化硫常压填料塔。具体设计条件如下: 1、混合物成分:空气和二氧化硫; 2、二氧化硫的含量:0.05(摩尔分率) 3、操作压强;常压操作 4、进塔炉气流量:h 4200 m3 5、二氧化硫气体回收率:95% 吸收过程视为等温吸收过程。

目录 摘要 .................................................................................................................................................. I 第一章 设计方案的确定 (1) 1.1流程方案 (1) 1.2设备方案 (1) 1.3流程布置 (1) 1.4吸收剂的选择 (1) 第二章 填料的选择 (2) 2.1对填料的要求 (2) 2.2填料的种类和特性 (2) 2.3填料尺寸 (3) 2.4填料材质的选择 (3) 第三章 工艺计算 (4) 3.1气液平衡的关系 (4) 3.2吸收剂用量及操作线的确定 (4) 3.2.1吸收剂用量的确定 (4) 3.2.2操作线的确定 (5) 3.3塔径计算 (5) 3.3.1采用Eckert 通用关联图法计算泛点速率f u : (5) 3.3.2操作气速 (7) 3.3.3塔径计算 (7) 3.3.4喷淋密度U 校核 (7) 3.3.5单位高度填料层压降(Z P )的校核 (8) 3.4填料层高度计算 (9) 3.4.1传质系数的计算 (9) 3.4.2填料高度的计算 (12) 第四章 填料塔内件的类型与设计 (13) 4.1 塔内件的类型 (13) 第五章 辅助设备的选型 (16) 5.1管径的选择 (16) 5.2泵的选取: (17) 5.3风机的选型: (17) 第六章 填料塔附属高度计算 (17) 第七章 分布器简要计算 (18) 第八章 关于填料塔设计的选材 (18) 参考文献 (19) 附录 (20) 附图 (21) 致谢 (22)

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

化工原理课程设计(水吸收氨填料吸收塔设计)(正式版)分解

《化工原理》课程设计水吸收氨气过程填料塔的设计 学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日

目录 设计任务书 (4) 第一节前言 (3) 1.1 填料塔的有关介绍 (4) 1.2 塔内填料的有关介绍............................. 错误!未定义书签。第二节填料塔主体设计方案的确定 .. (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3 填料的类型与选择 (7) 2.4 液相物性数据 (6) 2.5 气相物性数据 (8) 2.6 气液相平衡数据 (7) 2.7 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (10) 3.2.2 传质单元高度的计算 (10) 3.2.3 填料层的分段 (11) 第四节填料层压降的计算 (12) 第五节填料塔内件的类型及设计 (13) 第六节填料塔液体分布器的简要设计 (13) 参考文献 (15) 对本设计的评述及心得 (15) 附表: 附表1填料塔设计结果一览表 (15) 附表2 填料塔设计数据一览 (15) 附件一:塔设备流程图 (17)

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算; 3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=0.725kmol/(m3?kPa)。

化工原理课程设计报告(换热器)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

化工原理课程设计乙醇水精馏塔设计

化工原理课程设计 题目:乙醇水精馏筛板塔设计 设计时间:2010、12、20-2011、1、6

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4)

1概述 (5) 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2设计说明书 (7) 2.1 流程简介 (7) 2.2 工艺参数选择 (8) 3 工艺计算 (9) 3.1物料衡算 (9) 3.2理论塔板数的计算 (10) 3.2.1 查找各体系的汽液相平衡数据 (10) 如表3-1 (10) 3.2.2 q线方程 (9) 3.2.3 平衡线 (11) 3.2.4 回流比 (12) 3.2.5 操作线方程 (12) 3.2.6 理论板数的计算 (12) 3.3 实际塔板数的计算 (13) 3.3.1全塔效率ET (13) 3.3.2 实际板数NE (14) 4塔的结构计算 (15) 4.1混合组分的平均物性参数的计算 (15) 4.1.1平均分子量的计算 (15) 4.1.2 平均密度的计算 (16) 4.2塔高的计算 (17) 4.3塔径的计算 (17) 4.3.1 初步计算塔径 (17) 4.3.2 塔径的圆整 (18) 4.4塔板结构参数的确定 (19) 4.4.1溢流装置的设计 (19) 4.4.2塔盘布置(如图4-4) (20) 4.4.3 筛孔数及排列并计算开孔率 (21) 4.4.4 筛口气速和筛孔数的计算 (21) 5 精馏塔的流体力学性能验算 (22) 5.1 分别核算精馏段、提留段是否能通过流体力学验算 (22) 5.1.1液沫夹带校核 (22) 5.2.2塔板阻力校核 (23) 5.2.3溢流液泛条件的校核 (25) 5.2.4 液体在降液管内停留时间的校核 (26) 5.2.5 漏液限校核 (26) 5.2 分别作精馏段、提留段负荷性能图 (26) 5.3 塔结构数据汇总 (29) 6 塔的总体结构 (30) 7 辅助设备的选择 (31) 7.1塔顶冷凝器的选择 (31) 7.2塔底再沸器的选择 (32) 7.3管道设计与选择 (33)

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1.了解填料吸收塔的结构和流程; 2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC 二、实验原理 吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。 (一). 吸收速率方程式: 吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m 3.s ; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3; K y a 气相总容积吸收传质系数,mol/m 2.s 。

从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。 (二).影响因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸收传质系数K y a 根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。 b .气相平均推动力Δy m 将操作线方程为:22)(y x x G L y +-= 的吸收操作线和平衡线方程为:y =mx 的平衡线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ?

天津大学化工原理课程设计

《化工原理》课程设计报告 真空蒸发制盐系统卤水分效预热器设计 学院天津大学化工学院 专业化学工程与工艺 班级 学号 姓名 指导教师

化工流体传热课程设计任务书 专业化学工程与工艺班级姓名学号(编号) (一)设计题目:真空蒸发制盐系统卤水分效预热器设计 (二)设计任务及条件 1、蒸发系统流程及有关条件见附图。 2、系统生产能力:40 万吨/年。 3、有效生产时间:300天/年。 4、设计内容:Ⅱ效预热器(组)第 3 台预热器的设计。 5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。 6、卤水为易结垢工质,卤水流速不得低于0.5m/s。 7、换热管直径选为Φ38×3mm。 (三)设计项目 1、由物料衡算确定卤水流量。 2、假设K计算传热面积。 3、确定预热器的台数及工艺结构尺寸。 4、核算总传热系数。 5、核算压降。 6、确定预热器附件。 7、设计评述。 (四)设计要求 1、根据设计任务要求编制详细设计说明书。 2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制 按下列条目编制并装订:(统一采用A4纸,左装订) (1)标题页,参阅文献1附录一。 (2)设计任务书。 (3)目录。 (4)说明书正文 设计简介:设计背景,目的,意义。 由物料衡算确定卤水流量。 假设K计算传热面积。 确定预热器的台数及工艺结构尺寸。 核算总传热系数。 核算压降。 确定预热器附件。 设计结果概要或设计一览表。 设计评述。 (5)主要符号说明。 (6)参考文献。 (7)预热器设计条件图。 主要参考文献 1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 2002 2. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 2007 3. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 2001 4. 机械制图 自学内容: 参考文献1,第一章、第三章及附录一、三; 参考文献2,第五~七章; 参考文献3,第1、3、4、5、11部分。

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

相关文档
最新文档