4位全加器
4位全加器

四位全加器的VHDL实现通信0704 王学申0120703490117一、设计要求:采用QuartusII或Max+PlusII集成开发环境,利用VHDL硬件描述语言中行为描述模式、结构描述模式或数据流描述模式设计四位进位加法器。
二、设计分析加法器是数字系统中的基本逻辑器件。
多位加法器的构成有两种方式:并行进位和串行进位方式。
并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。
通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。
实现多位二进制数相加的电路称为加法器,它能解决二进制中1+1=10的功能(当然还有 0+0、0+1、1+0).三、加法器的分类(一)半加器能对两个1位二进制数进行相加而求得和及进位的逻辑电路称为半加器。
或:只考虑两个一位二进制数的相加,而不考虑来自低位进位数的运算电路,称为半加器。
图1为半加器的方框图。
图2为半加器原理图。
其中:A、B分别为被加数与加数,作为电路的输入端;S为两数相加产生的本位和,它和两数相加产生的向高位的进位C一起作为电路的输出。
图1 半加器图2 半加器原理图根据二进制数相加的原则,得到半加器的真值表如表1所列。
信号输入信号输出A B S C0 0 0 00 1 1 01 0 1 01 1 0 1表1 半加器的真值表由真值表可分别写出和数S,进位数C的逻辑函数表达式为:(1) C=AB (2)由此可见,式(1)是一个异或逻辑关系,可用一个异或门来实现;式(2)可用一个与门实现。
仿真结果如图3所示:图3 半加器仿真图(二)全加器除本位两个数相加外,还要加上从低位来的进位数,称为全加器。
图4为全加器的方框图。
图5全加器原理图。
被加数A i、加数B i从低位向本位进位C i-1作为电路的输入,全加和S i与向高位的进位C i作为电路的输出。
能实现全加运算功能的电路称为全加电路。
基于FPGA的4位全加器实验

试验一 4位全加器实验1.实验原理.实验原理全加器能进行加数、被加数和低位来的进位信号相加,并根据求和结果给出该位的进位信号。
该位的进位信号。
全加器的真值表如表1所示。
所示。
表1 全加器真值表全加器真值表输入输入输出输出AiBi Ci-1 Si Ci0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 111114位全加器可以采用四个1位全加器级连成并行相加串行进位的加法器,位全加器级连成并行相加串行进位的加法器,实实现框图如图1所示,其中CSA 为1位全加器。
由图可以看出,每1位的进位信号送给下1位作为输入信号,因此,任1位的加法运算必须在低1位的运算完成之后才能进行,因此它的延迟非常可观,高速运算肯定无法胜任。
之后才能进行,因此它的延迟非常可观,高速运算肯定无法胜任。
图1 4位串行进位加法器实现框图位串行进位加法器实现框图在图1中,A 和B 为加法器的输入位串,对于四位全加器则位宽为4位,D 为加法器输出位串,和输入位串相同,C 为进位输入( Ci ) 或输出或输出( Co )。
实现代码为:实现代码为:module adder4(cout,sum,ina,inb,cin); output[3:0] sum; output cout;input[3:0] ina,inb; input cin;assign {cout,sum}=ina+inb+cin; endmodule2.实验目的.实验目的⒈熟悉⒈熟悉 ISE9.1 开发环境,掌握工程的生成方法;开发环境,掌握工程的生成方法; ⒉了解⒉了解 V erilog HDL 语言在语言在 FPGA 中的使用;中的使用; ⒊了解4位全加器的V erilog HDL 语言实现。
语言实现。
3.实验内容.实验内容⒈用V erilog HDL 语言设计4位全加器,进行功能仿真验证。
4位全加器实验调查报告.doc

4位全加器实验调查报告.doc本次实验的目的是以4位全加器为基础,学习数字逻辑电路和全加器的原理,掌握实验器材的使用,了解数字逻辑电路实验的基本方法,提高实验动手能力。
实验器材包括:4位全加器芯片、74LS138译码器、7408与门芯片、电路连接线、电源,以及示波器等。
实验步骤:1.将4位全加器芯片插入实验插板中;2.连接电路,将电源插入实验插板上,打开电源;3.将示波器接在电路的输出端口上;4.根据4位全加器的原理,先将第一位数码与第二个数码的和输入全加器中,然后再将第三个数码的和输入,最后将第四个数码的和输入,并记录下每一个和的输出情况;5.接下来,将译码器和门芯片引入电路中,使得全加器的输出信号能够被有效地显示;6.根据实验结果,对每一个输入信号的输出情况进行比较和分析,得出结论。
实验结果:在实验过程中,我们先逐一输入了4个数码,并观察到输出信号。
由于我们将译码器和门芯片引入电路,因此在数字器件上能够直接看出输出情况。
我们可以根据所观察到的数字结果,进行推理和分析。
在实验结果中,我们发现,当全加器输入的是两个0、两个1或者一个0和一个1时,其输出结果都是正确的,即输出结果是0、1、10,其中,1和10为溢出情况。
但当输入信号为11时,其输出结果为00,这是一个错误结果。
进一步分析,我们发现,该错误结果是由于全加器的三重结构造成的。
当输入信号点同时为1时,进位产生的信号是1,但该1会向下一个全加器的进位端产生相反的信号,此时,对应的两个信号在第一个全加器的导通状态下形成了短路,从而导致错误结果的产生。
结论:本次实验通过实际操作4位全加器电路,深入理解了全加器的结构和组成原理,并能够看到数字逻辑电路在实际中的运用。
同时,在本次实验中,我们也发现了全加器的实际运转情况并进一步分析了其可能存在的缺陷,从而提出了解决全加器过程中出现的短路问题的解决方法和措施,对我们今后的学习和研究都有非常重要的参考意义。
四位全加器实验Verilog

实验四四位全加器一、实验目的l. 用组合电路设计4位全加器。
2.了解Verilog HDL语言的行为描述的优点。
2、实验原理4位全加器工作原理1)全加器除本位两个数相加外,还要加上从低位来的进位数,称为全加器。
被加数Ai、加数Bi从低位向本位进位Ci-1作为电路的输入,全加和Si与向高位的进位Ci作为电路的输出。
能实现全加运算功能的电路称为全加电路。
全加器的逻辑功能真值表如表中所列。
2)1位全加器一位全加器(FA)的逻辑表达式为:S=A⊕B⊕Cin;Co=AB+BCin+ACin其中A,B为要相加的数,Cin为进位输入;S为和,Co是进位输出;这两幅图略微有差别,但最后的结果是一样的。
3)4位全加器4位全加器可看作4个1位全加器串行构成, 具体连接方法如下图所示:采用Verilog HDL语言设计该4位全加器,通过主模块调用子模块(1位全加器)的方法来实现。
3、实验步骤四、实验连线K1-K4:14-11K5-K8:18-15L5-L8:7-10VIJN:83L4:64KHZ:805、心得体会首先,实现这一段全加器代码并不难,但是由于困惑给的三个时钟输入,没有太懂意思,所以只写了全加器控制LED灯的代码;后来问清楚后,运行全加器代码,有错误,原来是建文件时用的是verilog hdl,我建的是其他类型的;后来还有错,原来是把冒号打成分号;编译成功后,LED不亮,后来发现是硬件老化,换了箱子。
这一部分做好后,我准备把控制声音的加上去,本来准备再加一个模块,可是不能有两个顶层块,就对主模块做了补充,用case命令调用不同的状态,因为时间紧迫,所以代码写得比较简单,没有用经典的分频代码。
这里附一小段,是我在研究分频控制时看懂的网上的经典分频代码,适合乐曲自动播放等高级的实现,仅供分享assign preclk=(divider==16383)?1:0;//divider==16383,preclk=1always @(posedge clk) //基频上升沿触发beginif(preclk) //preclk=1divider=origin;elsedivider=divider+1;endalways @(posedge preclk) //调整占空比beginspeaker=~speaker; //2 分频产生方波信号end这部分实现了分频功能,其中origin+divider=16384=2^14,这个数根据自己的需要而定。
4位加法器的设计原理

4位加法器的设计原理四位加法器是一种数字电路,用于实现四位二进制数的加法运算。
它由多个逻辑门组成,主要包括四个全加器、一个四路二选一选择器和一个四位二进制数输出。
在四位加法器中,每个全加器都负责计算两个输入位和上一位的进位的和。
全加器的原理是采用异或门(XOR)、与门(AND)和或门(OR)的组合。
具体来说,全加器有三个输入端,分别是两个输入位(A和B)和上一位的进位(Cin),两个输出端,分别是当前位的和(S)和当前位的进位(Cout)。
全加器的计算公式如下:S = (A XOR B) XOR CinCout = AB + (A XOR B)Cin其中,“XOR”代表异或操作,“AND”代表与操作,“OR”代表或操作。
全加器的设计原理是基于四位二进制数的加法运算规则。
在四位加法过程中,每一位的和由该位的两个输入位和上一位的进位确定。
进位则与上一位的输入位和上一位的进位有关。
因此,通过级联四个全加器,就可以实现四位加法运算。
除了四个全加器以外,四位加法器还包括一个四路二选一选择器。
这个选择器根据一个控制信号选择输出。
四位加法器的输出是一个四位二进制数,可以选择以原码、反码或补码的形式输出。
通过选择器的控制信号,可以选择输出形式。
四位加法器的工作原理是:首先,将四个输入数两两相加,得到每一位的和,以及进位。
然后,将每一位的和通过四个全加器计算得到最终的和,同时将进位以及控制信号传递给选择器。
最后,选择器选择要输出的结果。
总结来说,四位加法器是基于全加器的构建的数字电路,可以实现四位二进制数的加法运算。
它的设计原理是根据四位二进制数加法的规则和全加器的计算公式,通过级联四个全加器,并通过选择器控制输出形式,实现四位二进制数的加法运算。
四位全加器

1.C机一台;
2.Altera Blaster下载器一根;
3.KHF-5实验箱一台。
三、实验原理
全加器是由两个加数Xi和Yi以及低位来的进位Ci-1作为输入,产生本位和Si以及向高位的进位Ci的逻辑电路。它不但要完成本位二进制码Xi和Yi相加,而且还要考虑到低一位进位Ci-1的逻辑。对于输入为Xi、Yi和Ci-1,输出为Si和Ci的情况,根据二进制加法法则可以得到全加器的真值表如下表9-1所示:
五、实验过程
1.打开QUARTUSII软件,新建一个工程。
2.建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框。
3.按照实验原理和自己的想法,在VHDL编辑窗口编写VHDL程序,用户可参照光盘中提供的示例程序。
4.编写完VHDL程序后,保存起来。方法同实验一。
5.对编写的VHDL程序进行编译并仿真,对程序的错误进行修改。
BEGIN
abc <= a & b ; --a相并b,即a与b并置操作
PROCESS(abc)
BEGIN
CASE abc IS --类似于真值表的CASE语句
WHEN "00" => so<='0'; co<='0' ;
WHEN "01" => so<='1'; co<='0' ;
WHEN "10" => so<='1'; co<='0' ;
ENTITY h_adder IS
PORT (a, b : IN STD_LOGIC;
四位全加器原理
四位全加器原理四位全加器是数字电路中常用的一种逻辑电路,它可以用来实现对四位二进制数进行加法运算。
在计算机中,加法是最基本的运算之一,因此四位全加器在数字电路中有着广泛的应用。
在本文中,我们将介绍四位全加器的原理和工作方式。
四位全加器由四个单位的全加器组成,每个全加器都有三个输入和两个输出。
输入包括两个加数和上一位的进位,输出包括本位的和以及向下一位的进位。
全加器的原理是通过对输入信号进行逻辑运算,得到输出信号。
首先,我们来看一下单个全加器的原理。
一个全加器有三个输入A、B和Cin,分别代表两个加数和上一位的进位;有两个输出S和Cout,分别代表本位的和以及向下一位的进位。
全加器的逻辑运算可以用如下的真值表来表示:A B Cin S Cout。
0 0 0 0 0。
0 0 1 1 0。
0 1 0 1 0。
0 1 1 0 1。
1 0 0 1 0。
1 0 1 0 1。
1 1 0 0 1。
1 1 1 1 1。
通过观察真值表,我们可以得到全加器的逻辑表达式:S = A ⊕ B ⊕ Cin。
Cout = (A ∧ B) ∨ (Cin ∧ (A ⊕ B))。
其中,⊕代表异或运算,∧代表与运算,∨代表或运算。
这些逻辑表达式描述了全加器的工作原理,通过对输入信号进行逻辑运算,可以得到输出信号。
接下来,我们将四个全加器连接起来,形成四位全加器。
在四位全加器中,每个全加器的进位输入都连接到上一个全加器的进位输出,这样就可以实现对四位二进制数的加法运算。
四位全加器的原理和单个全加器类似,只是需要考虑更多的输入和输出信号。
通过对四位全加器的原理和工作方式的了解,我们可以更好地理解数字电路中的加法运算。
四位全加器作为数字电路中的基本组成部分,有着重要的应用价值。
它不仅可以用于计算机中的加法运算,还可以用于其他数字电路中的逻辑运算。
因此,对四位全加器的原理进行深入的研究和理解,对于数字电路的学习和应用都具有重要的意义。
总之,四位全加器是数字电路中常用的一种逻辑电路,它可以用来实现对四位二进制数进行加法运算。
4位全加器
1 设计分析全加器是能进行加数、被加数和低位来的进位信号相加,并根据求和结果给出该位的进位信号的加法电路。
其真值表如表1所示:根据真值表可得出下列表达式:根据以上表达式,可以用数据流方式设计出1位全加器。
要设计的是4位全加器,这里采用串行进位来设计。
先设计4个1位的全加器,然后将低位的进位输出与高位的进位输入相连,将要进行加法运算的两个4位数的每一位分别作为每一个1位全加器的输入,进行加法运算,所有的1位全加器的输出组成一个4位数,即输入的两个4位数之和,最高位的全加器产生的进位输出即两个4位数求和的进位输出。
4位全加器的原理图如图1所示:()()cinb a ab cin b a b a ab abcincin b a bcin a cin ab cout ⊕+=++=+++=()()()()cinb a cin b a cin b a cin ab b a cin b a b a abcin cin b a cin b a cin b a s ⊕⊕=⊕+⊕=+++=+++=图1 4位全加器原理图根据图1所示,可以采用结构化描述方式设计4位全加器。
2 程序设计设计的程序如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY adder1 IS --1位全加器设计PORT(a,b,cin:IN STD_LOGIC;s,cout:OUT STD_LOGIC);END adder1;ARCHITECTURE dataflow OF adder1 IS --用数据流方式设计1位全加器SIGNAL tmp:STD_LOGIC; --用tmp表示a⊕b BEGINtmp<=a XOR b AFTER 10 ns;s<=tmp XOR cin AFTER 10 ns;cout<=(a AND b)OR(tmp AND cin) AFTER 20 ns;END dataflow;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY adder4 IS --4位全加器设计PORT(a,b:IN STD_LOGIC_VECTOR(3 DOWNTO 0);cin:IN STD_LOGIC;s:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);cout:OUT STD_LOGIC);END adder4;ARCHITECTURE structural OF adder4 IS --用结构化描述风格设计4位全加器COMPONENT adder1PORT(a,b,cin:IN STD_LOGIC;s,cout:OUT STD_LOGIC);END COMPONENT;SIGNAL x,y,z:STD_LOGIC;FOR u1,u2,u3,u4:adder1 USE ENTITY WORK.adder1(dataflow);BEGINu1:adder1 PORT MAP(a(0),b(0),cin,s(0),x);u2:adder1 PORT MAP(a(1),b(1),x,s(1),y);u3:adder1 PORT MAP(a(2),b(2),y,s(2),z);u4:adder1 PORT MAP(a(3),b(3),z,s(3),cout);END structural;3 仿真结果对上面的程序进行仿真,先对1位全加器仿真,结果如图2所示:图2 1位全加器仿真图由图2可以看出,1位全加器的仿真结果与表1相符,说明1位全加器设计成功。
eda课程设计论文4位全加器
eda课程设计论文4位全加器一、教学目标本课程的目标是让学生理解并掌握全加器的工作原理和设计方法,能够运用数字逻辑设计出功能完整的全加器。
知识目标:使学生了解全加器的功能和作用,理解其内部电路的工作原理,掌握全加器的真值表和布尔表达式。
技能目标:培养学生运用数字逻辑设计简单电路的能力,能够独立完成全加器的设计和仿真。
情感态度价值观目标:培养学生对电子技术的兴趣,提高学生解决问题的能力,培养学生的创新精神和团队协作精神。
二、教学内容本课程的教学内容主要包括全加器的功能和工作原理、全加器的真值表和布尔表达式、全加器的设计和仿真。
首先,讲解全加器的功能和作用,通过具体的实例让学生了解全加器在计算机中的重要性。
然后,讲解全加器的内部电路工作原理,使学生理解全加器是如何实现加法的。
接下来,介绍全加器的真值表和布尔表达式,让学生掌握全加器的工作原理。
最后,讲解全加器的设计和仿真方法,培养学生运用数字逻辑设计电路的能力。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法。
首先,通过讲授法向学生传授全加器的理论知识,使学生了解全加器的基本概念和工作原理。
然后,通过讨论法引导学生进行思考和讨论,提高学生的理解能力。
接下来,通过案例分析法分析实际案例,使学生了解全加器在计算机中的应用。
最后,通过实验法让学生动手设计和仿真全加器,提高学生的实践能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备适当的教学资源,包括教材、参考书、多媒体资料和实验设备。
教材:选用《数字逻辑设计》作为主教材,系统地介绍全加器的理论知识。
参考书:推荐《计算机组成原理》等参考书,供学生深入学习和参考。
多媒体资料:制作全加器的原理讲解和设计过程的视频,通过动画和图像等形式直观地展示全加器的工作原理。
实验设备:准备数字逻辑设计实验室,提供全加器的设计和仿真实验所需设备。
4位全加器verilog课程设计
4位全加器verilog课程设计一、课程目标知识目标:1. 理解4位全加器的原理和功能,掌握其Verilog硬件描述语言实现方法。
2. 学习并掌握数字电路中加法器的基本结构和工作原理。
3. 掌握Verilog模块化编程,能够实现并测试4位全加器的基本功能。
技能目标:1. 能够运用Verilog语言编写4位全加器的代码,并进行功能仿真。
2. 学会使用硬件描述语言进行数字电路的设计,提高实际问题解决能力。
3. 能够对4位全加器进行调试和优化,提升编程实践技能。
情感态度价值观目标:1. 培养学生的团队合作意识,提高学生在项目实践中的沟通与协作能力。
2. 增强学生对数字电路设计领域的兴趣,激发学生的创新精神。
3. 引导学生树立正确的价值观,认识到科技发展对社会进步的重要性。
课程性质:本课程为电子信息工程及相关专业高年级的数字电路设计课程,旨在通过4位全加器的Verilog实现,让学生掌握数字电路设计的基本方法和实践技能。
学生特点:学生已具备一定的数字电路基础和Verilog编程知识,具备分析问题和解决问题的能力。
教学要求:注重理论与实践相结合,鼓励学生积极参与课堂讨论,培养学生的动手能力和实际操作技能。
通过课程学习,使学生在知识、技能和情感态度价值观方面均取得明显进步。
二、教学内容本课程教学内容主要包括以下几部分:1. 数字加法器原理回顾:介绍加法器的基本原理,重点讲解4位全加器的工作流程和关键特性。
- 教材章节:数字电路基础,第3章第2节。
2. Verilog硬件描述语言基础:复习Verilog的基本语法,强调模块化编程方法。
- 教材章节:硬件描述语言Verilog,第4章。
3. 4位全加器的Verilog设计:- 设计原理:讲解4位全加器的设计思路和实现方法。
- 代码编写:引导学生编写4位全加器的Verilog代码,并进行模块化设计。
- 教材章节:数字电路设计,第5章第3节。
4. 功能仿真与调试:- 介绍仿真工具和仿真方法,指导学生进行4位全加器的功能仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计过程如下:
1.构建一个全加器
全加器的真值表和逻辑表达式如下:
表一全加器真值表
逻辑表达式为:S=A⊕B⊕c , C=AB+(A⊕B)c
(1)选逻辑门。
双击Logic and Bit Operations。
将Logical Operator模块拖到工作窗口中。
双击模块打开Block Parameters窗口,将Main标签中的Operator选项改为XOR或OR,再拖入一个AND门。
(2)选输入信号。
选用Pulse Generator。
打开Sources面板,拖入三个Pulse Generator 并放置在窗口的左侧。
这三个Pulse Generator作为加法器真值表的三个输入。
双击第一个并将它的周期(period)设定为8秒,相位延迟(phase delay)设定为4秒,Pluse Width设置为50并Pulse Generator重命名为A input,。
双击第二个,将周期设定为4秒,相位设定为2秒,Pluse Width设置为50,重命名为B input,。
双击第三个,将周期设定为2秒,相位设定为1秒,Pluse Width设置为50,重命名为C input。
(3)输入输出的观测。
用Commonly Used Blocks 中的Scope(示波器)模块。
输入分别为A、B、C输出为S、C
(4)选好之后,进行连线,连线结果如下
图1 全加器逻辑图
(5)执行运行用示波器分别观察A、B、C 、S、C如下:A:
B:
C:
S:
C:
经过比较,各波形与全加器真值表中数值相符合,因此,创建全加器模块。
2. 创建全加器模块
选中要创建子系统的模块,选择Edit\CreateSubsystem 菜单,创建全加器模块,命名为Full_Adder,结果如下图
图2 全加器模块
3.构建一个4位加法器
复制为四个全加器,并在Commonly Used Blocks中拖动3个In、2个Out、2个Demux、1个Mux,并连接成四位全加器,如下图所示:
图3 4位全加器
经赋值检验连接正确,保存命名为Full Adder_4。