2017届北京市丰台区高三统一练习理科数学试题及答案
2017年高考北京理科数学试题及答案(word解析版)

M
∴ PD 平面 BAH ,∴ PD BH ,∴ AEB 即为二面角 B PD A 的平面角,H
N B
A
G
AD PO AE PD ,可求得 AE 4 3 , tan AEB 4 3 ,∴ AEB 60 .
F
3
43
D
(3)解法一:
C
点
M
1,2
,
2 2
,
C
2
,4
,0
,∴
MC
以 OD 为 x 轴, OE 为 y 轴, OP 为 z 轴建立空间直角坐标,可知 D 2 ,0 ,0 , A2,0,0 ,
B 2 ,4 ,0 ,
P 0 ,0 , 2 , 易 知 面 PD 的 法 向 量 为 m 0 ,1,0 , 且
PD 2 ,0 , 2 ,
PB
2 ,4 ,
2
,设面 PBD 的法向量为 n x ,y ,z ,
N
1080
1080
,即 M 最接近1093 ,故选 D.
N
第二部分(非选择题 共 110 分)
二、填空题:共 6 小题,每小题 5 分,共 30 分。
(9)【2017 年北京,理 9,5 分】若双曲线 x2 y2 1 的离心率为 3 ,则实数 m
.
m
【答案】2
【解析】 1 m 3 m 2 .
FN 中
点,∴ MG∥ PO ,∵平面 PAD 平面 ABCD , PO AD ,∴ PO 平面 ABCD ,∴ MG 平面
ABCD .
连结 GC , GC 13 , MG 1 PO 2 ,∴ MC 3 6 .∵ PD 6 , BD 4 2 , PB 22 ,
2
2
2
北京市丰台区2017届高三二模数学理科试卷答案 精品

丰台区2016~2017学年度第二学期二模练习高三数学(理科)参考答案及评分参考2017.05 一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.9.(43)-,10.0 11.2425- 12.4 13.2ln2- 14.12 ;23三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)解:(Ⅰ)由正弦定理得2sin sin sin A B B =, ..………………2分 因为0πB <<,所以sin 0B >,从而2sin 1A =, ..………………3分所以1sin 2A =. 因为锐角ABC △, 所以π6A =. ..………………6分(Ⅱ)πcos(cos()6B C B A C -+-+ ..………………7分s i n c o s BB + ..………………9分π=2sin(+)6B ..………………11分当π3B =πcos()6B C -+有最大值2,与锐角ABC △矛盾,πcos()6B C -+无最大值 ..………………13分16.(本小题共13分)解:(Ⅰ)5⨯300⨯30=300015(件), .………………3分 答:产品A 的月销售量约为3000件. .………………4分(Ⅱ)顾客购买两种(含两种)以上新产品的概率为P 93==155. .………………5分X 可取0,2,4,6 , .………………6分(=)()P X 3280==5125, 123336(=2)()P X C 2==55125,2233254(=4)()P X C ==55125, 3327(=6)()P X ==5125,8分所以836542745018()02461251251251251255E X =⨯+⨯+⨯+⨯==. ..……………10分 (Ⅲ)产品D . ……………13分 17.(本小题共14分)(Ⅰ)证明:由已知得EF //CD ,且=EF CD .因为ABCD 为等腰梯形,所以有BG //CD . 因为G 是棱AB 的中点,所以=BG CD . 所以EF //BG ,且=EF BG , 故四边形EFBG 为平行四边形,所以EG //FB . ………………2分 因为FB ⊂平面BDF ,EG ⊄平面BDF ,所以EG //平面BDF .………………4分解:(Ⅱ)因为四边形CDEF 为正方形,所以ED DC ⊥.因为平面CDEF ⊥平面ABCD , 平面CDEF平面ABCD DC =,DE ⊂平面CDEF ,所以ED ⊥平面ABCD .在△ABD 中,因为60DAB ︒∠=,22AB AD ==,所以由余弦定理,得BD所以AD BD ⊥. ………………5分 在等腰梯形ABCD 中,可得1DC CB ==. 如图,以D 为原点,以DA DB DE,,所在直线分别为,,x y z 轴,建立空间坐标系,………………6分 则(0,0,0)D ,(1,0,0)A , (0,0,1)E ,B ,1(2F - , 所以(1,0,1)AE =-,1(2DF =-,DB =. yx设平面BDF 的法向量为(,,)x y z =n ,由00.DB DF ⎧⋅=⎪⎨⋅=⎪⎩,n n ………………7分所以0102x y z =⎨-+=⎪⎩,取1z =,则2,0x y ==,得(2,0,1)=n . ………………8分 设直线AE 与平面BDF 所成的角为θ, 则sin cos ,AE AE AE θ⋅=〈〉=⋅n n n,………………9分 所以AE 与平面BDF . ………………10分 (Ⅲ)线段FC 上不存在点H ,使平面BDF ⊥平面HAD .证明如下: ………………11分假设线段FC 上存在点H ,设1()(01)2H t t -≤≤, 则1()2DH t =-. 设平面HAD 的法向量为(,,)a b c =m ,由0,0.DA DH ⎧⋅=⎪⎨⋅=⎪⎩m m所以0102a a tc =⎧⎪⎨-++=⎪⎩, 取1c =,则0,a b ==,得(0,,1)=m . ………………12分 要使平面BDF ⊥平面HAD ,只需0⋅=m n ,………………13分即200110⨯⨯+⨯=, 此方程无解. 所以线段FC 上不存在点H ,使平面BDF ⊥平面HAD . ………………14分18.(本小题共13分)解:(Ⅰ) ()f x 的定义域为(0,)+∞, …………………1分因为e a =,所以()e e(ln 1)x f x x =-+,所以e()e x f x x '=-. …………………2分因为(1)0f =,(1)0f '=, …………………3分 所以曲线()y f x =在点(1,(1))f 处的切线方程为0y =. …………………4分(Ⅱ) 因为0e a <<,所以()e x a f x x '=-在区间(,1)ea上是单调递增函数. …………………5分因为e ()e e 0eaaf '=-<,(1)e 0f a '=->, …………………6分所以0(,1)eax ∃∈,使得00e =0x a x -. …………………7分所以0(,)eax x ∀∈,()0f x '<;0(,1)x x ∀∈,()0f x '>, …………………8分故()f x 在0(,)eax 上单调递减,在0(,1)x 上单调递增, …………………9分所以()f x 有极小值0()f x . …………………10分因为00e 0x ax -=,所以000001()=e (ln 1)(ln 1)x f x a x a x x -+=--. …………………11分 设1()=(ln 1)g x a x x --,(,1)e ax ∈,则2211(1)()()a x g x a x x x +'=--=-, ………………12分 所以()0g x '<,即()g x 在(,1)ea上单调递减,所以()(1)0g x g >=,即0()0f x >,所以函数()f x 的极小值大于0. ………………13分19.(本小题共14分)解:(Ⅰ) 因为抛物线24y x =的焦点坐标为(1,0),所以1c =,..………………1分所以3242a ==,..………………3分即2a =.因为222413b a c =-=-=,所以椭圆E 的方程为22143x y +=...………………5分 (Ⅱ)设1122(,),(,)A x y B x y ,因为直线P A , PB 与圆222x y r +=(0)r >相切,所以0AP BP k k +=,..………………7分 即1212044y y x x +=++, 通分得122112(4)(4)0(4)(4)y x y x x x +++=++,所以1221(1)(4)(1)(4)0kx x kx x +++++=,整理,得12122(41)()80kx x k x x ++++=. ①..………………9分联立221431x yy kx ⎧+=⎪⎨⎪=+⎩,,得22(34)880k x kx ++-=,所以12122288,3434k x x x x k k +=-=-++,..………………11分 代入①,得 1k =. ..………………14分20.(本小题共13分)解 :(Ⅰ)因为{}n a 具有性质“(3,2,0)P ”,所以30n n a a +-=,2n ≥.由23a =,得583a a ==,由45a =,得75a =. ..………………2分 因为67818a a a ++=,所以610a =,即310a =. ..………………4分 (Ⅱ){}n a 不具有性质“(2,1,0)P ”. ..………………5分设等差数列{}n b 的公差为d ,由 12b =,38b =,得2826d =-=,所以3d =,故31n b n =-. ..………………6分 设等比数列{}n c 的公比为q ,由 32c =,18c =, 得214q =,又0q >,所以12q =,故42n n c -=, ..………………7分 所以4312n n a n -=-+.若{}n a 具有性质“(2,1,0)P ”,则20n n a a +-=,1n ≥. 因为29a =,412a =,所以24a a ≠,故{}n a 不具有性质“(2,1,0)P ”. ..………………8分 (Ⅲ)因为{}n a 具有性质“1(,2,)P i d ”,所以1n i n a a d +-=,2n ≥.①因为{}n a 具有性质“2(,2,)P j d ”,所以2n j n a a d +-=,2n ≥.② 因为*N i j ∈,,i j <,i j ,互质,所以由①得1m ji m a a jd +=+;由②,得2m ij m a a id +=+, ..………………9分所以12m m a jd a id +=+,即21jd d i =. ..………………10分②-①,得211n j n i j ia a d d d i++--=-=,2n ≥, ..………………11分 所以1n j i n j ia a d i+---=,2n i ≥+, ..………………12分 所以{}n a 具有性质“1(,2,)j iP j i i d i--+”. ..………………13分(若用其他方法解题,请酌情给分)。
北京市2017届高三数学(理)综合练习32 Word版含答案

北京市2017届高三综合练习数学(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}2|4A x x =∈<N ,{}2|230B x x x =∈--<R ,则A B =I ( )、 A .{}101-,,B .{}01,C .{}|12x x -<<D .{}|23x x -<<2. 已知复数z 满足()12z i ⋅-=,其中i 为虚数单位,则z =( )A .1i +B .1i -C .1i -+D .1i -- 3.一个几何体的三视图如下,其中主视图和俯视图都是边长为2的正方形,则该几何体的体积是( )A .4B .8C .43D .834.已知向量a b r r ,满足1a b a b ==+=r r r r,则向量a b r r ,夹角的余弦值为( ) A .12 B .12- C 3 D .35.已知数列{}n a 是等差数列,38a =,44a =,则前n 项和n S 中最大的是( )A .3SB .4S 或5SC .5S 或6SD .6S6.已知双曲线()2222100x y a b a b-=>>,的渐近线方程为2y x =±,则其离心率为( )A 5B 5C 53D .5或57.已知x y ,满足()2221x y x y y a x ⎧-⎪+⎨⎪-⎩≥≤≥,且z x y =+能取到最小值,则实数a 的取值范围是( )A .1a <-B .2a ≥C .12a -<≤D .1a <-或2a ≥8.已知函数:①()12f x x =,②()πsin2x f x =,③()1ln 12f x x =+.则以下四个命题对已知的三个函数都能成立的是( )命题():1p f x +是偶函数; 命题():1q f x +在()01,上是增函数; 命题():r f x 恒过定点()11,; 命题11:22s f ⎛⎫> ⎪⎝⎭. A .命题p 、q B .命题q 、r C .命题r 、sD .命题s 、p第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分,把答案填写在题中横线上. 9. 51x x ⎛⎫- ⎪⎝⎭的二项展开式中x 项的系数为 .10.已知直线():12l y k x =++,圆2cos 1:2sin x C y θθ=+⎧⎨=⎩,则圆心C 的坐标是 ;若直线l 与圆C 有公共点,则实数k 的取值范围是 .11.如图,已知PAB 是O ⊙的割线,点C 是PB 的中点,且PA AC =,PT 是O ⊙的切线,TC 交O ⊙于点D ,8TC =,7CD =,则PT 的长为 .12.如图所示程序图运行的结果是 .13.一艘轮船在江中向正东方向航行,在点P 观测到灯塔A B ,在一直线上,并与航线成30︒角.轮船沿航线前进1000米到达C 处,此时观测到灯塔A 在北偏西45︒方向,灯塔B 在北偏东15︒方向.则此时轮船到灯塔B 的距离CB 为 米.14.若()f x 是定义在R 上的奇函数,且对0x ∀≥,总存在正常数T ,使得()T f x +()T f x =+成立,则称()f x 满足“性质P ”.已知函数()g x 满足“性质P”,且()g x 在[]0T ,上的解析式为()2g x x =,则常数T = ;若当[]3T 3T x ∈-,时,函数()y g x kx =-恰有9个零点,则k = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15. (本小题满分13分)已知函数()22sin cos 23sin 3444x x xf x =-+.⑴ 求函数()f x 的最大值,并写出相应的x 取值集合;⑵ 令π103f a ⎛⎫+= ⎪⎝⎭,且()0πα∈,,求tan2α的值.16.如图所示,在四棱锥P ABCD -中,四边形ABCD 为菱形,PAD △为等边三角形,平面PAD ⊥平面ABCD ,且602DAB AB ∠=︒=,,E 为AD 的中点.⑴ 求证:AD PB ⊥;⑵ 求二面角A PD C --的余弦值;⑶ 在棱PB 上是否存在点F ,使EF ∥平面PDC ?并说明理由.17.(本小题满分13分)如图,某工厂2011年生产的A B C D ,,,四种型号的产品产量用条形图表示,现用分层抽样的方法从中抽取50件样品参加今年五月份的一个展销会.⑴ 问A B C D ,,,型号的产品各抽取了多少件?⑵ 从50件样品中随机抽取2件,求这2件产品恰好是不同型 号的产品的概率;⑶ 在50件样品中,从A C ,两种型号的产品中随机抽取3件,其中A 种型号的产品有X 件,求随机变量X 的分布列和数学期望()E X .18.(本小题满分13分)已知函数()()2121ln 12f x mx x x =-+++.⑴ 当32m =-时,求函数()f x 的极值点;⑵ 当1m ≤时,曲线():C y f x =在点()01P ,处的切线l 与C 有且只有一个公共点,求实数m的范围.19.(本小题满分14分)已知椭圆()22122:10x y C a b a b +=>>经过点312M ⎛⎫⎪⎝⎭,,且其右焦点与抛物线22:4C y x =的焦点F 重合.⑴ 求椭圆1C 的方程;⑵ 直线l 经过点F 与椭圆1C 相交于A B ,两点,与抛物线2C 相交于C D ,两点.求AB CD的最大值.20.(本小题满分13分) 已知集合{}12320112012S =L ,,,,,,设A 是S 的至少含有两个元素的子集,对于A 中任意两个不同的元素()x y x y >,,若x y -都不能...整除x y +,则称集合A 是S 的“好子集”.⑴ 分别判断数集{}2468P =,,,与{}147Q =,,是否是集合S 的“好子集”,并说明理由;⑵ 求集合S 的“好子集”A 所含元素个数的最大值; ⑶ 设123m A A A A L ,,,,是集合S 的m 个“好子集”,且两两互不包含,记集合i A 的元素个数为()12i k i m =L ,,,,求证:()1!2012!2012!mi i i k k =⋅-∑≤数学参考答案(理科)一、选择题二、填空题三、解答题15、(I )()f x 的最大值为2,相应的x 取值集合为π|4π,3x x k k ⎧⎫=+∈⎨⎬⎩⎭Z ;(II )24tan 27α=-.16、(I )略;(II )二面角A PD C --的余弦值为 (III )在棱PB 上存在点F ,使EF ∥平面PDC .17、(I )A 型号的产品10件,B 型号的产品20件,C 型号的产品5件,D 型号的产品15件;(II )这两件产品恰好是不同类型的产品的概率为57;(III )随机变量X 的分布列为18、(I )()f x 的极大值点为13x =-;(II )m 的取值范围为(]{},01-∞U .19、(I )椭圆的方程为22143x y +=;(II )AB CD 的最大值为34.20、(I )P 不是S 的“好子集”;Q 是S 的“好子集”; (II )A 的最大值为671; (III )略.提示:(II )考虑1,2a b -≠,作S 的模3同余类,可构造{}1,4,7,,2011A =L 即可. (III )12,,,m A A A L 是S 的“好子集”的条件多余,可直接改为“子集”;考虑2012个数的全排列即可.。
2017年北京市丰台区高三理科一模数学试题

2017年北京市丰台区高三理科一模数学试题一、选择题(共8小题;共40分)1. 已知,,则 ( )A. B. C. D.2. 已知,则“”是“复数是纯虚数”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 定积分A. B. C. D.4. 设,分别是正方形的边,上的点,且,,如果(,为实数),那么的值为A. B. C. D.5. 执行如图所示的程序框图,若输出的的值为,则判断框内应填入的条件是A. ?B. ?C. ?D. ?6. 某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.7. 小明跟父母、爷爷、奶奶一同参加《中国诗词大会》的现场录制,人坐成一排,若小明的父母至少有一人与他相邻,则不同的坐法总数为A. B. C. D.8. 一次猜奖游戏中,1,2,3,4 四扇门里摆放了a,b,c,d 四件奖品(每扇门里仅放一件),甲同学说:1 号门里是 b,3 号门里是 c;乙说:2 号门里是 b,3 号门里是 d;丙说:4 号门里是 b,2 号门里是 c;丁说:4 号门里是 a,3 号门里是 c.如果他们每人都猜对了一半,那么4 号门里是A. aB. bC. cD. d二、填空题(共6小题;共30分)9. 抛物线的准线方程是.10. 已知为等差数列,为其前项和,若,,则.11. 在中,若,,则.12. 若,满足则的取值范围是.13. 在平面直角坐标系中,曲线,曲线(为参数),过原点的直线分别,交于,两点,则的最大值是.14. 已知函数,下列命题正确的是.(写出所有正确的命题编号)①是奇函数;②是上的单调递增函数;③方程有且仅有个实数根;④如果对任意,都有,那么的最大值为.三、解答题(共6小题;共78分)15. 已知函数的图象如图所示.(1)求的解析式;(2)若,求在上的单调递减区间.16. 如图1,平面五边形中,,,,,是边长为的正三角形,现将沿折起,得到四棱锥(如图2),且.(1)求证:平面平面;(2)求平面和平面所成锐二面角的大小;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.17. 某公司购买了 A,B,C 三种不同品牌的电动智能送风口罩.为了了解三种品牌的口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出台,测试他们一次完全充电后的连续待机时长,统计结果如下(单位:小时):(1 B 品牌电动智能送风口罩的数量;(2)从A 品牌和B 品牌抽出的电动智能送风口罩中,各随机选取一台,求A 品牌待机时长高于B品牌的概率;(3)再从A,B,C 三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是,,(单位:小时).这个数据与表格中的数据构成的新样本平均数为,表格中数据的平均数为,写出的最小值(结果不要求证明).18. 已知,函数.(1)若,求在上的最大值;(2)对任意的,若在上的最大值为,求的最大值.19. 已知椭圆的离心率为,右焦点为,点在椭圆上.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,设,,求证:为定值.20. 对于,若数列满足,则称这个数列为“K数列”.(1)已知数列,,是“K数列”,求实数的取值范围;(2)是否存在首项为的等差数列为“K数列”,且其前项和满足?若存在,求出的通项公式;若不存在,请说明理由;(3)已知各项均为正整数的等比数列是“K数列”,数列不是“K数列”,若,试判断数列是否为“K数列”,并说明理由.答案第一部分1. A2. B3. B4. C5. A6. A7. C8. A第二部分9.10.11.12.13.14. ①②④第三部分15. (1)由图象可知,设函数的周期为,则,求得,从而,所以.(2)因为所以,即,令,得,所以在上的单调递减区间为.16. (1)由已知得,.因为,所以平面.又平面,所以平面平面.(2)设的中点为,连接.因为是正三角形,所以,所以.因为平面平面,平面平面,平面,所以平面.以为原点,所在的直线为轴,在平面内过垂直于的直线为轴,所在的直线为轴.建立空间直角坐标系,如图所示.由已知,得,,.所以,.设平面得法向量.所以令,则,,所以.又平面的一个法向量,所以.所以平面和平面所成的锐二面角大小为.(3)在棱上存在点,使得平面,此时.理由如下:设的中点为,连接,,则,.因为,且,所以,且,所以四边形是平行四边形,所以.因为平面,且平面,所以平面.17. (1)设该公司购买的B品牌电动智能送风口罩的数量为台,则购买的C品牌电动智能送风口罩为台,由题意得所以答:该公司购买的B品牌电动智能送风口罩的数量为台.(2)设A品牌待机时长高于B品牌的频率为,则.答:在A品牌和B品牌抽出的电动智能送风口罩中各任取一台,A品牌待机时长高于B品牌的频率为.(3).18. (1)因为对称轴为,所以.又因为,所以.(2)函数的对称轴为,且函数开口向下①,即(舍去),②,即,,③,即,,所以,当时,取得最大值.19. (1)因为点在椭圆上,所以,即.又因为椭圆的离心率为,所以.由,得.所以椭圆的方程为.(2)由已知得,直线的斜率存在.设直线的方程为,,,则.由,,得,,所以,联立得,所以,.因为所以为定值.20. (1)由题意得解得;解得或.所以,故实数的取值范围是.(2)假设存在等差数列符合要求,设公差为,则,由,得,由题意,得对均成立,即.①当时,;②当时,,因为,所以,与矛盾,故这样的等差数列不存在.(3)设数列的公比为,则,因为的每一项均为正整数,且,所以,且.因为,所以在中,“”为最小项.同理,在中,“”为最小项.由为“K数列”,只需,即,又因为不是“K数列”,且“”为最小项,所以,即,由数列的每一项均为正整数,可得,所以,或,.①当,时,,则,令,则.又,所以为递增数列,即,所以.因为,所以对任意的,都有,即数列为“K数列”.②当,时,,则.因为,所以数列不是“K数列”.综上:当时,数列为“K数列”,当时,数列不是“K数列”.。
北京市2017届高三数学(理)综合练习1 含答案

北京市2017届高三综合练习数学(理)一、选择题:本大题共12小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R ,A=(2){|21},{|ln(1)}x x x B x y x -<==-,则右图中阴影部分表示的集合为( )A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤ 2.函数()x x f 2sin =的最小正周期为 ( )A .π B.π2 C 。
π3 D 。
π43.中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为( )A .x 2-y 2=1B .x 2-y 2=2C .x 2-y 2=2D .x 2-y 2=214.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面βαβα平面内任意一条直线,则平面平面////m ;③若平面βαβα平面则直线直线内的直线平面的交线为与平面⊥⊥n m n m ,,;④若平面α内的三点A 、B 、C 到平面β的距离相等,则βα//。
其中正确命题的个数为( )个。
A .0 B .1C .2D .35.圆()3122=++y x 绕直线01=--y kx 旋转一周所得的几何体的体积为( )A 。
π36B 。
π12C .π34 D. π46.连续投掷两次骰子得到的点数分别为m 、n ,作向量a =(m,n ).则向量a 与向量b=(1,—1)的夹角成为直角三角形内角的概率是( )A .712B .512C .12347。
定义运算:12122112a a ab a b b b =-,将函数()3sin 1cos x f x x=的图象向左平移t (0t >)个单位,所得图象对应的函数为偶函数,则t 的最小值为( )A . 3π B .6π C .56πD .23π 8.下列结论 ①命题“0,2>-∈∀x xR x ”的否定是“0,2≤-∈∃x x R x ”; ②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方; ③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0. ④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥。
2017年高考理科数学北京卷-答案

(k
x1
1 2
)
x2
(kx2
1 2
)
x1
2 x1 x2
x2
(2k
2) x1 x2
1 2
( x2
x1 )
x2
(2 k
2)
1 4k 2
1 2k
k
2
x2
0,
所以
y1
y2 x1 x2
2x1 .
故 A 为线段 BM 的中点。 【考点】抛物线的几何性质、直线与抛物线的位置关系
7/9
19.【答案】(1)因为 f (x) ex cos x x ,所以 f '(x) ex(cos x sin x) 1 , f '(0) 0 .
2
2
2
【考点】正弦定理,余弦定理以及三角形的面积公式 16.【答案】(1)如图,设 AC,BD 的交点为 E,连接 ME. 因为 PD∥平面 MAC,平面 MAC∩平面 PDB=ME,所以 PD∥ME. 因为 ABCD 是正方形,所以 E 为 BD 的中点.所以 M 为 PB 的中点.
(2)取 AD 的中点 O,连接 OP,OE. 因为 PA=PD,所以 OP⊥AD.
所以 bk nak 关于 k N+ 单调递减.
3
边上一点 2 2,1 ,则 cos 2 2 ,又 2 2,1 关于 y 轴对称的点 2 2,1 在角 的终边上,所 3
以 sin 1 , cos 2 2 , 此时
3
3
cos
cos
cos
sin
sin
22 3
2
2 3
1 3
1 3
7 9
.当角
为第二象限时,可取其
北京市2017届高三数学(理)综合练习34 Word版含答案
北京市2017届高三综合练习数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分150分, 考试时间为120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8个小题,每小题5分,共40分;在每个小题给出的四个选项中,有且只有一个是符合题目要求的) 1. 集合⎭⎬⎫⎩⎨⎧∈<<=+Z x x A x ,42211的元素个数有( ) A . 1个B . 2个C .3个D .无数个2. 若()014455513a x a x a x a x ++⋅⋅⋅++=+,则2a 的值为( ) A .270B .2702xC . 90D .902x3. 若a a 3,4,为等差数列的连续三项,则921a a a a +⋅⋅⋅+++的值为( ) A . 1023B .1025C .1062D . 20474. 已知直线m 、n 与平面α、β,下列命题正确的是 ( )A .βα//,//n m 且βα//,则n m //B .βα//,n m ⊥且β⊥α,则n m ⊥C .m n m ⊥=β⋂α,且βα⊥,则α⊥nD .βα⊥⊥n m ,且βα⊥,则n m ⊥ 5.已知命题(1)∃ α∈R ,使sin cos 1αα=成立;(2) ∃ α∈R ,使()β+α=β+αtan tan tan 成立;(3) ∀α,β∈R ,有()βα-β+α=β+αtan tan 1tan tan tan 成立; (4)若B A ,是ABC ∆的内角,则“B A >” 的充要条件是“B A sin sin >”.其中正确命题的个数是 ( ) A . 1B . 2C . 3D .46.已知函数的图像如右图所示,则其函数解析式可能是( )7. 抛掷一枚质地均匀的骰子,所得点数的样本空间为{}654321,,,,,=S .令事件{}5,3,2=A ,事件{}65421,,,,=B ,则()B A P 的值为( ) A . 53B .21 C .52 D .518. 如图抛物线1C : px y 22=和圆2C : 42222p y p x =+⎪⎭⎫ ⎝⎛-,其中0>p ,直线l 经过1C 的焦点,依次交1C ,2C 于,,,A B C D 四点,则CD AB ⋅的值为 ( )A . 42pB . 32pC . 22pD .2p第Ⅱ卷 (非选择题 共110分)二、填空题(本大题共6个小题,每小题5分,共30分) 9. 函数)4sin(cos )4cos(sin ππ+++=x x x x y 的值域是 . 10. 若i 是虚数单位,则832i 8i 3i 2i +⋅⋅⋅+++= . 11.如图,D C B A ,,,为空间四点,ABC △是等腰三角形,且o 90=∠ACB ,∆ADB 是等边三角形.则AB 与CD 所成角的大小为 .12. 如图,PA 与圆O 相切于A ,不过圆心O 的割线PCB 与直径AE 相交于D 点.已知∠BPA =030,2=AD ,1=PC , 则圆O 的半径等于 .13.数列721,,,a a a ⋅⋅⋅中,恰好有5个a ,2个b ()b a ≠,则不相同的数列共有 个.A . ()x x x f ln 2+=B . ()x x x f ln 2-=C .()x x x f ln +=D .()x x x f ln -=DBAAEOBPCD14. 以直角坐标系的原点为极点,x 轴正半轴为极轴建立极坐标系,有下列命题: ①1cos =θρ与曲线y y x =+22无公共点; ②极坐标为 (23,π43)的点P 所对应的复数是-3+3i ; ③圆θ=ρsin 2的圆心到直线01sin cos 2=+θρ-θρ④()04>ρπ=θ与曲线{()3cos 4sin x y θθπθθ≤≤==为参数,0相交于点P ,则点P 坐标是1212(,)55. 其中假命题的序号是 .三、解答题(本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤) 15.(本小题共13分)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30ο,相距10海里C 处的乙船.(Ⅰ)求处于C 处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线CB 方向前往B 处救援,其方向与成θ角,求()x x x f cos cos sin sin 22θ+θ=()R x ∈的值域.16. (本小题共13分)已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据, (Ⅰ)求这个组合体的表面积;(Ⅱ)若组合体的底部几何体记为1111D C B A ABCD -,其中BA B A 11为正方形.(i )求证:D C AB B A 111平面⊥;北2010 A B ••C(ii )设点P 为棱11D A 上一点,求直线AP 与平面D C AB 11所成角的正弦值的取值范围.17. (本小题共13分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜. (Ⅰ) 求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.18. (本小题共13分)设{}n a 是正数组成的数列,其前n 项和为n S ,且对于所有的正整数n ,有12+=n n a S .(I) 求1a ,2a 的值;(II) 求数列{}n a 的通项公式;(III )令11=b ,k k k a b )1(122-+=-,kk k a b 3212+=+(⋅⋅⋅=,3,2,1k ),求数列{}n b 的前12+n 项和12+n T .19. (本小题共14分)已知函数()xxx f ln =. (I )判断函数()x f 的单调性;(Ⅱ)若=y ()x xf +x1的图像总在直线a y =的上方,求实数a 的取值范围; (Ⅲ)若函数()x f 与()3261+-=x m x x g 的图像有公共点,且在公共点处的切线相同,求实数m 的值.20.(本小题共14分)已知0>p ,动点M 到定点F ⎪⎭⎫⎝⎛0,2p 的距离比M 到定直线p x l -=:的距离小2p .(I )求动点M 的轨迹C 的方程;(Ⅱ)设B A ,是轨迹C 上异于原点O 的两个不同点,0OA OB ⋅=uu r uu u r,求AOB ∆面积的最小值;(Ⅲ)在轨迹C 上是否存在两点Q P ,关于直线()02:≠⎪⎭⎫⎝⎛-=k p x k y m 对称?若存在,求出直线m 的方程,若不存在,说明理由.高三数学(理)参考答案及评分标准一、选择题:本大题共8个小题,每小题5分,共40分;在每个小题给出的四个选项中有且仅有一个是符合题目要求的.二、填空题:本大题共有6个小题,每小题5分,共30分.三、解答题:本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(Ⅰ)连接BC,由余弦定理得2BC =202+102-2×20×10COS120°=700.∴BC =107. ……………………………………5分(Ⅱ)∵710120sin 20sin ︒=θ, ∴sin θ =73∵θ是锐角,∴74cos =θ ()x x x f cos cos sin sin 22θ+θ==()ϕ+=+x x x sin 75cos 74sin 73∴()x f 的值域为⎥⎦⎤⎢⎣⎡-75,75. ……………………………………13分 16. (本题满分13分)(Ⅰ)=表面积S 104421210810828822⨯⨯π+⨯π⨯+⨯+⨯⨯+⨯⨯=π+56368. ………4分(Ⅱ)(i )∵长方体1111D C B A ABCD -∴BA B A AD 11平面⊥ ∵BA B A B A 111平面⊂∴B A AD 1⊥又∵BA B A 11是边长为8的正方形 ∴11AB B A ⊥ ∵A AD AB =⋂1∴D C AB B A 111平面⊥. …………………………9分(ii )建立直角坐标系xyz D -,则()0,0,10A ,()8,0,m P∴()8,0,10-=m ∵D C AB B A 111平面⊥∴()8,8,01-=B A 为平面D C AB 11的法向量()()64102428641064sin 22+-=⋅+-==θm m∵[]10,0∈m∴⎥⎦⎤⎢⎣⎡∈θ22,41822sin . …………………………13分 17. (本题满分13分)解:(Ⅰ)说明另四道题也全答对,相互独立事件同时发生,即:64141412121=⨯⨯⨯.………5分(Ⅱ)答对题的个数为4,5,6,7,8,其概率分别为:()649434321214=⨯⨯⨯==ξP ()64242434121212434321215=⨯⨯⨯⨯+⨯⨯⨯⨯==ξP()64226==ξP ()6487==ξP ()==ξ8P 64141412121=⨯⨯⨯分布列为:……………………………13分18. (本题满分13分)解: (I) 当1=n 时,1211+=a a ,∴()0121=-a ,11=a当2=n 时,11222+=+a a ,∴212=+a ,32=a ;……………3分 (II) ∵12+=n n a S ,∴()214+=n n a S()21114+=--n n a S ,相减得:()()0211=--+--n n n n a a a a∵{}n a 是正数组成的数列,∴21=--n n a a ,∴12-=n a n ; …………………8分(Ⅲ)()[]()()[]()242312111123131++-++++-++=+a a a a b T n +⋅⋅⋅+()nn a 32+=1+()()()()[]nn n S 1113332122-+⋅⋅⋅+-+-++⋅⋅⋅+++=1+()()()()()()111113131322-----+--+nn n =()2182321nn n -++-+. …………………13分 19.(本题满分14分) 解:(Ⅰ)可得'21ln ()xf x x -=. 当0x e <<时,'()0f x >,()f x 为增函数;当e x <时,'()0f x <,()f x 为减函数. ……4分 (Ⅱ)依题意, 转化为不等式xx a 1ln +<对于0>x 恒成立 令1()ln g x x x=+, 则21111()1g x x x x x ⎛⎫'=-=- ⎪⎝⎭当1x >时,因为11()10g x x x ⎛⎫'=-> ⎪⎝⎭,()g x 是(1)+∞,上的增函数, 当()1,0∈x 时,()0<'x g ,()g x 是()1,0上的减函数, 所以 ()g x 的最小值是(1)1g =, 从而a 的取值范围是()1,∞-. …………………8分(Ⅲ)转化为m x x x -+=3261ln 2,x y ln =与m x x y -+=32612在公共点00(,)x y 处的切线相同由题意知⎪⎪⎩⎪⎪⎨⎧+=-+=323113261ln 000200x x m x x x∴解得:01x =,或03x =-(舍去),代人第一式,即有65=m . (4)20.(本题满分14分)解:(Ⅰ)∵动点M 到定点F 与到定直线2px -=的距离相等 ∴点M 的轨迹为抛物线,轨迹C 的方程为:px y 22=. ……………4分(Ⅱ)设()()2211,,,y x B y x A∵0OA OB ⋅=uu r uu u r∴02121=+y y x x ∵2221212,2px y px y == ∴2214p x x = ∴()()222222211221144AOBSOA OB x y x y ∆==++uu r uu u r =()()2221212241px x px x ++ =()()[]21221212214241x x p x x x px x x +++ ≥()[]212212122142241x x p x x x px x x +⋅+=416p ∴当且仅当p x x 221==时取等号,AOB ∆面积最小值为24p . ……………9分(Ⅲ)设()()4433,,,y x Q y x P 关于直线m 对称,且PQ 中点()00,y x D∵ ()()4433,,,y x Q y x P 在轨迹C 上 ∴4243232,2px y px y ==两式相减得:()()()4343432x x p y y y y -=+-∴pk y y x x p y y 22434343-=--=+∴pk y -=0∵()00,y x D 在()02:≠⎪⎭⎫⎝⎛-=k p x k y m 上 ∴020<-=px ,点()00,y x D 在抛物线外 ∴在轨迹C 上不存在两点Q P ,关于直线m 对称. ……………14分。
2017北京卷高考理数试题及答案
2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A∩B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A )2(B )(C )(D )(4)若x ,y 满足,则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数,则(A )是奇函数,且在R 上是增函数(B )是偶函数,且在R 上是增函数3253851(x)33xxf ⎛⎫=- ⎪⎝⎭(x)f(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数,使得”是“”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )(B )(C )(D )2(8)根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N约为.则下列各数中与最接近的是 λm n λ=m n 0⋅<MN(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2017-2018年北京市丰台区高三(上)期末数学试卷和参考答案(理科)
2017-2018学年北京市丰台区高三(上)期末数学试卷(理科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={x|x2<1},则A∪B=()A.{﹣1,1}B.{﹣1,0,1}C.{x|﹣1≤x≤1}D.{x|x≤1}2.(5分)“x>1”是“2x>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)在极坐标系Ox中,方程ρ=sinθ表示的曲线是()A.直线B.圆C.椭圆D.双曲线4.(5分)若x,y满足,则z=x﹣2y的最大值是()A.﹣2 B.﹣1 C.1 D.25.(5分)执行如图所示的程序框图,如果输入的x的值在区间[﹣2,﹣1.5)内,那么输出的y属于()A.[0,0.5)B.(0,0.5]C.(0.5,1]D.[0.5,1)6.(5分)某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为()A.2 B.C.2 D.37.(5分)过双曲线=1(a>0,b>0)的一个焦点F作一条与其渐近线垂直的直线,垂足为A,O为坐标原点,若|OA|=|OF|,则此双曲线的离心率为()A.B.C.2 D.8.(5分)全集U={(x,y)|x∈Z,y∈Z},非空集合S⊆U,且S中的点在平面直角坐标系xOy内形成的图形关于x轴、y轴和直线y=x均对称.下列命题:①若(1,3)∈S,则(﹣1,﹣3)∈S②若(0,4)∈S,则S中至少有8个元素;③若(0,0)∉S,则S中元素的个数一定为偶数;④若{(x,y)|x+y=4,x∈Z,y∈Z}⊆S,则{(x,y)||x|+|y|=4,x∈Z,y∈Z}⊆S其中正确命题的个数是()A.1 B.2 C.3 D.4二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)已知单位向量,的夹角为120°,则()•=.10.(5分)若复数z=(1+i)(1+ai)在复平面内所对应的点在虚轴上,则实数a=.11.(5分)在(2﹣x)5的展开式中,x3项的系数是(用数字作答).12.(5分)等差数列{a n}的公差为2,且a2,a4,a8成等比数列,那么a1=,数列{a n}的前9项和S9=.13.(5分)能够说明“方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)的曲线是椭圆”为假命题的一个m的值是.14.(5分)已知函数f(x)=,g(x)=f(x)﹣kx(k∈R)①当k=1时,函数g(x)有个零点;②若函数g(x)有三个零点,则k的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(12分)在△ABC 中,sin2B=2sin2B(Ⅰ)求角B=6,求b的值.(Ⅱ)若a=4,S△ABC16.(12分)某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.根据表中数据估计,该校4000名学生中约有120名这4次活动均未参加.(Ⅰ)求a,b的值;(Ⅱ)从该校4000名学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;(Ⅲ)已知学生每次参加公益活动可获得10个公益积分,任取该校一名学生,记该生2017年12月获得的公益积分为X,求随机变量X的分布列和数学期望E (X)17.(14分)P﹣ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,E,F分别是AB,PC的中点,PA=AD=2,CD=(Ⅰ)求证:EF∥平面PAD(Ⅱ)求PC与平面EFD所成角的正弦值;(Ⅲ)在棱BC上是否存在一点M,使得平面PAM⊥平面EFD\?若存在,求出的值;若不存在,请说明理由.18.(14分)已知函数f(x)=x2﹣ax﹣a2lnx(a∈R)(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围.19.(14分)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,记点P的轨迹为C.(Ⅰ)求C得方程;(Ⅱ)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.(14分)在数列{a n}中,若a1,a2是整数,且a n=,(n∈N*,且n≥3)(Ⅰ)若a1=1,a2=2,写出a3,a4,a5的值;(Ⅱ)若在数列{a n}的前2018项中,奇数的个数为t,求t得最大值;(Ⅲ)若数列{a n}中,a1是奇数,a2=3a1,证明:对任意n∈N*,a n不是4的倍数.2017-2018学年北京市丰台区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={x|x2<1},则A∪B=()A.{﹣1,1}B.{﹣1,0,1}C.{x|﹣1≤x≤1}D.{x|x≤1}【解答】解:集合A={﹣1,0,1},B={x|x2<1}={x|﹣1<x<1},则A∪B={x|﹣1≤x≤1}.故选:C.2.(5分)“x>1”是“2x>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由2x>1得x>0,则“x>1”是“2x>1”的充分不必要条件,故选:A.3.(5分)在极坐标系Ox中,方程ρ=sinθ表示的曲线是()A.直线B.圆C.椭圆D.双曲线【解答】解:方程ρ=sinθ转化为直角坐标方程为:x2+y2﹣y=0,整理得:,所以:该曲线是以(0,)为圆心,为半径的圆.故选:B.4.(5分)若x,y满足,则z=x﹣2y的最大值是()A.﹣2 B.﹣1 C.1 D.2【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(0,﹣1)时,z最大,且最大值为z max=0﹣2×(﹣1)=2.故选:D.5.(5分)执行如图所示的程序框图,如果输入的x的值在区间[﹣2,﹣1.5)内,那么输出的y属于()A.[0,0.5)B.(0,0.5]C.(0.5,1]D.[0.5,1)【解答】解:模拟程序的运行,x∈[﹣2,﹣1.5)不满足条件x≥0,可得:x=x+1∈[﹣1,﹣0.5)不满足条件x≥0,可得:x=x+1∈[0,0.5),此时,满足条件x≥0,可得:y=x∈[0,0.5).故选:A.6.(5分)某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为()A.2 B.C.2 D.3【解答】解:由三棱锥的三视图可得几何体的直观图如下图所示:C是顶点P在底面上的射影,△ABC是等腰△,BC=2,中线AD=2,PC=2,∴AC=AB=,PB=2,PA=,故最长的棱为3,故选:D.7.(5分)过双曲线=1(a>0,b>0)的一个焦点F作一条与其渐近线垂直的直线,垂足为A,O为坐标原点,若|OA|=|OF|,则此双曲线的离心率为()A.B.C.2 D.【解答】解:过双曲线=1(a>0,b>0)的一个焦点F作一条与其渐近线垂直的直线,垂足为A,O为坐标原点,若|OA|=|OF|,可得∠AOF=60°,k OA=,即:,所以,可得e2=4,解得e=2故选:C.8.(5分)全集U={(x,y)|x∈Z,y∈Z},非空集合S⊆U,且S中的点在平面直角坐标系xOy内形成的图形关于x轴、y轴和直线y=x均对称.下列命题:①若(1,3)∈S,则(﹣1,﹣3)∈S②若(0,4)∈S,则S中至少有8个元素;③若(0,0)∉S,则S中元素的个数一定为偶数;④若{(x,y)|x+y=4,x∈Z,y∈Z}⊆S,则{(x,y)||x|+|y|=4,x∈Z,y∈Z}其中正确命题的个数是()A.1 B.2 C.3 D.4【解答】解:①若(1,3)∈S,则关于y轴对称的点(﹣1,3)∈S,关于x轴对称的点(﹣1,﹣3)∈S,故正确;②若(0,4)∈S,则S中至少有4个元素,故错误;③若(0,0)∉S,则S中元素的个数一定为成对出现,故为偶数,故正确;④||x|+|y|=4,显然图象关于x轴,y轴,和y=x对称,∴若{(x,y)|x+y=4,x∈Z,y∈Z}⊆S,则{(x,y)||x|+|y|=4,x∈Z,y∈Z}⊆S,故正确.故选:C.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)已知单位向量,的夹角为120°,则()•=.【解答】解:单位向量,的夹角为120°,则()•=+=1+1×=.故答案为:.10.(5分)若复数z=(1+i)(1+ai)在复平面内所对应的点在虚轴上,则实数a= 1.【解答】解:z=(1+i)(1+ai)=1﹣a+(1+a)i,对应点的坐标为(1﹣a,1+a),∵在复平面内所对应的点在虚轴上,∴1﹣a=0,得a=1,故答案为:111.(5分)在(2﹣x)5的展开式中,x3项的系数是﹣40(用数字作答).【解答】解:在(2﹣x)5的展开式中,通项公式为T r+1=•25﹣r•(﹣x)r,令r=3,得展开式中x3项的系数是(﹣1)3••25﹣3=﹣40.故答案为:﹣40.12.(5分)等差数列{a n}的公差为2,且a2,a4,a8成等比数列,那么a1=2,数列{a n}的前9项和S9=90.【解答】解:等差数列{a n}的公差d为2,且a2,a4,a8成等比数列,可得a42=a2a8,即为(a1+6)2=(a1+2)(a1+14),解得a1=2,S9=9a1+×2=18+72=90.故答案为:2,90.13.(5分)能够说明“方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)的曲线是椭圆”为假命题的一个m的值是(﹣∞,1]∪{2}∪[3,+∞).【解答】解:由(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)所表示的曲线是椭圆,可知(m﹣1)(3﹣m)≠0,得+=1.∴,解得1<m<3且m≠2.∴曲线表示圆时m的取值范围是(1,2)∪(2,3);∴“方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)的曲线是椭圆”为假命题的一个m的值是m∈(﹣∞,1]∪{2}∪[3,+∞)中任取一值即为正确答案.故答案为:(﹣∞,1]∪{2}∪[3,+∞).14.(5分)已知函数f(x)=,g(x)=f(x)﹣kx(k∈R)①当k=1时,函数g(x)有1个零点;②若函数g(x)有三个零点,则k的取值范围是(0,] .【解答】解:①当k=1时,g(x)=0,即f(x)=x,由0<x<π,xsinx=x,即为sinx=1,解得x=;x≥π,=x,解得x=0或1舍去,则g(x)的零点个数为1;②若函数g(x)有三个零点,当x≥π,=kx,(k>0),最多一解,即有x=≥π,解得0<k≤;又0<x<π时,xsinx=kx,即为sinx=k有两解,则k>0且k≠1.综上可得0<k≤.故答案为:1,(0,].三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(12分)在△ABC中,sin2B=2sin2B(Ⅰ)求角B(Ⅱ)若a=4,S=6,求b的值.△ABC【解答】解:(Ⅰ)因为sin2B=2sin2B,所以2sinBcosB=2sin2B.因为0<B<π,所以sinB≠0,所以tanB=,所以B=.(Ⅱ)由a=4,B=,S△ABC=6=acsinB,可得:=6,解得c=6.由余弦定理可得b2=42+62﹣2×=28,解得b=2.16.(12分)某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.根据表中数据估计,该校4000名学生中约有120名这4次活动均未参加.(Ⅰ)求a,b的值;(Ⅱ)从该校4000名学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;(Ⅲ)已知学生每次参加公益活动可获得10个公益积分,任取该校一名学生,记该生2017年12月获得的公益积分为X,求随机变量X的分布列和数学期望E(X)【解答】解:(Ⅰ)依题意,所以b=3.因为a=100﹣(12+20+15+30+10+3)=10,所以a=10,b=3.(Ⅱ)设“从该校所有学生中任取一人,其2017年12月恰参加了2次学校组织的公益活动”为事件A,则P(A)==.所以从该校所有学生中任取一人,其2017年12月恰参加了2次学校组织的公益活动的概率约为.(Ⅲ)X可取0,10,20,30,40.P(X=0)=,P(X=10)==0.2,P(X=20)==0.5,P(X=30)==0.12,P(X=40)=.所以随机变量X的分布列为:所以E(X)=0×0.03+10×0.2+20×0.5+30×0.12+40×0.15=21.6.17.(14分)P﹣ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,E,F分别是AB,PC的中点,PA=AD=2,CD=(Ⅰ)求证:EF∥平面PAD(Ⅱ)求PC与平面EFD所成角的正弦值;(Ⅲ)在棱BC上是否存在一点M,使得平面PAM⊥平面EFD\?若存在,求出的值;若不存在,请说明理由.【解答】证明:(Ⅰ)取PD中点G,连接AG,FG.因为F,G分别是PC,PD的中点,所以FG∥CD,且FG=CG.因为ABCD是矩形,E是AB中点,所以AE∥FG,AE=FG.所以AEFG为平行四边形.所以EF∥AG.又因为AG⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.解:(Ⅱ)因为PA⊥平面ABCD,所以PA⊥AB,PA⊥AD.因为四边形ABCD是矩形,所以AB⊥AD.如图建立直角坐标系A﹣xyz,所以E(,0,0),F(,1,1),D(0,2,0),所以=(0,1,1),=(,﹣2,0).设平面EFD的法向量为=(x,y,z),则,令y=1,得=(2,1,﹣1).又因为=(),设PC与平面EFD所成角为θ,所以sinθ=|cos<>|==.所以PC与平面EFD所成角的正弦值为.(Ⅲ)因为侧棱PA⊥底面ABCD,所以只要在BC上找到一点M,使得DE⊥AM,即可证明平面PAM⊥平面EFD.设BC上存在一点M,则M(),(t∈[0,2]),所以=().因为=(﹣,2,0),所以令=﹣1+2t=0,解得t=.所以在BC存在一点M,使得平面PAM⊥平面EFD,且=.18.(14分)已知函数f(x)=x2﹣ax﹣a2lnx(a∈R)(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),∴f′(x)==.由f′(x)=0,可得x=a或x=﹣,当a=0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)的单调递增区间是(0,+∞),没有单调递减区间;当a>0时,由f′(x)>0,解得x>a,函数f(x)单调递增,由f′(x<0,解得0<x<a,函数f(x)单调递减,∴f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).当a<0时,由f′(x)>0,解得x>﹣,函数f(x)单调递增,由f′(x<0,解得0<x<﹣,函数f(x)单调递减,∴f(x)的单调递减区间是(0,﹣),单调递增区间是(,+∞).(Ⅱ)由(Ⅰ)知,当a=0时,f(x)=x2>0,符合题意.当a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).∴f(x)≥0恒成立等价于f(x)min≥0,即f(a)≥0,∴a2﹣a2﹣a2lna>0,∴0<a≤1.当a<0时,f(x)的单调递减区间是(0,﹣),单调递增区间是(﹣,+∞).∴f(x)≥0恒成立等价于f(x)min≥0,即f(﹣)≥0,∴a2+a2﹣a2ln(﹣)>0,∴﹣2e≤a<0,综上所述,实数a的取值范围是[﹣2e,1].19.(14分)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,记点P的轨迹为C.(Ⅰ)求C得方程;(Ⅱ)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【解答】解:(Ⅰ)∵动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,∴动点P的轨迹是以点F(1,0)为焦点,直线x=﹣1为准线的抛物线.设C的方程为y2=2px,则,即p=2.∴C的轨迹方程为y2=4x;(Ⅱ)设A(),则B(,0),∴直线AB的斜率为k=.设与AB平行,且与抛物线C相切的直线为y=﹣,由,得my2+8y﹣8b=0,由△=64﹣32mb=0,得b=﹣,∴y=﹣,则点D().当,即m≠±2时,直线AD的方程为:,整理得,∴直线AD过点(1,0).当,即m=±2时,直线AD的方程为x=1,过点(1,0),综上所述,直线AD过定点(1,0).20.(14分)在数列{a n}中,若a1,a2是整数,且a n=,(n∈N*,且n≥3)(Ⅰ)若a1=1,a2=2,写出a3,a4,a5的值;(Ⅱ)若在数列{a n}的前2018项中,奇数的个数为t,求t得最大值;(Ⅲ)若数列{a n}中,a1是奇数,a2=3a1,证明:对任意n∈N*,a n不是4的倍数.【解答】解:(Ⅰ)a3=5a2﹣3a1=10﹣3=7,a4=5a3﹣3a2=5×7﹣3×2=29,a5=a4﹣a3=29﹣7=22.所以a3=7,a4=29,a5=22.(Ⅱ)(i)当a1,a2都是偶数时,a1•a2是偶数,代入5a n﹣1﹣3a n﹣2得到a3是偶数;因为a2•a3是偶数,代入5a n﹣1﹣3a n﹣2得到a4是偶数;如此下去,可得到数列{a n}中项的奇偶情况是偶,偶,偶,偶,…所以前2018项中共有0个奇数.(ii)当a1,a2都是奇数时,a1•a2是奇数,代入a n﹣1﹣a n﹣2得到a3是偶数;因为a2•a3是偶数,代入5a n﹣1﹣3a n﹣2得到a4是奇数;因为a3•a4是偶数,代入5a n﹣1﹣3a n﹣2得到a5是奇数;如此下去,可得到数列{a n}中项的奇偶情况是奇,奇,偶,奇,奇,偶,奇,奇,偶,…所以前2018项中共有1346个奇数.(iii)当a1是奇数,a2是偶数时,理由同(ii),可得数列{a n}中项的奇偶情况是奇,偶,奇,奇,偶,奇,奇,偶,奇,…所以前2018项中共有1345个奇数.(iv)当a1是偶数,a2是奇数时,理由同(ii),可得数列{a n}中项的奇偶情况是偶,奇,奇,偶,奇,奇,偶,奇,奇,…所以前2018项中共有1345个奇数.综上所述,前2018项中奇数的个数t的最大值是1346.(Ⅲ)证明:因为a1是奇数,所以由(Ⅱ)知,a n不可能都是偶数,只能是偶奇奇,奇偶奇,奇奇偶三种情况.因为a1是奇数,且a2=3a1,所以a2也是奇数.所以a3=a2﹣a1=2a1为偶数,且不是4的倍数.因为a4=5a3﹣3a2=a1,所以前4项没有4的倍数,假设存在最小正整数t(t>3),使得a t是4的倍数,则a t﹣1,a t﹣2均为奇数,所以a t﹣3一定是偶数,由于a t﹣1=5a t﹣2﹣3a t﹣3,且a t=a t﹣1﹣a t﹣2,将这两个式子作和,可得3a t﹣3=4a t﹣2﹣a t.因为a t是4的倍数,所以a t﹣3也是4的倍数,与t是最小正整数使得a t是4的倍数矛盾.所以假设不成立,即对任意n∈N*,a n不是4的倍数.。
北京市2017届高三数学(理)综合练习40 含答案
北京市2017届高三综合练习数学(理)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知全集U={一l,0,1,2},集合A={一l,2},B={0,2},则=⋂B A C U)(A .{0}B .{2}C .{0,l,2}D .φ 2.已知i 为虚数单位,2=iz ,则复数=zA .i -1B .i +1C .2iD .-2i3.“a=2"是“直线ax 十2y=0与直线x+y=l 平行”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.一个四棱锥的三视图如图所示,其中主 视图是腰长为1的等腰直角三角形,则 这个几何体的体积是A .21B .1C .23 D .25.函数2(sin cos )1y x x =+-是11主视图左视图俯视图否A .最小正周期为π2的奇函数B .最小正周期为π2的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数6.过点π4,2A ⎛⎫- ⎪⎝⎭引圆4sin ρθ=的一条切线,则切线长为A .33B .36C .22D .247.将图中的正方体标上字母, 1111A BC D -, 不 同的标字母方式共有A .24种B .48种C .72种D .144种8.若函数()() y f x x R =∈满足()()2f x f x +=,且[]1,1x ∈-时,()21f x x =-,函数()()()lg 010x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个 数为A .5B .7C .8D .10二、填空题:本大题共6小题,每小题5分,满分30分.9.二项式521⎪⎭⎫ ⎝⎛-x x 的展开式中含4是 (用数字作答)10.如图给出的是计算2011151311+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件 是 . 11.如图,PAA 为切点,PBC 的割线,且PB PA 3=,则=BCPB . 12. 当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则实数a 的取值范围为 .13.已知不等式组⎪⎩⎪⎨⎧>-≥-≤+122y y x y x 表示的平面区域为,M 若直线13+-=k kx y 与平面区域M有公共点,则k 的取值范围是 .14.手表的表面在一平面上.整点1,2,…,12这12个数字等间隔地分布在半径为22的圆周上.从整点i 到整点(i +1)的向量记作1+i i t t ,则2111243323221t t t t t t t t t t tt ⋅+⋅⋅⋅+⋅+⋅=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分13分)P在ABC ∆中,a b c 、、分别为角A B C 、、的对边,且满足222b c a bc +-=.(Ⅰ)求角A 的值; (Ⅱ)若a =设角B 的大小为x ,ABC ∆的周长为y ,求()y f x =的最大值.16.(本小题满分14分)如图,在四棱锥S ABCD -底面ABCD是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC 上一点.(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;(Ⅱ)求证:平面BDE⊥平面SAC;(Ⅲ)当二面角E BD C--的大小为45︒时,试判断点E在SC上的位置,并说明理由.17.(本小题满分13分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(],490,495 (]515510.由此得到样本的频率分布直方图,如图所示:,495,…,(]500,(Ⅰ)根据频率分布直方图,求重量超过505克的产品数量;(Ⅱ)在上述抽取的40个产品中任职2件,设ξ为重量超过505克的产品数量,求ξ的分布列;(Ⅲ)从流水线上任取5件产品,估计其中恰有2件产品的重量超过505克的概率.18.(本小题满分13分)已知xx x g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,R a ∈.(Ⅰ)讨论1=a 时,()f x 的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,1()()2f xg x >+;(Ⅲ)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.已知:椭圆12222=+by a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角为6π,原点到该直线的距离为23. (Ⅰ)求椭圆的方程;(Ⅱ)斜率大于零的直线过)0,1(-D 与椭圆交于E ,F 两点,若DF ED 2=,求直线EF 的方程;(Ⅲ)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点)0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.定义:对于任意*n ∈N ,满足条件212nn n aa a +++≤且n a M ≤(M 是与n 无关的常数)的无穷数列{}na 称为T 数列.(Ⅰ)若29nan n =-+(*n ∈N ),证明:数列{}n a 是T 数列;(Ⅱ)设数列{}n b 的通项为3502nn b n ⎛⎫=- ⎪⎝⎭,且数列{}nb 是T 数列,求常数M 的取值范围; (Ⅲ)设数列1npcn=-(*n ∈N ,1p >),问数列{}n c 是否是T 数列?请说明理由.参考答案及评分标准一、选择题:本大题共8个小题;每小题5分,共40分.9.10 10.2011≤i 11.2112.]2,1( 13.)0,31[- 14.936-三、解答题:本大题共6小题,满分80分. 15.(本小题满分13分)在ABC ∆中,a b c 、、分别为角A B C 、、的对边,且满足222b c a bc +-=.(Ⅰ)求角A 的值; (Ⅱ)若a =设角B 的大小为x ,ABC ∆的周长为y ,求()y f x =的最大值.解:(Ⅰ)∵222bc a bc +-=,∴2221cos 22b c a A bc +-==又0A π<<, ∴3A π=;——-————-—--———---——--——---——--—-——————-—-—---—-————-—--——--——5分(Ⅱ)∵Aa xb sin sin =,∴x x x a b sin 2sin 233sin 3sin=⋅=⋅=π同理)32sin(sin sin x C A a c -=⋅=π ∴3)6sin(323)32sin(2sin 2++=+-+=ππx x x y∵320,3ππ<<∴=x A ∴)65,6(6πππ∈+x ,∴62x ππ+=即3x π=时,max y =——-———-——---———-—————-—————13分16.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC上一点.(Ⅰ)当E 为侧棱SC 的中点时,求证:SA ∥平面BDE ;(Ⅱ)求证:平面BDE ⊥平面SAC ; (Ⅲ)当二面角E BD C --的大小为45︒时,试判断点E 在SC 上的位置,并说明理由. (Ⅰ)证明:连接OE ,由条件可得SA ∥OE 。