连杆机构PPt
合集下载
《平面连杆机构》课件

尺寸优化
减小机构的整体尺寸,使其更 加紧凑。
重量优化
降低机构的重量,以实现轻量 化设计。
成本优化
通过优化设计降低制造成本。
优化方法
数学建模
建立平面连杆机构的数学模型,以便进行数 值分析。
优化算法
采用遗传算法、粒子群算法等智能优化算法 对机构进行优化。
有限元分析
利用有限元方法对机构进行应力、应变和振 动分析。
实例二:搅拌机
总结词
搅拌机利用平面连杆机构实现搅拌叶片的周期性摆动,促进物料在容器内均匀混 合。
详细描述
搅拌机中的四连杆机构将原动件的运动传递到搅拌叶片,使叶片在容器内做周期 性的摆动,通过调整连杆的长度和角度,可以改变搅拌叶片的摆动幅度和频率, 以满足不同的搅拌需求。
实例三:飞机起落架
总结词
飞机起落架中的收放机构采用了平面连杆机构,通过连杆的 传动实现起落架的收放功能。
。
设计步骤
概念设计
根据需求,构思连杆机构的大 致结构。
仿真与优化
利用计算机仿真技术对设计进 行验证和优化。
需求分析
明确机构需要实现的功能,分 析输入和输出参数。
详细设计
对连杆机构进行详细的尺寸和 运动学分析,确定各部件的精 确尺寸。
制造与测试
制造出样机,进行实际测试, 根据测试结果进行必要的修改 。
实验验证
通过实验验证优化结果的可行性和有效性。
优化实例
曲柄摇杆机构优化
通过调整曲柄长度和摇杆摆角,实现 机构的优化设计。
双曲柄机构优化
通过改变双曲柄的相对长度和转动顺 序,提高机构的运动性能。
平面四杆机构优化
通过调整四根杆的长度和连接方式, 实现机构的轻量化和高性能。
减小机构的整体尺寸,使其更 加紧凑。
重量优化
降低机构的重量,以实现轻量 化设计。
成本优化
通过优化设计降低制造成本。
优化方法
数学建模
建立平面连杆机构的数学模型,以便进行数 值分析。
优化算法
采用遗传算法、粒子群算法等智能优化算法 对机构进行优化。
有限元分析
利用有限元方法对机构进行应力、应变和振 动分析。
实例二:搅拌机
总结词
搅拌机利用平面连杆机构实现搅拌叶片的周期性摆动,促进物料在容器内均匀混 合。
详细描述
搅拌机中的四连杆机构将原动件的运动传递到搅拌叶片,使叶片在容器内做周期 性的摆动,通过调整连杆的长度和角度,可以改变搅拌叶片的摆动幅度和频率, 以满足不同的搅拌需求。
实例三:飞机起落架
总结词
飞机起落架中的收放机构采用了平面连杆机构,通过连杆的 传动实现起落架的收放功能。
。
设计步骤
概念设计
根据需求,构思连杆机构的大 致结构。
仿真与优化
利用计算机仿真技术对设计进 行验证和优化。
需求分析
明确机构需要实现的功能,分 析输入和输出参数。
详细设计
对连杆机构进行详细的尺寸和 运动学分析,确定各部件的精 确尺寸。
制造与测试
制造出样机,进行实际测试, 根据测试结果进行必要的修改 。
实验验证
通过实验验证优化结果的可行性和有效性。
优化实例
曲柄摇杆机构优化
通过调整曲柄长度和摇杆摆角,实现 机构的优化设计。
双曲柄机构优化
通过改变双曲柄的相对长度和转动顺 序,提高机构的运动性能。
平面四杆机构优化
通过调整四根杆的长度和连接方式, 实现机构的轻量化和高性能。
《曲柄连杆机构》课件

详细描述
在曲柄连杆机构中,活塞在气缸内进行往复运动,由于连杆的摆动,使得活塞的直线运 动转变为曲轴的旋转运动。在这个过程中,曲轴的旋转运动将能量输出,驱动车辆或其 他机械运动。曲柄连杆机构的特点在于其能够将活塞的往复运动转变为旋转运动,从而
实现能量的高效转换。
分类与应用
总结词
曲柄连杆机构有多种分类方式,如按照曲轴 的形状可分为直列式和V型式,广泛应用于 汽车、摩托车等动力机械中。
缸体的材料选择也很重要,通常采用高强度合金钢或不锈钢制造,以提高其使用寿 命。
03
曲柄连杆机构的工作特性
运动特性
曲柄连杆机构是发动机中的重要 机构,它将活塞的直线运动转化 为曲轴的旋转运动,实现发动机
的做功过程。
曲柄连杆机构的运动特性包括曲 轴的旋转运动、活塞的往复直线
运动以及连杆的摆动运动等。
优化方法
采用数学建模、数值分析和计算机仿 真等方法进行优化设计。
优化流程
建立曲柄连杆机构的数学模型→确定 优化变量和约束条件→选择合适的优 化算法→进行优化计算→分析优化结 果→改进设计。
优化实例与结果分析
优化实例
以某实际应用的曲柄连杆机构为例,进行优化设计。
结果分析
通过对比优化前后的性能指标,分析优化效果。例如,运动性能提升、能耗降 低、振动减小等。同时,对优化后的曲柄连杆机构进行实验验证,确保优化结 果的可靠性和实用性。
05
曲柄连杆机构的常见问题与维护
常见问题与原因分析
01
02
03
04
曲柄连杆机构异响
由于润滑不良、装配间隙不当 或零件疲劳损坏等原因,可能 导致或曲轴轴瓦材料疲劳 极限较低可能导致曲轴轴瓦烧 蚀,影响曲柄连杆机构的正常 运转。
在曲柄连杆机构中,活塞在气缸内进行往复运动,由于连杆的摆动,使得活塞的直线运 动转变为曲轴的旋转运动。在这个过程中,曲轴的旋转运动将能量输出,驱动车辆或其 他机械运动。曲柄连杆机构的特点在于其能够将活塞的往复运动转变为旋转运动,从而
实现能量的高效转换。
分类与应用
总结词
曲柄连杆机构有多种分类方式,如按照曲轴 的形状可分为直列式和V型式,广泛应用于 汽车、摩托车等动力机械中。
缸体的材料选择也很重要,通常采用高强度合金钢或不锈钢制造,以提高其使用寿 命。
03
曲柄连杆机构的工作特性
运动特性
曲柄连杆机构是发动机中的重要 机构,它将活塞的直线运动转化 为曲轴的旋转运动,实现发动机
的做功过程。
曲柄连杆机构的运动特性包括曲 轴的旋转运动、活塞的往复直线
运动以及连杆的摆动运动等。
优化方法
采用数学建模、数值分析和计算机仿 真等方法进行优化设计。
优化流程
建立曲柄连杆机构的数学模型→确定 优化变量和约束条件→选择合适的优 化算法→进行优化计算→分析优化结 果→改进设计。
优化实例与结果分析
优化实例
以某实际应用的曲柄连杆机构为例,进行优化设计。
结果分析
通过对比优化前后的性能指标,分析优化效果。例如,运动性能提升、能耗降 低、振动减小等。同时,对优化后的曲柄连杆机构进行实验验证,确保优化结 果的可靠性和实用性。
05
曲柄连杆机构的常见问题与维护
常见问题与原因分析
01
02
03
04
曲柄连杆机构异响
由于润滑不良、装配间隙不当 或零件疲劳损坏等原因,可能 导致或曲轴轴瓦材料疲劳 极限较低可能导致曲轴轴瓦烧 蚀,影响曲柄连杆机构的正常 运转。
《平面连杆机构设计》课件

定义:平面连杆机构是由一系列刚性杆件通过转动副或移 动副相互连接,并按照预定的顺序或模式进行运动传递的 机构。
在此添加您的文本16字
特点
在此添加您的文本16字
结构简单,易于设计和制造。
在此添加您的文本16字
具有较大的传递力矩的能力。
在此添加您的文本16字
运动形式和运动轨迹相对固定,易于实现精确控制。
平面连杆机构的运动分析
运动分析的基本概念
平面连杆机构定义
平面连杆机构是由若干个刚性构件通 过低副(铰链或滑块)连接而成的机 构,构件之间的相对运动都在同一平 面或相互平行平面内。
运动分析目的
通过分析平面连杆机构的运动特性, 确定各构件之间的相对位置、相对速 度和相对加速度,为机构设计、优化 和性能评估提供依据。
在此添加您的文本16字
适用于多种类型的运动转换和传递,如转动、摆动、移动 等。
平面连杆机构的应用
农业机械
如收割机、拖拉机等,利用平面连杆机构实 现谷物、饲料的收割和运输。
轻工机械
如包装机、印刷机等,利用平面连杆机构实 现纸张、塑料薄膜等的传送和加工。
矿山机械
如挖掘机、装载机等,利用平面连杆机构实 现土石的挖掘、装载和运输。
发展趋势:随着科技的进步和应用需求 的多样化,平面连杆机构的设计和制造 技术也在不断发展和创新。
数字化设计和仿真技术的运用,提高了 设计效率和准确性。
PART 02
平面连杆机构的基本类型
曲柄摇杆机构
曲柄摇杆机构是一种常见的平面 连杆机构,由曲柄、摇杆和连杆
组成。
曲柄作为主动件,匀速转动,带 动连杆摆动,摇杆作为从动件,
运动分析的实例
四杆机构
以曲柄摇杆机构为例,通过解析 法分析曲柄的转速、摇杆的摆角 以及各构件之间的相对速度和加
在此添加您的文本16字
特点
在此添加您的文本16字
结构简单,易于设计和制造。
在此添加您的文本16字
具有较大的传递力矩的能力。
在此添加您的文本16字
运动形式和运动轨迹相对固定,易于实现精确控制。
平面连杆机构的运动分析
运动分析的基本概念
平面连杆机构定义
平面连杆机构是由若干个刚性构件通 过低副(铰链或滑块)连接而成的机 构,构件之间的相对运动都在同一平 面或相互平行平面内。
运动分析目的
通过分析平面连杆机构的运动特性, 确定各构件之间的相对位置、相对速 度和相对加速度,为机构设计、优化 和性能评估提供依据。
在此添加您的文本16字
适用于多种类型的运动转换和传递,如转动、摆动、移动 等。
平面连杆机构的应用
农业机械
如收割机、拖拉机等,利用平面连杆机构实 现谷物、饲料的收割和运输。
轻工机械
如包装机、印刷机等,利用平面连杆机构实 现纸张、塑料薄膜等的传送和加工。
矿山机械
如挖掘机、装载机等,利用平面连杆机构实 现土石的挖掘、装载和运输。
发展趋势:随着科技的进步和应用需求 的多样化,平面连杆机构的设计和制造 技术也在不断发展和创新。
数字化设计和仿真技术的运用,提高了 设计效率和准确性。
PART 02
平面连杆机构的基本类型
曲柄摇杆机构
曲柄摇杆机构是一种常见的平面 连杆机构,由曲柄、摇杆和连杆
组成。
曲柄作为主动件,匀速转动,带 动连杆摆动,摇杆作为从动件,
运动分析的实例
四杆机构
以曲柄摇杆机构为例,通过解析 法分析曲柄的转速、摇杆的摆角 以及各构件之间的相对速度和加
平面连杆机构ppt课件

15
3.1 平面连杆机构的类型
(2)应用案例:雷达天线、脚踏式脱粒机、搅拌 机、水稻插秧机的秧爪运动机构。
脚踏式脱粒机
缝纫机的脚踏粒机
雷达天线
16
3.1 平面连杆机构的类型
水稻插秧机的秧爪运动机构
搅拌机机构
(3)功能:将连续转动转换为摆动,或者将摆动转换为 连续转动。
17
3.1 平面连杆机构的类型
2、双曲柄机构 (1)概念:具有两个曲柄的铰链四杆机构,称 为双曲柄机构。
18
3.1 平面连杆机构的类型
(2)应用案例:惯性筛机构
惯性筛机构
(3)功能:将等速转动转换为不等速同向转动19。
3.1 平面连杆机构的类型
(4)双曲柄机构的其他类型 1)平行四边形机构:两相对构件互相平行,
呈平行四边形的双曲柄机构。
3.2.1 曲柄滑块机构 ( 1)由曲柄摇杆机构,将CD→无穷大,C点轨迹变成直
线; ( 2)演化方法:将转动副→移动副; ( 3)类型: a.偏心曲柄滑块机构 ,e≠0 偏距:曲柄转动
中心距导路的距离。 b.对心曲柄滑块机构,e=0
35
3.2 铰链四杆机构的演化
(4)应用案例:内燃机、空气压缩机、冲床和送料 机构等。
请画出下列机构运动示意图,并判断由几种机构 组合而成?
插齿机
冲床机构
48
3.3 铰链四杆机构的基本特性
3.3.1 急回特性和行程数比系数 1、基本概念:(以曲柄摇杆机构为例,曲柄为原动
件) (1)四杆机构的极限位置:当曲柄与连杆二次共线时,
摇杆位于机构的最左或最右的位置。 (2)极位夹角(θ):从动件处于二个极限位置时,
1-偏心轮 2-连杆 3-滑块 4-机架
3.1 平面连杆机构的类型
(2)应用案例:雷达天线、脚踏式脱粒机、搅拌 机、水稻插秧机的秧爪运动机构。
脚踏式脱粒机
缝纫机的脚踏粒机
雷达天线
16
3.1 平面连杆机构的类型
水稻插秧机的秧爪运动机构
搅拌机机构
(3)功能:将连续转动转换为摆动,或者将摆动转换为 连续转动。
17
3.1 平面连杆机构的类型
2、双曲柄机构 (1)概念:具有两个曲柄的铰链四杆机构,称 为双曲柄机构。
18
3.1 平面连杆机构的类型
(2)应用案例:惯性筛机构
惯性筛机构
(3)功能:将等速转动转换为不等速同向转动19。
3.1 平面连杆机构的类型
(4)双曲柄机构的其他类型 1)平行四边形机构:两相对构件互相平行,
呈平行四边形的双曲柄机构。
3.2.1 曲柄滑块机构 ( 1)由曲柄摇杆机构,将CD→无穷大,C点轨迹变成直
线; ( 2)演化方法:将转动副→移动副; ( 3)类型: a.偏心曲柄滑块机构 ,e≠0 偏距:曲柄转动
中心距导路的距离。 b.对心曲柄滑块机构,e=0
35
3.2 铰链四杆机构的演化
(4)应用案例:内燃机、空气压缩机、冲床和送料 机构等。
请画出下列机构运动示意图,并判断由几种机构 组合而成?
插齿机
冲床机构
48
3.3 铰链四杆机构的基本特性
3.3.1 急回特性和行程数比系数 1、基本概念:(以曲柄摇杆机构为例,曲柄为原动
件) (1)四杆机构的极限位置:当曲柄与连杆二次共线时,
摇杆位于机构的最左或最右的位置。 (2)极位夹角(θ):从动件处于二个极限位置时,
1-偏心轮 2-连杆 3-滑块 4-机架
铰链四连杆机构说课PPT课件

04
铰链四连杆机构的运动学分析
平面运动学
平面运动学研究四连杆机构在平面内的运动,包括连杆的长度、角度、速度和加速 度等参数。
平面运动学主要通过解析几何和向量运算等方法进行分析,建立数学模型,描述四 连杆机构的运动规律。
平面运动学分析有助于理解四连杆机构的运动特性,为优化设计提供理论依据。
空间运动学
铰链四连杆机构说课ppt 课件
• 引言 • 铰链四连杆机构概述 • 铰链四连杆机构的结构分析 • 铰链四连杆机构的运动学分析 • 铰链四连杆机构的设计与优化 • 铰链四连杆机构的实践与应用 • 总结与展望
01
引言
主题介绍
铰链四连杆机构的定义
铰链四连杆机构的重要性
铰链四连杆机构是一种由四个杆件通 过铰链连接而成的机械机构,常用于 实现某些特定的运动轨迹或运动规律。
空间运动学研究四连杆机构在三 维空间中的运动,考虑了机构的
旋转和平移等自由度。
空间运动学需要利用三维坐标系 和向量运算进行建模,分析机构 的位置、姿态、速度和加速度等
参数。
空间运动学分析能够全面揭示四 连杆机构的运动特性,为复杂运 动要求的机构设计提供支持。
运动仿真与分析
运动仿真与分析通过计算机模拟技术, 对四连杆机构的运动过程进行实时模 拟和分析。
提出了一种新的铰链四连杆机构设计理念 ,通过优化算法提高了其性能,为相关领 域提供了新的解决方案。ຫໍສະໝຸດ 未来研究方向与展望研究方向
深入研究铰链四连杆机构的动 态特性、优化算法和新型应用
领域。
技术发展
随着科技的进步,探索铰链四 连杆机构与其他先进技术的结 合,如人工智能、大数据等。
实际应用
加强与企业的合作,将铰链四 连杆机构应用于更多工程领域 ,推动其产业化进程。
《曲柄连杆机构》PPT课件

盆形燃烧室 半球形燃烧室
精选课件ppt
17
火花塞布置在燃 烧室中央,火焰 行程短,燃烧速 率高;充气效率 高。
富康、桑塔纳、 夏利等轿车。
精选课件ppt
18
优点:结构简单、紧凑、 散热面积小,热损失 小,在压缩终了时能 形成挤气涡流,进气 阻力小。
缺点:但火焰的传播距 离较长,存在着较大 的激冷面积,对HC排 放不利。
恒范钢片式活塞的结 构特点就是这样的,由 于恒范钢为含镍33%~ 36%的低碳铁镍合金, 其膨胀系数仅为铝合金 的1/10,而销座通过恒 范钢片与裙部相连,牵 制了裙部的热膨胀变形 量。
精选课件ppt
31
6、活塞在工作时的保护措施
(1)在活塞裙部表面涂保护层,可改善铝合金活塞的磨合性; 主要有铅、锡、石墨、磷保护层等。
的旋转速度又很高,活塞往复运动的线
速度相当大,同时与可燃混合气和燃烧
废气接触,曲柄连杆机构还受到化学腐
蚀作用,并且润滑困难。可见,曲柄连
杆机构的工作条件相当恶劣,它要承受
高温、高压、高速和化学腐蚀作用。
精选课件ppt
6
气缸体的检测与维修
一、气缸体的构造 二、气缸盖和气缸衬垫 三、油底壳 四、气缸体的检查与维修
精选课件ppt
32
精选课件ppt
33
二 活塞环
汽环——密封和导 热;
油环——布油和刮 油的作用,下行时刮 除汽缸壁上多余的机 油,上行时在汽缸壁 上铺涂一层均匀的油 膜。还能起到封汽的 辅助作用。
精选课件ppt
34
工作条件
活塞环在高温、高压、高速和润滑极其困难的 条件下工作,尤其是第一道环最为困难。活塞环工 作时受到汽缸中高温高压燃汽的作用,温度很高(特 别是第一道环温度可高达600K),活塞环在汽缸内 随活塞一起作高速运动,加上高温下机油可能变质, 使环的润滑条件变坏,难以保证良好的润滑,因而 磨损严重。
精选课件ppt
17
火花塞布置在燃 烧室中央,火焰 行程短,燃烧速 率高;充气效率 高。
富康、桑塔纳、 夏利等轿车。
精选课件ppt
18
优点:结构简单、紧凑、 散热面积小,热损失 小,在压缩终了时能 形成挤气涡流,进气 阻力小。
缺点:但火焰的传播距 离较长,存在着较大 的激冷面积,对HC排 放不利。
恒范钢片式活塞的结 构特点就是这样的,由 于恒范钢为含镍33%~ 36%的低碳铁镍合金, 其膨胀系数仅为铝合金 的1/10,而销座通过恒 范钢片与裙部相连,牵 制了裙部的热膨胀变形 量。
精选课件ppt
31
6、活塞在工作时的保护措施
(1)在活塞裙部表面涂保护层,可改善铝合金活塞的磨合性; 主要有铅、锡、石墨、磷保护层等。
的旋转速度又很高,活塞往复运动的线
速度相当大,同时与可燃混合气和燃烧
废气接触,曲柄连杆机构还受到化学腐
蚀作用,并且润滑困难。可见,曲柄连
杆机构的工作条件相当恶劣,它要承受
高温、高压、高速和化学腐蚀作用。
精选课件ppt
6
气缸体的检测与维修
一、气缸体的构造 二、气缸盖和气缸衬垫 三、油底壳 四、气缸体的检查与维修
精选课件ppt
32
精选课件ppt
33
二 活塞环
汽环——密封和导 热;
油环——布油和刮 油的作用,下行时刮 除汽缸壁上多余的机 油,上行时在汽缸壁 上铺涂一层均匀的油 膜。还能起到封汽的 辅助作用。
精选课件ppt
34
工作条件
活塞环在高温、高压、高速和润滑极其困难的 条件下工作,尤其是第一道环最为困难。活塞环工 作时受到汽缸中高温高压燃汽的作用,温度很高(特 别是第一道环温度可高达600K),活塞环在汽缸内 随活塞一起作高速运动,加上高温下机油可能变质, 使环的润滑条件变坏,难以保证良好的润滑,因而 磨损严重。
《曲柄连杆机构》课件
可靠性原则
确保曲柄连杆机构在各种工况下都能稳定、 可靠地工作。
经济性原则
在满足功能和效率的前提下,尽可能降低曲 柄连杆机构的设计和制造成本。
曲柄连杆机构的优化方法
数学建模
建立曲柄连杆机构的数学模型,以便进行数 值分析和优化设计。
拓扑优化
改变曲柄连杆机构的内部结构,以实现更好 的刚度和强度。
尺寸优化
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
按连杆数目分类
三杆曲柄连杆机构
包括一个曲柄、一个连杆和一根轴。 这种机构结构简单,常用于一些简单 的机械装置中。
四杆曲柄连杆机构
由四个构件组成,包括一个曲柄、一 个连杆、一根轴和一根导杆。这种机 构在汽车等复杂机械中应用广泛,可 以实现复杂的运动轨迹。
按曲轴的形式分类
直列式曲柄连杆机构
曲轴的各曲拐按直线排列,这种机构结构紧凑,适用于小缸径发动机。
对易损件如轴承、密封圈等进行定期更换 。
对曲柄连杆机构的参数进行定期检查和调 整,确保机构运行正常。
PART 05
曲柄连杆机构的发展趋势 与展望
曲柄连杆机构的新材料、新工艺、新技术
总结词
介绍曲柄连杆机构在材料、工艺和技术方面的创新和突破,以及这些创新对机构性能和 效率的影响。
详细描述
随着科技的不断发展,曲柄连杆机构在材料、工艺和技术方面也在不断创新和突破。例 如,采用高强度轻质材料可以减小机构的质量和惯性,提高其动态响应性能;采用先进 的表面处理技术可以提高机构的耐磨性和耐腐蚀性,延长其使用寿命;采用智能传感器
观察法
观察曲柄连杆机构的外观和运行状况 ,判断是否存在故障。
《平面连杆机构 》课件
工程应用前景
分析优化后机构在工程应用中的前景,为实 际应用提供指导。
05
平面连杆机构的未来发展
新材料的应用
轻质材料
01
采用轻质材料如碳纤维、玻璃纤维等,降低机构重量,提高运
动性能。
高强度材料
02
选用高强度材料如钛合金、超高强度钢等,提高机构承载能力
。
复合材料
03
利用复合材料的各向异性特点,优化机构性能,实现多功能化
遗传算法
利用遗传算法对平面连杆机构进行优化,通 过不断迭代和选择,寻找最优解。
约束处理
在优化过程中,需要特别注意处理各种约束 条件,如几何约束、运动约束等。
优化实例
曲柄摇杆机构优化
以曲柄摇杆机构为例,通过优化算法找到最优 的设计参数,使得机构的运动性能达到最佳。
双曲柄机构优化
对双曲柄机构进行优化,改善机构的运动平稳 性和精度。
平面连杆机构系列优化
对一系列平面连杆机构进行优化,比较不同机构的性能特点,为实际应用提供 参考。
优化效果评估
性能指标
通过性能指标来评估优化效果,如运动精度 、运动范围、刚度等。
经济性评估
评估优化后机构的经济效益,包括制造成本 、运行成本等。
实验验证
通过实验验证优化的有效性,对比优化前后 的性能差异。
。
新工艺的探索
精密铸造
通过精密铸造技术,提高 零件的精度和表面质量, 减少加工余量。
激光切割
利用激光切割技术,实现 零件的高精度、高效率加 工。
3D打印
利用3D打印技术,快速制 造复杂结构零件,缩短产 品研发周期。
新技术的应用
智能控制
有限元分析
引入智能控制技术,实现机构的高精 度、高效率运动控制。
分析优化后机构在工程应用中的前景,为实 际应用提供指导。
05
平面连杆机构的未来发展
新材料的应用
轻质材料
01
采用轻质材料如碳纤维、玻璃纤维等,降低机构重量,提高运
动性能。
高强度材料
02
选用高强度材料如钛合金、超高强度钢等,提高机构承载能力
。
复合材料
03
利用复合材料的各向异性特点,优化机构性能,实现多功能化
遗传算法
利用遗传算法对平面连杆机构进行优化,通 过不断迭代和选择,寻找最优解。
约束处理
在优化过程中,需要特别注意处理各种约束 条件,如几何约束、运动约束等。
优化实例
曲柄摇杆机构优化
以曲柄摇杆机构为例,通过优化算法找到最优 的设计参数,使得机构的运动性能达到最佳。
双曲柄机构优化
对双曲柄机构进行优化,改善机构的运动平稳 性和精度。
平面连杆机构系列优化
对一系列平面连杆机构进行优化,比较不同机构的性能特点,为实际应用提供 参考。
优化效果评估
性能指标
通过性能指标来评估优化效果,如运动精度 、运动范围、刚度等。
经济性评估
评估优化后机构的经济效益,包括制造成本 、运行成本等。
实验验证
通过实验验证优化的有效性,对比优化前后 的性能差异。
。
新工艺的探索
精密铸造
通过精密铸造技术,提高 零件的精度和表面质量, 减少加工余量。
激光切割
利用激光切割技术,实现 零件的高精度、高效率加 工。
3D打印
利用3D打印技术,快速制 造复杂结构零件,缩短产 品研发周期。
新技术的应用
智能控制
有限元分析
引入智能控制技术,实现机构的高精 度、高效率运动控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力角和传动角在机构运动过程中是变化的。
当曲柄AB转到与机架AD共线的两个位置AB1和AB2时,传动 角将出现极值δmax和δmin。比较这两个位置的传动角,其值较 小者即为最小传动角。
4、死(止)点位置
在曲柄摇机构中,若摇杆为主动件,当摇杆处于两极限位 置时,从动曲柄与连杆共线,主动摇杆通过连杆传给从动曲柄 的作用力通过曲柄的转动中心,此时曲柄的压力角α=90°, 传动角γ=0°,因此无法推动曲柄转动,机构的这个位置称为 死点位置。
E D C B
A
牛头刨床
小 型 刨 床 机 构
偏置曲柄滑块机构和摆动导杆机构也具有急回特性。 值得注意的是摆动导杆机构中θ=ψ,如图所示。
总结: 四杆机构存在急回特性必须具备以下条件: ①曲柄为主动件 ②从动件有极限位置 ③曲柄存在极位夹角
3. 压力角和传动角
(1)压力角a
压力角:从动件所受的力F与受力点速度Vc所夹的锐角a。
工件夹紧机构----机构不会松脱
在连杆3上的手柄处施以压力F, 使连杆BC与连架杆CD成一直线 如图(b),这时构件1的左端夹紧工件;撤去外力F之后,构件1在 工件反弹力Fn的作用下要顺时针转动,但是这时由于从动件3上 的传动角γ=0而处于死点位置,从而保持了工件上的夹紧力Fn 。 放松工件时,只要在手柄上加一个向上的外力F,就可使机构脱 出死点位置,从而放松工件。
①采用低副。面接触、承载大、便于润滑、不易磨损 形状简单、易加工、容易获得较高的制造精度。
②改变杆的相对长度,从动件运动规律不同。
③连杆曲线丰富。可满足不同要求。
4.平面连杆机构主要缺点: ①构件和运动副多,累积误差大、运动精度低、效率低。 ②产生动载荷(惯性力),不适合高速。 ③设计复杂,难以实现精确的轨迹。
(3)最小传动角的位置
铰链四杆机构在曲柄与机架共线的两位置出现最小传动角。
对于曲柄滑块机构,当主动件为 曲柄时,最小传动角出现在曲柄 与机架垂直的位置。
对于摆动导杆机构,由于在任何位置 时主动曲柄通过滑块传给从动杆的力 的方向,与从动杆上受力点的速度方 向始终一致,所以传动角等于90度。
要注意的是,机构的压力角和传动角是对从动件而言的。
B
C
A
C2
C1
B
C
A
偏心轮机构 增大了运动副的尺寸,提高了强度和刚度
2.2 平面四杆机构的基本特性
一、铰链四杆机构中曲柄存在的条件
若杆AB为曲柄,作整周回转,必有两次与机架共线
则由△B’C’D可得:三角形任意两边之和大于第三边
l1+ l4 ≤ l2 + l3 则由△B”C”D可得:
l2≤(l4 – l1)+ l3
二、平面四杆机构的运动特性
1.平面四杆机构的极限位置
图中曲柄以ω1逆时针等速转动 当曲柄AB与连杆BC两次共线时,从动件CD位于左右两极限位置。
主动件:曲柄 从动件:摇杆 极位:从动件的两 个极限位置
极位夹角θ:从动件处于两个极位时,曲柄两 位置之间的夹角
最大摆角ψ:摇杆往复摆过的最大角
2. 急回特性
B
2
A1
C3
如:(1)若取构件1为机架—导杆机构,构件4是导杆
1) 当L1<L2时,得到转动导杆机构,如小型刨床 2) 当L1>L2时,得到摆动导杆机构,如牛头刨床
摆杆
导杆
导杆-小型刨床
当构件2和构件4均能作整周转动,小型刨床的回转导 杆机构就是应用实例
当杆2的长度小于机架长度时,导秆4只能作来回摆 动,又称为摆动导秆机构,牛头刨中的主运动机构是 其应用实例。
⑵ 解决办法:
a.利用从动曲柄本身(或附加质量)的惯性来导向;
b.在主、从动曲柄上错开移动角度再安装一组平行
四边形机构; c.增加第三个平行曲柄
(3)应用:
机车联动机构
车门启闭机构 反平行四边形机构
摄影台升降机构
3、双摇杆机构
1)特点:两连架杆都是摇杆 2)应用:
飞机起落架机构
港口起重机
选择连杆上合适的点,轨迹为近似的水平直线
20mm<lAB < 50mm b. AD为最短杆,BC为最长杆,则
50mm ≤ lAB < 80mm
c. 当 lAB >100时,AB 为最长杆,AD 为最短 lAB > 120 mm
另外,AB增大时,还应考虑到,BC与CD成伸直 共线时,需构成三角形的边长关系,即:
lAB < ( lBC + lCD ) + lAD lAB < 220 mm
→ l1+ l2 ≤ l3 + l4
l3≤(l4 – l1)+ l2
→ l1+ l3 ≤ l2 + l4
最长杆与 最短杆的 长度之和 ≤其他两 杆长度之 和
B A
C D
将以上三式两两相加,得:
l1≤ l2, l1≤ l3, l1≤ l4
l1即AB为最短杆
B’
l1
l2 C’ l2l3 AA l1
ll44 l4- l1
原动件作匀速转动,从动件作往复运动的机构,从 动件在返回行程中的平均速度大于工作行程的平均速 度的特性,称为急回特性。
“急回性能”分析
极位夹角
B
1 1
1
A
B1
2
C1
2
B2
C v1 C2 v2
3
摆角
4
D
设:曲柄以ω1顺时针等角速转动 当曲柄AB与连杆BC两次共线时,输出件CD处于两极限位置。
曲柄转角 1 1800
(2)若不满足杆长和条件,该机构只能是双摇杆机构。
注意:铰链四杆机构必须满足四构件组成的封闭多边形条件: 最长杆的杆长<其余三杆长度之和。
想一想:下列机构是何机构????
例1:已知铰链四杆机构的各杆的尺寸,机架的位置, 判断各四杆机构的类型。课本P38.2-1
例2 在图中已知 lBC =100mm, lCD =70mm, lAD =50mm,AD为固定件。 (1)如果该机构能成为曲柄摇杆机构,且AB 为曲柄, 求lAB的值; (2)如果该机构能成为双曲柄机构,求lAB ; (3)如果该机构能成为双摇杆机构,求lAB 。
C”
l3
DD
整转副的概念:相对转动360度的转动 副。
此时,铰链A为整转副。 若取BC为机架,则结论相同,可知铰链B也是整转副。
可知:当满足杆长条件时,其最短杆参与构成的转动 副都是整转副。
l2
C
B
A l1
l3
D
l4
1.整转副存在的条件(长度条件): 最短构件与最长构件的长度之和小于等于其它两
构件长度之和,即Lmax+Lmin≤L’+L’’。反之无整转副。
主 动 件
脚踏缝纫机的停止现象
克服止点:为了使机构能顺利地通过死点位置,通 常在从动件轴上安装飞轮,利用飞轮的惯性通过死点 位置。也可采用多组机构交错排列的方法,如:两组 机构交错排列,使左右两机构不同时处于死点位置。
利用止点:在工程上有时也需利用机构的死点位置 来进行工作。
例如:飞机的起落架、折叠式家具和夹具等机构, 如下图所示。
第2章 平面连杆机构
§2-1 平面四杆机构的基本形式及演 化形式 §2-2 平面四杆机构的基本特性 §2-3 平面四杆机构的运动设计
2.1 平面四杆机构的基本形式及演化形式
1.平面连杆机构——若干刚性构件通过低副连接而
成的平面机构。
B
C
2.平面连杆机构具有运动可逆性。
A
D
3.平面连杆机构主要优点:
2.曲柄存在的条件: (1)最短பைடு நூலகம்件与最长构件的长度之和小于等于其它 两构件长度之和;(杆长和的条件) (2)连架杆和机架中必有一杆是最短杆。
整转副是曲柄存在的必要条件。
3.铰链四杆机构基本类型的判别方法: (1)在满足杆长和的条件下:
① 以最短杆的相邻构件为机架,则最短杆为曲柄,另一连架杆为 摇杆,即该机构为曲柄摇杆机构; ②以最短杆为机架,则两连架杆为曲柄,该机构为双曲柄机构; ③以最短杆的对边构件为机架,均无曲柄存在,即该机构为双摇 杆机构。
有效分力:Ft=Fcosa 有害分力:Fn=Fsina
α愈小,机构传动性能愈好。
(2)传动角g
传动角: 连杆与从动件所夹的锐角 g , g = 900-a
ɣ 越大,机构的传动性能越好;反之,α越大,γ越小,机构传 力越困难,当γ小到一定程度时,会由于摩擦力的作用而发生自
锁现象。自锁现象是由于作用力的方向不合适,即使增加作用力 也不能克服摩擦阻力使机构运动的现象。因此,传动角ɣ的理想值 应保持在接近最大值90°附近。设计时一般应使 gmin≥40°,对于 高速大功率机械应使 gmin≥50°。
1 2
1800 1800
上式表明,机构急回速度取决于极位夹角θ的大小。
由上式可得: 1800 k 1 一般: K ≤ 2, ∴ θ为锐角。
k 1
可见:θ↑ K↑急回特性越显著——导致机器动载↑ 冲击↑,传动
平稳性变差。
急回特性的作用
四杆机构的急回特性可以节省时间,提高生产率。
应用----牛头刨床传动机构
飞机起落架--落地后地面对机轮的力不会使杆CD转动
(B、C、D三点共线),从而保证飞机安全可靠降落。
总结
1、铰链四杆机构的基本类型、应用 2、铰链四杆机构的演化 3、平面四杆机构的几个工作特性 (1)曲柄存在的条件 (2)压力角和传动角 (3)急回特性 (4)死点位置
1)特点: ⑴两连架杆均为曲柄;
⑵主动曲柄匀速转动 ω1= C. 从动曲柄变速转动 ω2= f(t)
2)应用: 惯性筛