优秀课件21.3二次根式的加减第2课
合集下载
21.3 二次根式的加减(第2课时)

(5
48 1 4 6) 27
2 2
5)Βιβλιοθήκη 21 2 分析说明:○中补充(3)是不能除尽(含分数线)的类型。○中补充完全平方公式应 用. 归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完
全平方公式、平方差公式来简化运算. (二)二次根式混合运算的应用 1.若 x= 2 1 ,则 x2+x+1= 2.已知 x 3 2 , y 3 2 , 求 1
九年级数学上册教案 课题:21.3 二次根式的加减 教学内容: 21.3 知识 技能 教学 目标 过程 方法
备课人:杨贤
情感 态度 重点 难点 教学 准备
二次根式的加减(第 2 课时) 在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算 与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算. 1.对二次根式的混合运算与整式的混合运算及有理数的混合运算作比较,注意运算 的顺序及运算律在计算过程中的作用.并感受数的扩充过程中运算性质和运算律的 一致性以及数式通性. 2. 在运算中运用多项式的乘法法则和整式的乘法公式,体会二次根式的运算与整 式的运算的联系. 培养学生的类比运用意识
y x x y
; 2 2 x
6 xy 2 y
2
的值. ⊥ ABCD 的面 积.
3.如图,四边形 ABCD 中,AB⊥BC,AD AB,AB=1,BC=CD=2, 求 四 边 形
三、课堂训练 完成课本练习 .补充: 1.海伦——秦九韶公式:如果一个三角形的三边长分别是 a ,b,c,设 p = a 角形的面积为 S=
p p a p b p c
b c 2
, 则三
48 1 4 6) 27
2 2
5)Βιβλιοθήκη 21 2 分析说明:○中补充(3)是不能除尽(含分数线)的类型。○中补充完全平方公式应 用. 归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完
全平方公式、平方差公式来简化运算. (二)二次根式混合运算的应用 1.若 x= 2 1 ,则 x2+x+1= 2.已知 x 3 2 , y 3 2 , 求 1
九年级数学上册教案 课题:21.3 二次根式的加减 教学内容: 21.3 知识 技能 教学 目标 过程 方法
备课人:杨贤
情感 态度 重点 难点 教学 准备
二次根式的加减(第 2 课时) 在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算 与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算. 1.对二次根式的混合运算与整式的混合运算及有理数的混合运算作比较,注意运算 的顺序及运算律在计算过程中的作用.并感受数的扩充过程中运算性质和运算律的 一致性以及数式通性. 2. 在运算中运用多项式的乘法法则和整式的乘法公式,体会二次根式的运算与整 式的运算的联系. 培养学生的类比运用意识
y x x y
; 2 2 x
6 xy 2 y
2
的值. ⊥ ABCD 的面 积.
3.如图,四边形 ABCD 中,AB⊥BC,AD AB,AB=1,BC=CD=2, 求 四 边 形
三、课堂训练 完成课本练习 .补充: 1.海伦——秦九韶公式:如果一个三角形的三边长分别是 a ,b,c,设 p = a 角形的面积为 S=
p p a p b p c
b c 2
, 则三
二次根式的加减PPT课件

1+912+1102
人教版 九年级上
第十九章 生活用电
第1节 家庭电路
课堂导练
3.下图是家庭电路的组成,请填出各组成部分的名称。
①__电__能__表__;②_总__开__关__;③_保__险__装__置__;④_三__孔__插__座__; ⑤__火__线____;⑥__零__线____;⑦___地__线___。
19 见习题
15 C
答案显示
1.同类二次根式:将几个二次根式化成_最__简__二__次__根__式___, 如果被开方数__相__同____,那么这样的二次根式称为同类 二次根式.
2.二次根式的加减,与整式的加减类似,关键是将 _同__类__二__次__根__式_ 合 并 . 其 步 骤 为 先 将 二 次 根 式 化 为 最__简__二__次__根__式__,再将同类二次根式合并.
课后训练
13.(2020·常州)请以笔画线代替导线,将三孔插座、开关控 制的电灯接入电路。 解:如图所示。
课堂导练
【点拨】开关应安装在火线上,当断开开关时,用电器与 火线断开,不会发生触电事故; 空气开关“跳闸”后,电 流无法形成通路,故家庭电路整体上处于断路状态;零线、 地线和大地间的电压都是0 V,用试电笔分别接触零线与 地线时,氖管都不发光,所以试电笔不能辨别零线与地线, 但试电笔可以辨别火线和零线。 【答案】火;断路;不能
【答案】会;44
课后训练
1.下列各式中,与 2 是同类二次根式的是( C ) A. 3 B. 4 C. 8 D. 12
2.下列二次根式中,与 a 是同类二次根式的是( C ) A. a2 B. 2a C. 4a D. 4+a
3.下列二次根式中,与 20是同类二次根式的是( B )
九年级数学上册《21.3 二次根式的加减2》课件 新人教版

21章:二次根式 21.3二次根式的加减(2)
(1)如果几个二次根式的被开方数相同, 那么可以直接根据分配律进行加减运算;
(2)如果所给的二次根式不是最简二次 根式,应该先化简,再考虑进行加减运算。
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式.
ac bca b c
3.计5 算 5: 1 2 8 2 4 54 51 32 6
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
例7: 化简: 1 ,
1,
3 2 3 2
练1: 习 化3简 22: 3, 2 , 3223 53
练习2:已知 a 1 ,b 1 , 32 2 32 2
求代数式ab 的值 . a2 abb
做一做:
1.求当a= 2时,代数式(a -1)2 - (a+ 2 )(a-1)
的值.
2.已a 知 3 2,b 3 2, 求 a2ab b2的值。
加减步骤: 1:化简 2:合并同类二次根式
例4 计算:
1 8 3 6
2 4 23 6 2 2
练习1:计算
11 242 3 2
2
2 3 1 15 3 1 5
3 27 12
3
(4)(a3b3a ba3b)ab
例5 计算:
1 23 23
2 5 3 5 3
练习:计算
(1)( 2 233) (33 22)
(2)(2 2)(32 2)2 2 3 3 82719
(2)原式 642324 2 2
例6: 计算:
(1) ( 1 2) (2 2)
(2) (355 2)2
练习2:计算
(1) (7 2 2 6)(2 6 7 2)
(1)如果几个二次根式的被开方数相同, 那么可以直接根据分配律进行加减运算;
(2)如果所给的二次根式不是最简二次 根式,应该先化简,再考虑进行加减运算。
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式.
ac bca b c
3.计5 算 5: 1 2 8 2 4 54 51 32 6
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
例7: 化简: 1 ,
1,
3 2 3 2
练1: 习 化3简 22: 3, 2 , 3223 53
练习2:已知 a 1 ,b 1 , 32 2 32 2
求代数式ab 的值 . a2 abb
做一做:
1.求当a= 2时,代数式(a -1)2 - (a+ 2 )(a-1)
的值.
2.已a 知 3 2,b 3 2, 求 a2ab b2的值。
加减步骤: 1:化简 2:合并同类二次根式
例4 计算:
1 8 3 6
2 4 23 6 2 2
练习1:计算
11 242 3 2
2
2 3 1 15 3 1 5
3 27 12
3
(4)(a3b3a ba3b)ab
例5 计算:
1 23 23
2 5 3 5 3
练习:计算
(1)( 2 233) (33 22)
(2)(2 2)(32 2)2 2 3 3 82719
(2)原式 642324 2 2
例6: 计算:
(1) ( 1 2) (2 2)
(2) (355 2)2
练习2:计算
(1) (7 2 2 6)(2 6 7 2)
21.3 二次根式的加减(课件)华东师大版数学九年级上册

第一课时 二次根式的加减
返回目录
归纳总结
考
点
判断几个二次根式是否可以合并,只与化为最简二次根
清
单 式之后的被开方数和根指数有关,而与根号外的因式无关.
解
读
第一课时 二次根式的加减
考
点
清
单
解
读
对点典例剖析
典例2
(1)
计算:
+
;
(2) - + ;
(3) +
被开方数相同的最简二次根式时,常采用作差法比较大小
)
第一课时 二次根式的加减
返回目录
方
例 比较大小:7- ______3- (选填“>”“=”
法
技 或“<”).
巧
点
[解析]∵(7- )-(3- )=7-2 -3+ =4拨
>0,∴7- >3- .
[答案] >
第二课时 二次根式的混合运算
的方法
几个二次根式化成最简二次根式以后,若被开
方数相同,则这几个二次根式是同类二次根式
第一课时 二次根式的加减
返回目录
考
点
清 合并同 将同类二次根式的系数相加作为结果的系数,
单
解 类二次 被开方数和根指数不变
读 根式 如m +n =(m+n) ,
的法则 m -n =(m-n)
第一课时 二次根式的加减
易
错
易
混
分
析
返回目录
[答案] D
[易错] B 或 C
[错因] 忽略 和 不能合并,直接把根号下
的数按有理数相加减.
21.3 二次根式的加减 课件(人教版九年级上)

4. 已知a, b是正整数, 且 a+ b=
1998 ,求a+b的值.
则 m 222 + n 222 = 3 222 ,即 (m+n) 222 = 3 222 , ∴ m+n=3. ∵ m,n是正整数, ∴ m=1,n=2或m=2,n=1. ∴ a=222,b=888 或a=888,b =222. ∴ a+b=1110.
m 222 ,b= n 222 ,
3
5 xy = x x + 6 xy =
=
1 1 1 3 6x - 1 ∴ 当x≥ 且x≠1时, 在实数 +6 2 2 2 6 1- x
范围内有意义.
1 2 +3 6 . 4
3. 计算: (7+ 2 5 ) (7- 2 5 ) - 2.已知x= 3 - 2 ,y= 3 + 2 , ( 3 2 -1)2. 3 3 求x y+xy 的值. 如果直接将x, y的值代入计算, 显 (7+ 2 5 ) (7- 2 5 )可考虑使
2010 答案: 原式= ( 2 3 - 13 ) (2 3
得结果. 答案:因为a=- 3 <1,所以a-1<0.
(a - 1 ) (a - 1) 原式= - =a-1- a(a - 1) a -1
2
2
+ 13 )
2010
( 2 3 + 13 )
2010
=[( 2 3 - 13 ) ( 2 3 + 13 )]2010 ( 2 3 + 13 ) = (-1) ( 2 3 +
一样, 需要注意运算的先后顺序; ( 3) 运用完全平方公式进行运算.
例3.计算:( 2 3 - 13 ) + 13 )2011.
2010
(2 3
1 - 2a+a 例4.先化简,再求值: - a -1
《二次根式的加减》二次根式PPT课件2 (共26张PPT)

先化为最 简二次根式 把同类二次根式合 并(合并系数)。
二次根式的加减与整式的加减根据都 是分配律,它们的运算实质也基本相同。
巩固练习
计算: (1)5 2
( 2 )3 40 (3) 12 ( 4 )2 12 4 8 7 18 2 1 2 5 10 1 3 1 27
错在没有 按照二次根式 加减混算从左 向右依次进行 的运算顺序计 算。
3 2 ( 2) 72 18 2 3 2 6 2 3 2 2 3 2 9 2 2
运算不完 全,能合并的 没有合并。
15 2 2
P16练习1题 P17习题1题
归纳
二次根式的加减即为对同类二次根 式的合并。
1 2 1 ( 2) 24 2 6 2 3 8
1 2 1 2 6 2 6 解:原式= 2 6 2 3 4
2 1 1 ( 2 1) 6 ( ) 2 3 2 4
5 3 6 2 3 4
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
复习回顾
a b ab
a b a b
ab a b(a≥0,b≥0)
a b a (a≥0,b>0) b
最简二次根式。
复习回顾
下列根式中,哪些是最简二次根式?
18a , 28, x 4 , 5 x y ,
2 4
×
×
√
×
ab 3xy 1 2 x y, , , 2 5 3x
2
√
× √
×
如图,学校要砌一个正方形花坛, 已知外面的正方形边长为 2 2 cm,里面 的正方形的边长为 2cm,两个正方形的 周长和为多少? 两个正方形的周长和为: 2 2
二次根式的加减与整式的加减根据都 是分配律,它们的运算实质也基本相同。
巩固练习
计算: (1)5 2
( 2 )3 40 (3) 12 ( 4 )2 12 4 8 7 18 2 1 2 5 10 1 3 1 27
错在没有 按照二次根式 加减混算从左 向右依次进行 的运算顺序计 算。
3 2 ( 2) 72 18 2 3 2 6 2 3 2 2 3 2 9 2 2
运算不完 全,能合并的 没有合并。
15 2 2
P16练习1题 P17习题1题
归纳
二次根式的加减即为对同类二次根 式的合并。
1 2 1 ( 2) 24 2 6 2 3 8
1 2 1 2 6 2 6 解:原式= 2 6 2 3 4
2 1 1 ( 2 1) 6 ( ) 2 3 2 4
5 3 6 2 3 4
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
复习回顾
a b ab
a b a b
ab a b(a≥0,b≥0)
a b a (a≥0,b>0) b
最简二次根式。
复习回顾
下列根式中,哪些是最简二次根式?
18a , 28, x 4 , 5 x y ,
2 4
×
×
√
×
ab 3xy 1 2 x y, , , 2 5 3x
2
√
× √
×
如图,学校要砌一个正方形花坛, 已知外面的正方形边长为 2 2 cm,里面 的正方形的边长为 2cm,两个正方形的 周长和为多少? 两个正方形的周长和为: 2 2
《二次根式的加减》二次根式PPT教学课件(第2课时)
试卷下载: .
/shiti/
教案下载: .
/jiaoan/
ppt论坛: . .cn
ppt课件: .
/kejian/
语文课件: .
/kejian/yuwen/ 数学课件: .
/kejian/shuxue/
英语课件: .
/kejian/yingyu/ 美术课件: .
/kejian/meishu/
科学课件: .
1
2
4 2 + 6 2 × 6 × 500 = 2 2 + 3 2 × 6 × 500
= 5 2 × 6 × 500
= 5000 3 3 .
答:这段路基的土石方为5000 32
链接中考
(2021•包头)若x= 2 + 1,则代数式x2-2x+2的值为( C )
A.7
B.4
x2-2x+2=(x-1)2+1
= 3
B.
3
2
6
2
3
2
3
的结果是(
2
C )
C. 3
D.2 3
预习检测
2.计算( 80+ 20)× 5的结果是( D )
A.6
B.2 5
( 80+ 20)× 5
= (4 5+2 5)× 5
= 6 5× 5
= 30
C.2 10
D.30
新知讲解
长方形的长为 2 + 5,宽为 6,它的面积是多少?
长方形的面积=( 2 + 5) × 6
=2−
3
2
3
易错提示
与有理数、实数运算一样,在混合运算中先乘除,后加减;
对于(1):先算乘,再化简,若有相同的二次根式进行合并,
/shiti/
教案下载: .
/jiaoan/
ppt论坛: . .cn
ppt课件: .
/kejian/
语文课件: .
/kejian/yuwen/ 数学课件: .
/kejian/shuxue/
英语课件: .
/kejian/yingyu/ 美术课件: .
/kejian/meishu/
科学课件: .
1
2
4 2 + 6 2 × 6 × 500 = 2 2 + 3 2 × 6 × 500
= 5 2 × 6 × 500
= 5000 3 3 .
答:这段路基的土石方为5000 32
链接中考
(2021•包头)若x= 2 + 1,则代数式x2-2x+2的值为( C )
A.7
B.4
x2-2x+2=(x-1)2+1
= 3
B.
3
2
6
2
3
2
3
的结果是(
2
C )
C. 3
D.2 3
预习检测
2.计算( 80+ 20)× 5的结果是( D )
A.6
B.2 5
( 80+ 20)× 5
= (4 5+2 5)× 5
= 6 5× 5
= 30
C.2 10
D.30
新知讲解
长方形的长为 2 + 5,宽为 6,它的面积是多少?
长方形的面积=( 2 + 5) × 6
=2−
3
2
3
易错提示
与有理数、实数运算一样,在混合运算中先乘除,后加减;
对于(1):先算乘,再化简,若有相同的二次根式进行合并,
《二次根式的加减》二次根式2PPT课件 图文
梳理
二次根式加减时,先将二次根式化 为最简二次根式,再把被开方数相同的 二次根式进行合并。
注意:对被开方数相同的二次根式 进行合并,实质是对被开方数相同的二 次根式的系数进行合并。
观察
化简: (1) 8 2 2 (2) 12 2 3 (3) 20 2 5
50 5 2 27 3 3 45 3 5 18 3 2 48 4 3 125 5 5 每组二次根式在化简后有什么特点?
8 2 4 2 二次根式
的加法.
4 27 4 12
探究
如何计算8 2 4 2呢?
分析: 类似8a+4a=12a,我们可以 根据乘法分配律的逆用来进行运算。
解: 8 2 4 2 (8 4) 2 12 2
如何计算 4 27 4 12 呢?
分析:题中二次根式不是最简 二次根式,所以先要对其进行化简。 再计算。
你总该记得,有一个黄昏,白马湖上的 黄昏, 在你那 间天花 板要压 到头上 来的, 一颗骰 子似的 客厅里 ,你和 我读着 竹久梦 二的漫 画集。 你告诉 我那篇 序做得 有趣, 并将其 大意译 给我听 。我对 于画, 你最明 白,彻 头彻尾 是一条 门外汉 。但对 于漫画 ,却常 常要像 煞有介 事地点 头或摇 头;而 点头的 时候总 比摇头 的时候 多—— 虽没有 统计, 我肚里 有数。 那一天 我自然 也乱点 了一回 头。 点头之余,我想起初看到一本漫画,也 是日本 人画的 。里面 有一幅 ,题目 似乎是 《aa子 爵b泪》 (上两 字已忘 记), 画着一 个微侧 的半身 像:他 严肃的 脸上戴 着眼镜 ,有三 五颗双 钩的泪 珠儿, 滴滴答 答历历 落落地 从眼睛 里掉下 来。我 同时感 到伟大 的压迫 和轻松 的愉悦 ,一个 奇怪 的矛盾 !梦二 的画有 一幅— —大约 就是那 画集里 的第一 幅—— 也使我 有类似 的感觉 。那幅 的题目 和内容 ,我的 记性真 不争气 ,已经 模糊得 很。只 记得画 幅下方 的左角 或右角 里,并 排地画 着极粗 极肥又 极短的 一个“ !”和 一个“ ?”。 可惜我 不记得 他们哥 儿俩谁 站在上 风,谁 站在下 风。我 明白( 自己要 脸)他 们俩就 是整个 儿的人 生的谜 ;同时 又觉着 像是那 儿常常 见着的 两个胖 孩子。 我心眼 里又是 糖浆, 又是姜 汁,说 不上是 什么味 儿。无 论如何 ,我总 得惊异 ;涂呀 抹的几 笔,便 造起个 小世界 ,使你 又要叹 气又要 笑。叹 气虽是 轻轻的 ,笑虽 是微微 的,似 一把锋 利的裁 纸刀, 戳到喉 咙里去 ,便可 要你的 命。而 且同时 要笑又 要叹气 ,真是 不当人 子,闹 着玩儿 !
九年级上数学《21.3 二次根式的加减》课件
回顾旧知
抢答
化简下列二次根式。
8
18
28
1 7
12 2 27
2 2 3 2
2 7
7 7
2 3
6 3
这些最简二次根式有什么特点?
新课导入
有一个三角形,它的两边长分别为 20 和 5 , 如果该三角形的周长为 9 5 ,你能求出第三边吗?
提示 根据三角形的周长公式 C = a+ b+ c 求解。
?
a 20
答:35 秒后△PBQ 的面积为 35 cm2 , PQ的距离为 5 7 cm 。
例题
计算
8 3 6 8 6 3 6
8 6 3 6
注意
4 3 3 2
(1)加减与乘除的混合运算,先乘除, 后加减,使难点分散。 (2)在运算中,对于各根式不一定要先 化简,而是先乘除,进行约分,达到化简的 目的,但最后结果一定要化简。
【情感态度与价值观】
利用规定准确计算和化简的严谨的科 学精神。 经过探索二次根式的重要结论,发展 学生观察、分析、发现问题的能力。
教学重难点
二次根式化简为最简二次根式以及二 次根式的判定。
二次根式的加减、乘除、乘方等运算 规律。 由整式运算知识迁移到含二次根式的 运算。
我们可以这样来计算
一化
二找
三合并
例题
解答
如图所示的 Rt△ABC中,∠B=90°,点 P 从点 B 开始沿 BA 边以 1 cm/s 的速度向点 A 移动。同时, 点 Q 也从点 B 开始沿 BC 边以 2 cm/s 的速度向点 C 移动。问:几秒后△PBQ 的面积为 35 cm2 ?PQ 的 距离是多少厘米?(结果用最简二次根式)
抢答
化简下列二次根式。
8
18
28
1 7
12 2 27
2 2 3 2
2 7
7 7
2 3
6 3
这些最简二次根式有什么特点?
新课导入
有一个三角形,它的两边长分别为 20 和 5 , 如果该三角形的周长为 9 5 ,你能求出第三边吗?
提示 根据三角形的周长公式 C = a+ b+ c 求解。
?
a 20
答:35 秒后△PBQ 的面积为 35 cm2 , PQ的距离为 5 7 cm 。
例题
计算
8 3 6 8 6 3 6
8 6 3 6
注意
4 3 3 2
(1)加减与乘除的混合运算,先乘除, 后加减,使难点分散。 (2)在运算中,对于各根式不一定要先 化简,而是先乘除,进行约分,达到化简的 目的,但最后结果一定要化简。
【情感态度与价值观】
利用规定准确计算和化简的严谨的科 学精神。 经过探索二次根式的重要结论,发展 学生观察、分析、发现问题的能力。
教学重难点
二次根式化简为最简二次根式以及二 次根式的判定。
二次根式的加减、乘除、乘方等运算 规律。 由整式运算知识迁移到含二次根式的 运算。
我们可以这样来计算
一化
二找
三合并
例题
解答
如图所示的 Rt△ABC中,∠B=90°,点 P 从点 B 开始沿 BA 边以 1 cm/s 的速度向点 A 移动。同时, 点 Q 也从点 B 开始沿 BC 边以 2 cm/s 的速度向点 C 移动。问:几秒后△PBQ 的面积为 35 cm2 ?PQ 的 距离是多少厘米?(结果用最简二次根式)
21.3 二次根式的加减(2)
3 2 3 2 2
3 2 3 2 2
2 2 1 81 9
已知x 2 3,y 2 3 试求(x 1 )(y 1 )的值。
yx
不用计算器, 不求平方根的值, 比较 2 与 1数部分为 b. 52
3 2 3 2 2
3 2 3 2 2
2 2 1 81 9
1.若x 1 ,则 x2 2x 1 ( D )
2 1
A. 2
B. 2 2
C.2 2
D.2
2. 已知:x2 y2 19, xy 3,
求
x y
2x, 75 , 1 , 1 , 3x, 2 8ab3 ,6b a , 3 2
50 27
3
2b
彗眼识真: 下列计算哪些正确,哪些不正确?
⑴ 3 2 5 (不正确)
⑵ a b a b (不正确) ⑶ a b a b (不正确)
⑷ a a b a (a b) a (正确)
(x 3)2 3 (x 3)2
x2 2 3x 3 3 x2 2 3x 3
4 3x 3 x 3 4
已知a 3 2, b 3 2,
求a2 ab b2的值.
解二:a2 ab b2
a2 2ab b2 ab (a b)2 ab
1、化简或计算下列各题.
①1 23
② 2 1
2 1 ③ 11
2 3 2 1
2、计算或化简:
① 8 2( 2 2)
②
( 1 )1 (2 )0
2
2
1 2 1
③ 18 2 1 4 1 2 1 8
3 2 3 2 2
2 2 1 81 9
已知x 2 3,y 2 3 试求(x 1 )(y 1 )的值。
yx
不用计算器, 不求平方根的值, 比较 2 与 1数部分为 b. 52
3 2 3 2 2
3 2 3 2 2
2 2 1 81 9
1.若x 1 ,则 x2 2x 1 ( D )
2 1
A. 2
B. 2 2
C.2 2
D.2
2. 已知:x2 y2 19, xy 3,
求
x y
2x, 75 , 1 , 1 , 3x, 2 8ab3 ,6b a , 3 2
50 27
3
2b
彗眼识真: 下列计算哪些正确,哪些不正确?
⑴ 3 2 5 (不正确)
⑵ a b a b (不正确) ⑶ a b a b (不正确)
⑷ a a b a (a b) a (正确)
(x 3)2 3 (x 3)2
x2 2 3x 3 3 x2 2 3x 3
4 3x 3 x 3 4
已知a 3 2, b 3 2,
求a2 ab b2的值.
解二:a2 ab b2
a2 2ab b2 ab (a b)2 ab
1、化简或计算下列各题.
①1 23
② 2 1
2 1 ③ 11
2 3 2 1
2、计算或化简:
① 8 2( 2 2)
②
( 1 )1 (2 )0
2
2
1 2 1
③ 18 2 1 4 1 2 1 8