线性卷积和圆周卷积的关系
实验4 线性卷积与圆周卷积的计算

题目:已知两个有限长序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4)h(n)=δ(n)+2δ(n-1)+δ(n-2)+2δ(n-3)计算以下两个序列的线性卷积和圆周卷积(1)x(n)⑤y(n) (2)x(n)⑥y(n) (3)x(n)⑨y(n) (4)x(n)⑩y(n)●调用函数circonvfunction yc=circonv(x1,x2,N)%用直接法实现圆周卷积%y=circonv(x1,x2,N)%y:输出序列%x1,x2:输入序列%N:圆周卷积的长度if length(x1)>Nerror;endif length(x2)>Nerror;end%以上语句判断两个序列的长度是否小于Nx1=[x1,zeros(1,N-length(x1))];%填充序列x1(n)使其长度为N,序列h(n)的长度为N1,序列x(n)的长度为N2x2=[x2,zeros(1,N-length(x2))];%填充序列x2(n)使其长度为Nn=[0:1:N-1];x2=x2(mod(-n,N)+1);%生成序列x2((-n))N,镜像,可实现对x(n)以N为周期的周期延拓,加1是因为MATLAB 向量下标只能从1开始。
H=zeros(N,N);%生成N行N列的零矩阵for n=1:1:NH(n,:)=cirshiftd(x2,n-1,N);%该矩阵的k行为x2((k-1-n))Nendyc=x1*H';%计算圆周卷积●调用函数cirshiftdfunction y=cirshiftd(x,m,N)%直接实现序列x的圆周移位%y=cirshiftd(x,m,N)%x:输入序列,且它的长度小于N%m:移位位数%N:圆周卷积的长度%y:输出的移位序列if length(x)>Nerror('x的长度必须小于N');endx=[x,zeros(1,N-length(x))];n=[0:1:N-1];y=x(mod(n-m,N)+1);•函数(1)x(n)⑤y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,5);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);%画图stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');•函数(2)x(n)⑥y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,6);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');•函数(3)x(n)⑨y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,9);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');•函数(4)x(n)⑩y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,10);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');思考题:①圆周卷积与线性卷积的关系:若有x1(n)与x2(n)两个分别为N1与N2的有限长序列,则它们的线性卷积y1(n)为N1+N2-1的有限长序列,而它们的N点圆周卷积y2(n)则有以下两种情况:1,当N<N1+N2-1时,y2(n)是由y1(n)的前N点和后(N1+N2-1-N)点圆周移位后的叠加而成;N> N1+N2-1时,y2(n)的前N1+N2-1的点刚好是y1(n)的全部非零序列,而剩下的N-(N1+N2-1)个点上的序列则是补充的零。
线性卷积与圆周卷积的计算

数字信号处理实验报告
实验名称:线性卷积与圆周卷积的计算(实验四)
专业班 级: 学生姓名: 学 号: 指导教师:
二○一 年 月 日
1
一、 实验原理 1.线性卷积
当系统输入序列为 x(n),系统的单位冲激响应为 h(n),输出序列为 y(n),则线性时不变系统 y(n) = x(n)*h(n). 2.圆周卷积
圆周移位代替线性移位的好处: 时域圆周卷积在频域上相当于两序列的 DFT 的相乘,而计算 DFT 可 以采用它的快速算法——快速傅立叶变换(FFT),因此圆周卷积和线 性卷积相比,计算速度可以大大加快。
7
调试中所遇到的问题: 图形输出与算得的不符,经过结果逆推回去,发现计算圆周卷积的一 个矩阵没有转置。 圆周卷积与线性卷积的关系: 根据实验结果,可以发现,当 N>=L+P-1 时,圆周卷积等于线性卷积; 而当 N<L+P-1 时,圆周卷积等于两个序列的线性卷积加上时间的混 叠。
6
线性卷积的运算步骤: 求 x1(n)与 x2(n) 的线性卷积:对 x1(m)或 x2(m)先进行镜像移 位 x1(-m),对移位后的序列再进行从左至右的依次平移 x(n-m),当 n=0,1,2.…N-1 时,分别将 x(n-m)与 x2(m)相乘,并在 m=0,1,2.… N-1 的区间求和,便得到 y(n)。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
圆周卷积通用程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function yc = circonv(x1,x2,N) % 定义函数 if length(x1)>N
数字信号处理简答题完整版

数字信号处理简答题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1.一般模拟信号的D F T过程连续时间信号的傅里叶变换所得信号的频谱函数是模拟角频率Ω的连续函数;而对连续时间信号进行时域采样所得序列的频谱是数字角频率ω的连续函数。
而将采样序列截断为有限长序列后做离散傅里叶变换是对被截断后序列频谱函数的等间隔采样。
由于DFT是一种时域和频域都离散化了的变换,因此适合做数值运算,成为分析信号与系统的有力工具。
但是,用DFT对连续时间信号做频谱分析的过程中,做了两步工作,第一是采样;第二是截断。
因此,最后所得到的离散频谱函数和原连续信号的连续频谱肯定存在误差。
下面我们就来分析这些误差究竟产生在哪些地方。
首先由傅里叶变换的理论可知,对于模拟信号来说,若信号持续时间有限长,则其频谱无限宽;若信号的频谱有限宽,则其持续时间无限长。
所以严格来讲,持续时间有限的带限信号是不存在的。
实际中,对频谱很宽的信号,为防止时域采样后产生频谱混叠,先用采样预滤波的方法滤除高频分量。
那么必然会导致滤波后的信号持续时间无限长。
设前置滤波器的输出信号为xa (t),其频谱函数Xa(jΩ),它们都是连续函数,其中xa (t)为无限长,而Xa(jΩ)为有限长。
首先对该信号作时域采样,采样周期为T,将得到离散的无限长的序列x(nT)。
由于习惯上描述序列的频谱时用ω作为频率变量,因此必须探寻x(n)的频谱X(e jω)与xa (t)的频谱Xa(jΩ)之间的关?系。
理论上已推得,X(e jω)就是Xa(jΩ)以2π/T的周期延拓后再将频率轴Ω作T倍的伸缩后得到的图形再乘以一个常数1/T得到。
也就是X(e jω)= X(e jΩT)=1/T*∑Xa[j(Ω-k*2π/T)]这一个过程中,只要采样频率足够大,即T足够小,理论上是可以保证无混叠的,也就是能由序列的频谱X(e jω)完全恢复模拟信?号的频谱Xa(jΩ)。
线性卷积和圆周卷积的关系

1、线性卷积和圆周卷积的关系(参考书P122)dsp31:ppt91设)(1n x 是1N 点的有限长序列)10(1-≤≤N n ,设)(2n x 是2N 点的有限长序列)10(2-≤≤N n ,(A ))(1n x 和)(2n x 的线性卷积为∑∑-=∞-∞=-=-=1021211)()()()()(N m m l m n x m x m n x m x n y 则线性卷积)(n y l 的长度为121-+N N 。
(B )两个有限长序列)(1n x 和)(2n x 做L 点的圆周卷积:首先将两个序列补零,扩成长度为L 的序列: ⎩⎨⎧-≤≤-≤≤=1,010),()(1111L n N N n n x n x ⎩⎨⎧-≤≤-≤≤=1,010),()(2222L n N N n n x n x 圆周卷积为:)(]))(()([)(1021n R m n x m x n y L L m L ⋅-=∑-=这里必须将一个序列变成L 点周期延拓序列,这里采用)(2n x 序列:∑∞-∞=+==r L rL n x n x n x )())(()(~222 把它带入到)(n y 中并考虑到前面的线性卷积公式,可得到:)(])()([)(]))(()([)(10211021n R m rL n x m x n R m n x m x n y L L m r L L m L ⋅-+=⋅-=∑∑∑-=∞-∞=-=)(])()([2101n R m rL n x m x Lr L m ⋅-+=∑∑∞-∞=-= )(])([n R rL n y L r l ⋅+=∑∞-∞=所以L 点圆周卷积)(n y 是线性卷积)(n y l 以L 为周期的周期延拓序列的主值序列。
因为)(n y l 有121-+N N 个非零值,所以延拓周期L 必须满足:121-+≥N N L 。
这时各延拓周期才不会交叠,而)(n y 的前121-+N N 个值正好是)(n y 的全部非零序列值,也正是线性卷积)(n y l 。
线性卷积和圆周卷积的关系-email-0

1、离散傅里叶级数变换推导(参考书P102)dsp31:ppt251、DFS 反变换的推导:连续周期信号的傅立叶级数为∑∑∑∞-∞=∞-∞=∞-∞=ΩΩ=Ω====Ω===ΩΩ=k nkN jk nT NT jk p p p k tjk e k X e k X nT x n x NT T NT T nT t T ek X t x πππππ2020000)(~)(~)(~)(~/2/2,,,/2)()(~0则令其中频域的周期和采样间隔:0)//(2/22Ω====ΩN N T T f p s s πππ)(~nT x 时域周期、离散序列,周期为N ,采样间隔T ;)(~0Ωk X 频域周期、离散序列,周期为N ,采样间隔0Ω;反变换推导初步结果:+∞-∞==∑∞-∞=~,)(~)(~2n e k X n x k nk N j π进一步化简。
由于knN j n rN k N j e e ππ2)(2=+离散傅立叶级数只能取k=0~N-1的N 个独立谐波分量。
因此有+∞-∞==∑-=~,)(~)(~102n e k X n x N k nk N j π2、DFS 正变换的推导:下式实际上是等比级数公式⎩⎨⎧==--=∑-=r m m N r N e e e r N j rNN j N n rn N j 其他,为任意整数0,,1122102πππ有)(~)(~)(~])(~[)(~1010)(21010)(2101022102r X N e k X e k X e e k X e n x N k N n n r k N j N n N k n r k N j N n N k rn N j kn N j N n rn N j ====∑∑∑∑∑∑∑-=-=--=-=--=-=--=-πππππ因此∑-=-=102)(~1)(~N n knN j e n x N k X π3、正、反变换最终形式推导:为与其他变换的书写形式统一,常写成∑-=-=102)(~)(~N n knN j e n x k X π,+∞-∞=~k∑-==102)(~1)(~N k nkN j e k X N n x π,+∞-∞=~n以上就是离散傅立叶级数(DFS )变换对。
[Matlab]线性卷积圆周卷积代码实现
![[Matlab]线性卷积圆周卷积代码实现](https://img.taocdn.com/s3/m/6b95625bc950ad02de80d4d8d15abe23482f0314.png)
[Matlab]线性卷积圆周卷积代码实现1、线性卷积周期卷积圆周卷积的关系:2、Matlab实验及现象圆周卷积:1 %% 圆周卷积实例程序2 %% Alimy 2014年11⽉21⽇20:19:123 clc;4 clear;5 %%准备数据6 N = 5;7 M = 5;8 L = N + M -1;9 x1n = [1,2,3,4,5];10 x2n = [1,5,9,7,3];11 kn_x1 = 0:1:N-1;12 kn_x2 = 0:1:M-1;13 kn_y = 0:1:L-1;14 %%画原始有限长序列15 subplot(4,2,1);16 stem(kn_x1,x1n);17 xlabel('n','FontSize',15);18 ylabel('x1n','FontSize',15);19 subplot(4,2,2);20 stem(kn_x2,x2n);21 xlabel('n','FontSize',15);22 ylabel('x2n','FontSize',15);2324 x1n_t = [x1n, zeros(1,L-N)]; %%补零25 x2n_t = [x2n, zeros(1,L-M)];26 kn_x1t = 0:1:(N+M-1)-1;27 kn_x2t = 0:1:(N+M-1)-1;28 %%画补0后序列29 subplot(4,2,3);30 stem(kn_x1t,x1n_t);31 xlabel('n','FontSize',15);32 ylabel('x1n补0后','FontSize',15);33 subplot(4,2,4);34 stem(kn_x2t,x2n_t);35 xlabel('n','FontSize',15);36 ylabel('x2n补0后','FontSize',10);3738 x1n_t = [x1n_t,x1n_t,x1n_t,x1n_t]; %沿拓39 x1n_t = fliplr(x1n_t); %翻转40 [x1t_x,x1t_y] = size(x1n_t);41 x1t_numbers = x1t_x * x1t_y;42 kn_x1t = -17:1:18;43 %%画沿拓翻转后的周期序列44 subplot(4,2,5);45 stem(kn_x1t,x1n_t);46 xlabel('t','FontSize',15);47 ylabel('x1n_t补0后再沿拓翻转后','FontSize',10);4849 x2n_t = [zeros(1,L),zeros(1,L),x2n_t,zeros(1,L)];50 kn_x2t = -18:1:17;51 subplot(4,2,6);52 stem(kn_x2t,x2n_t);53 xlabel('t','FontSize',15);54 ylabel('x2n_t补0后沿拓翻转后','FontSize',15);555657 %% 乘加移位58 yn = zeros(1,2*L);59for I = 1:1:1860 x1n_t = circshift(x1n_t,[0,1]);61 yn(I) = x2n_t*x1n_t';62 end6364 kn_yn = 0:1:2*(N+M-1)-1;65 subplot(4,2,7);66 stem(kn_yn,yn);67 xlabel('n','FontSize',15);68 ylabel('圆周卷积结果','FontSize',15);6970 %%取主值序列71 ynmain = zeros(1,L);72for I = 1:1:973 ynmain(I) = yn(I);74 end75 kn_ynm = 0:1:8;76 subplot(4,2,8);77 stem(kn_ynm,ynmain)78 xlabel('n','FontSize',15);79 ylabel('主值序列','FontSize',15);8081 %%cycleConv.m线性卷积:1 %% 线性卷积2 clc;3 clear;4 %%5 N = 5;6 M = 5;7 L = N + M - 1;8 x1n = [1,2,3,4,5];9 kx1 = 0:1:N-1;10 x2n = [1,5,9,7,3];11 kx2 = 0:1:M-1;1213 %% 线性卷积14 yn = conv(x1n,x2n);15 kyn = kx1(1)+kx2(1):1:kx1(end)+kx2(end); % 0:1:(N+M-1)-11617 %% 循环卷积 To do 2014年11⽉20⽇ 15:25:36 循环卷积怎么做1819 %% 画图20 subplot(2,2,1);21 stem(kx1,x1n);22 xlabel('n');23 ylabel('x1n');24 title('信号1');2526 subplot(2,2,2);27 stem(kx2,x2n);28 xlabel('n');29 ylabel('x1n');30 title('信号2');3132 subplot(2,2,3);33 stem(kyn,yn);34 xlabel('n');35 ylabel('yn');36 title('线性卷积结果');37 yn %% 1 7 22 44 69 88 82 47 15 linConv.m结果如下:当 L = N + M -1时,圆周卷积和线性卷积的结果⼀致:yn =1 7 22 44 69 88 82 47 15圆周卷积:线性卷积:。
关于线性卷积及圆周卷积的简便竖式法计算
关于线性卷积及圆周卷积的简便竖式法计算
线性卷积和圆周卷积是数字信号处理中常见的两种卷积操作。
简单来说,线性卷积可以把两个信号之间的关系映射到输出上,而圆周卷积是一种更为复杂的运算,它可以寻找两个旋转的信号之间的关系。
下面就描述一下这两种卷积的简便竖式法计算。
线性卷积:
输入:
f(n)=x(n)*h(n)
f:输入信号;
x:样本函数;
h:滤波器。
步骤:
(1)将输入信号f分段;
(2)用滤波器在f的每一段输入取值上乘以x;
(3)对f的每一段结果求和,最终得到f的线性卷积输出。
圆周卷积:
输入:
F(n)=X(n)*H(n)
F:输入信号;
X:变换函数;
H:滤波器。
步骤:
(1)将输入信号F分段,每一段变换为正弦、余弦等函数;
(2)对每一段变换后的函数,用滤波器H乘以X;
(3)对每一段变换后函数结果求叠加和,以得到F的圆周卷积输出。
总结:
上述简便竖式法计算描述了两种卷积的计算步骤,即线性卷积和圆周卷积,在结果求叠加和时,用来表示信号实际上与自身的旋转有关的圆周卷积结果是不同的。
因此,这两种卷积的计算采用的步骤也有所不同。
以上就是线性卷积及圆周卷积的简便竖式法计算的长文描述。
圆周卷积
五. 圆周卷积定理 ( Circular convolution )
1. 圆周卷积和的定义:
两个长度为 N 的序列 的如下计算称为圆周卷积和,用 符号 N 表示: (N表示圆周卷积的点数)
x1(n)
N
x2
(n)
N 1 m0
将 Y (k) 周期延拓: Y~(k) X~1(k)X~2(k)
则有: ~y (n) IDFS Y~(k)
N 1
~x1 (m)
~x2
(n
m)
m0
N 1
x1((m))N x2 n mN m0
在主值区间 0 m N 1, x1((m)) N x1(m) ,所以:
y(n) ~y(n)RN (n)
其中
k e j
k
z
z e j
1 zN
N (1WNk z 1) ze j
1 N
1 e jN
j k 2
1 e N
k e j
1 N
1 e jN e j 2k
j k 2
1 e N
1 1 e j (N 2k ) j k 2
N 1e N
j N 2k
N
1
W (mn N
)
k
k 0
x(n rN ) r
利用性质
N 1 j 2 pk N ,p rN
eN
k 0
0
,其他
p
由 ~xN (n) x(n rN ) 可知: r ~xN (n) 是 x(n) 以 N 为周期的周期延拓; 也就是说: 频域抽样造成时域周期延拓。
3. 频域抽样定理:
x1
数字信号处理复习题
数字信号处理期末考试复习题简答题1.抽样定理:若xa(t)频带宽度有限,要想抽样后能不失真的还原出原信号,则抽样频率必须大于等于两倍信号谱的最高频率即fs≥2fn否则抽样后会发生频谱混叠。
2.无限长单位冲激响应滤波器IIR的特点:系统的单位冲击响应h(n)是无限长的;系统函数H(z)在有限z平面(0<|z|<∝)上有极点存在;结构上存在着输出到输入的反馈,也就是结构上是递归的。
3.圆周卷积和线性卷积之间的关系:设x1(n)、x2(n)分别为N1、N2点有限长序列,周期卷积是线性卷积以L为周期的周期延拓序列,圆周序列、圆周卷积是周期卷积的主值区间,当L≥N1+N2-1时,圆周卷积能代表线性卷积。
4.全通系统零极点分布特点:关于单位圆呈镜像共轭对称分布,其中极点在单位圆内,零点在单位圆外。
5.窗函数选择条件,设计步骤:条件:窗谱主瓣尽可能地窄,以获得较陡的过渡带;尽可能的减小窗谱最大旁瓣的相对幅度,也就是能量尽量集中于主瓣,这样使肩峰和波纹减小,就可增大阻带的衰减。
步骤:给定所要求的理想的频率响应函数Hd(e jω);利用Hd(e jω)的傅里叶反变换导出hd(n),hd(n)=1/2∏∫-ππHd(e jω) e jωn dw;有过渡带宽及阻带最小衰减的要求来选择窗函数w(n)的形状及N的大小;求所设计的FIR滤波器的单位抽样响应h(n)=hd(n).w(n) n=0,1,…N-1;求H(ejw)=∑n=0,N-1h(n) e-jωn检验是否满足设计要求。
6.线性相位滤波器的特点:h(n)是实函数h(n)=±h(N-n-1);h(n)关于对称中心N-1/2奇偶对称。
7.因果系统零极点的分布特点:极点在单位圆内。
最小相位延时系统,零点在圆内;最大相位超前系统,零点在圆外。
非因果系统:极点在单位圆外。
最小相位超前系统,零点在圆外;最大相位超前系统,零点在圆内。
8.冲击响应不变法的优点:使得数字滤波器的冲击响应完全模仿模拟滤波器的冲激响应,也就是时域逼近良好,而且模拟频率Ω和数字频率w之间呈线性关系w=ΩT;缺点:有频率响应混叠效应,冲击响应不变法只适用于限带的模拟滤波器,高通和带阻滤波器不宜采用9.阶跃响应不变法优点:频率响应的混叠现象随着Ω的增加比冲击响应不变法的小;缺点:仍存在混叠失真10.双线性变换法优点:避免了频率响应混叠现象;缺点:Ω增加时变换关系是非线性的,频率Ω和w之间存在严重非线性关系11.冲击响应不变法和阶跃响应不变法适合低通,带通滤波器;双线性变换适合低通、高通、带通、带阻。
11圆周卷积
11圆周卷积圆周卷积圆周运算其实圆周运算是针对周期序列⽽⾔的,由于周期序列在每⼀个周期内的取值都相同,所以我们只关注它的主值区间,⽐如,如果⼀个序列的长度为N的话,那么它的主值区间就是0\leq n\leq N-1。
虽然圆周运算是源⾃于对周期信号的处理,但是经过⼀般化的扩展之后,对有限长序列也可以进⾏圆周运算。
具体就是,你可以把有限长序列以它的长度为周期,进⾏周期延拓成⼀个周期序列,然后进⾏运算,然后取其主值区间进⾏观察得到的结果。
圆周反褶圆周反褶就是⼀个周期序列进⾏反褶之后,取其主值区间序列。
因为⼀个周期序列反褶之后还是周期序列,所以这么做是合理的。
假设⼀周期信号在其主值区间的取值为x[n]={x[0],x[1],x[2],x[3],x[4]}即该序列的周期为5,那么反褶后的信号为(只关注主值区间)\begin{aligned} y[0]&=x[0]=x[0] \\ y[1]&=x[-1]=x[5-1]=x[4] \\ y[2]&=x[-2]=x[5-2]=x[3] \\ y[3]&=x[-3]=x[5-3]=x[2] \\ y[4]&=x[-4]=x[5-4]=x[1] \end{aligned}为了⽅便⽤数学的语⾔描述这种运算,⾸先看⼀种数学上的模运算运算,⾸先看⼏个模运算的例⼦:\begin{aligned} 2 \,mod \, 5 =2 \\ 6 \, mod \, 5 = 1 \\ -3 \, mod \, 5 = 2 \end{aligned}不知道⼤家看出来没有,模运算其实就是求余,2对5的余数就是2,6对于5的余数是1,⽽-3对5的余数应该为(-3+5)\, mod\, 5=2(加上5之后不影响余数的⼤⼩,因为5⼀直能整除5,5对5的余数⼀直是0)我们把2 \, mod\, 5记作<2>_5,所以我们定义圆周反褶为y[n]=x[<-n>_N]其中N为序列x[n]的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X~
(k0
)e
jk
2 NT
nT
k
X~
(k0
)e
j
2 N
nk
k
频域的周期和采样间隔:
s 2fs 2 / T 2 /(Tp / N ) N0
~x (nT ) 时域周期、离散,周期为 N,采样间隔 T;
X~(k0 ) 频域周期、离散,周期为 N,采样间隔 0
反变换推导初步结果:
~x (n)
L 1
圆周卷积为: y(n) [ x1(m)x2 ((n m)) L ] RL (n) m0
这里必须将一个序列变成 L 点周期延拓序列,这里采用 x2 (n) 序列:
~x2 (n) x2 ((n)) L
x2 (n rL)
r
把它带入到 y(n) 中并考虑到前面的线性卷积公式,可得到:
L 1
k 0
n0
因此
X~ (k )
1
N
1
~x (n)e
j
2 N
kn
N n0
3、为与其他变换的书写形式统一,常写成
X~ (k )
N
1
~x
(n)e
j
2 N
kn
,k
~
n0
~x (n)
1 N
N
1
X~
(k
)e
j
2 N
nk
k 0
,
n
~
以上就是离散傅立叶级数(DFS)变换对
引入符号:
j 2
WN e N
正变换:
n0
j 2 rN
1 e
N j 2 r
1e N
N, 0,
有
r mN , m为任意整数 其他r
2
N
1
~x
(n)e
j
2 N
rn
N
1
[
N
1
X~
(k
)e
j
2 N
kn
]e
j
2 N
rn
n0
n0 k0
N
1
N
1
X~
(k
)e
j
2 N
(k
r
)n
N
1
X~
(k
)
N
1
e
j
2 N
(k
r
)n
n0 k0
NX~(r)
X~ (k ) DFS [~x (n)] N 1 ~x (n)WNnk n0
k ~
反变换:
~x (n)
IDFS [ X~ (k )]
1 N
N 1 X~ (k )WNnk
k 1
n ~
3、基-2 按时间抽取 FFT 算法证明(书 P144)dsp41:p10
1、算法原理
设 N 2L ,基2-FFT。由定义
N 同理: X 2 ( 2 k) X 2 (k)
N k
因为:WN2
N
WN2
• WNk
WNk
由此:
4
X
(k)
X1(k)
WNk
X 2 (k),
k 0,1,
N 1 2
X
(k
N 2
)
X1(k)
WNk
X 2 (k),
k 0,1,
N 1 2
【书 p148,图 4-4】基2按时间抽取 8 点(DIT)的 FFT 流图 解:N=8,做 L=3 级蝶形运算,
6
N 1
X (2r
1)
2
[x(n)
n0
x(n
N 2
)WNn ( 2 r 1)
N 1
2
{ [x(n)
n0
x(n
N 2
)]WNn}WNnr/ 2
令:
x1(n)
x(n)
x(n
N 2
),
x2
(n)
[x(n)
x(n
N 2
)]WNn
,
n
0,1, . . . , N
1
2
则:
N 1 2
X (2r) x1(n)WNnr/ 2 n0 N 1 2
X (2r 1) n0 x2 (n)WNnr/ 2 , r 0,1,...,N 1 2
即按频率 k 的奇偶将一个 N 点 DFT 分解为两个 N/2 点 DFT。
【书 p158,图 4-17】基2按频率抽取 8 点(DIF)的 FFT 流图: N=8,做 L=3 级蝶形运算,
7
1、线性卷积和圆周卷积的关系(参考书 P122)dsp31:ppt91
设 x1(n) 是 N1 点的有限长序列 (0 n N1 1) ,设 x2 (n) 是 N2 点的有限长序列 (0 n N2 1) ,
(A) x1(n) 和 x2 (n) 的线性卷积为
N1 1
yl (n) x1(m)x2 (n m) x1(m)x2 (n m)
所以延拓周期 L 必须满足: L N1 N2 1。这时各延拓周期才不会交叠,而 y(n) 的前 N1 N2 1 个值正好是 y(n)
的全部非零序列值,也正是线性卷积 yl (n) 。 y(n) 剩下的 L (N1 N2 1) 个值都是零值。所以,圆周卷积代表线性
卷积的条件: L N1 N2 1。
L 1
y(n) [ x1(m)x2 ((n m)) L ] RL (n) [ x1(m) x2 (n rL m)] RL (n)
m0
m0
r
L 1
[
x1(m)x2 (n rL m)] RL (n)
r m0
[ yl (n rL)] RL (n) r
所以 L 点圆周卷积 y(n) 是线性卷积 yl (n) 以 L 为周期的周期延拓序列的主值序列。因为 yl (n) 有 N1 N2 1 个非零值,
n0
n0 n为偶数 n0 n为奇数
N 1
N 1
2
2
x(2r)WN2rk x(2r 1)WN(2r1)k
r0
r0
N 1
N 1
2
2
x1(r)WNrk2 WNk x2 (r)WNrk2
r0
r 0
X1(k) WNk X 2 (k)
上式表明了一个N点的 DFT 被分解为两个N/2点的 DFT。 X(k)后一半点计算:
X~
(k
)e
j
2 N
nk
,
n ~
k
进一步化简。由于
j 2 (k rN )n
j 2 kn
eN
e N
离散傅立叶级数只能取 k=0~N-1 的 N 个独立谐波分量。因此有
~x (n)
N 1
X~ (k )e
j 2 N
nk
,
n ~
k 0
2、DFS 正变换的推导: 下式实际上是等比级数公式
N 1 j 2 rn eN
(1)k
因此:
N 1
X
(k)
2
[x(n)
n0
(1)k
x(n
N 2
)]WNnk
令k 2r, k 2r 1, r 0,1, N 1 2
K 的偶数点的 DFT:
N 1
X (2r)
2
[x(n)
n0
x(n
N 2
)WN2nr
N 1
2
[x(n)
n0
x(n
N 2
)]WNnr/ 2
K 的奇数点的 DFT:
n0
n0
n N
2
N 1 2
x(n)WNnk
n0
N 1 2
x(n
n0
N 2
(N 1 2
[x(n)
n0
x(n
N 2
N
)WN2
k
]WNnk
其中:k=0,1,…,N-1。上式表明了一个N点的 DFT 按 K 的奇偶分成前后两部分,都为N点的 DFT。 因为:
N
WN2
Nk
1,WN2
m
m0
则线性卷积 yl (n) 的长度为 N1 N2 1 。
(B)两个有限长序列 x1(n) 和 x2 (n) 做 L 点的圆周卷积:
首先将两个序列补零,扩成长度为 L 的序列:
x1(n) x10(n, ),
0 n N1 1 N1 n L 1
x2 (n) x20(n, ),
0 n N2 1 N2 n L 1
1
2、离散傅里叶级数变换推导(参考书 P102)dsp31:ppt25
1、DFS 反变换的推导: 连续周期信号的傅立叶级数为
~x (t) X (k0 )e jk0t k
其中0 2 / Tp , 令t nT , 则
Tp NT , 0 2 / Tp 2 / NT
~x (n) ~x (nT )
X(N 2
k)
X
1
(
N 2
k
)
(
WN
N 2
k
)
X
2
(
N 2
k)
利用周期性:
WN2
j 2 •2
eN
j
2 N
e2
WN
2;
WNrk
r( N k)
WN 2
2
2
;
X
1(
N 2
k)
N 1 2
r( N k )
x1(r)WN 2
r0
2
N 1 2
x1(r)WNrk
r0
2
所以有:
X1(
N 2
k)
X1(k)
N 1
X (k ) x(n)WNnk
n0
,k=0,1,…,N-1