电磁感应中动量定理公式

合集下载

第一篇 专题二 第7讲 动量

第一篇 专题二 第7讲 动量

第7讲动量命题规律 1.命题角度:(1)动量定理及应用;(2)动量守恒定律及应用;(3)碰撞模型及拓展.2.常用方法:柱状模型法.3.常考题型:选择题、计算题.考点一动量定理及应用1.冲量的三种计算方法公式法I=Ft适用于求恒力的冲量动量定理法多用于求变力的冲量或F、t未知的情况图像法F-t图线与时间轴围成的面积表示力的冲量.若F-t成线性关系,也可直接用平均力求解2.动量定理(1)公式:FΔt=m v′-m v(2)应用技巧①研究对象可以是单一物体,也可以是物体系统.②表达式是矢量式,需要规定正方向.③匀变速直线运动,如果题目不涉及加速度和位移,用动量定理比用牛顿第二定律求解更简捷.④在变加速运动中F为Δt时间内的平均冲力.⑤电磁感应问题中,利用动量定理可以求解时间、电荷量或导体棒的位移.3.流体作用的柱状模型对于流体运动,可沿流速v的方向选取一段柱形流体,设在极短的时间Δt内通过某一截面积为S的横截面的柱形流体的长度为Δl,如图所示.设流体的密度为ρ,则在Δt的时间内流过该横截面的流体的质量为Δm=ρSΔl=ρS vΔt,根据动量定理,流体微元所受的合外力的冲量等于该流体微元动量的变化量,即FΔt=ΔmΔv,分两种情况:(以原来流速v的方向为正方向)(1)作用后流体微元停止,有Δv=-v,代入上式有F=-ρS v2;(2)作用后流体微元以速率v反弹,有Δv=-2v,代入上式有F=-2ρS v2.例1(多选)(2022·广东梅州市一模)如图所示,学生练习用脚顺球.某一次足球由静止自由下落1.25 m,被重新顺起,离开脚部后竖直上升的最大高度仍为1.25 m.已知足球与脚部的作用时间为0.1 s,足球的质量为0.4 kg,重力加速度大小g取10 m/s2,不计空气阻力,则()A.足球下落到与脚部刚接触时动量大小为2 kg·m/sB.足球自由下落过程重力的冲量大小为4 kg·m/sC.足球与脚部作用过程中动量变化量为零D.脚部对足球的平均作用力为足球重力的11倍答案AD解析足球下落到与脚部刚接触时的速度为v=2gh=5 m/s,则足球下落到与脚部刚接触时动量大小为p=m v=2 kg·m/s,A正确;根据运动的对称性,足球离开脚部时的速度大小也是5 m/s,所以脚部与足球作用过程中,由动量定理得(F-mg)Δt=m v-m(-v),解得F=11mg,足球自由下落过程重力的冲量大小为mg vg=2 N·s,B错误,D正确;足球与脚部作用过程中动量变化大小为Δp=m v-m(-v)=4 kg·m/s,C错误.例2(2022·湖南衡阳市一模)飞船在进行星际飞行时,使用离子发动机作为动力,这种发动机工作时,由电极发射的电子射入稀有气体(如氙气),使气体离子化,电离后形成的离子由静止开始在电场中加速并从飞船尾部高速连续喷出,利用反冲使飞船本身得到加速.已知一个氙离子质量为m,电荷量为q,加速电压为U,飞船单位时间内向后喷射出的氙离子的个数为N,从飞船尾部高速连续喷出氙离子的质量远小于飞船的质量,则飞船获得的反冲推力大小为()A.1N2qUm B.1NqUm2C.N2qUm D.N qUm 2答案 C解析根据动能定理得qU=12m v2,解得v=2qU m,对Δt时间内喷射出的氙离子,根据动量定理,有ΔM v=FΔt,其中ΔM=NmΔt,联立有F=Nm v=N·m·2qUm=N2qUm,则根据牛顿第三定律可知,飞船获得的反冲推力大小为F′=N2qUm,故选C.考点二动量守恒定律及应用1.判断守恒的三种方法(1)理想守恒:不受外力或所受外力的合力为0,如光滑水平面上的板-块模型、电磁感应中光滑导轨上的双杆模型.(2)近似守恒:系统内力远大于外力,如爆炸、反冲.(3)某一方向守恒:系统在某一方向上不受外力或所受外力的合力为0,则在该方向上动量守恒,如滑块-斜面(曲面)模型. 2.动量守恒定律的三种表达形式(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,作用前的动量之和等于作用后的动量之和(常用). (2)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向. (3)Δp =0,系统总动量的增量为零.例3 (多选)(2020·全国卷Ⅱ·21)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg 的静止物块以大小为5.0 m/s 的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s 的速度与挡板弹性碰撞.总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s ,反弹的物块不能再追上运动员.不计冰面的摩擦力,该运动员的质量可能为( ) A .48 kg B .53 kg C .58 kg D .63 kg答案 BC解析 设运动员的质量为M ,第一次推物块后,运动员速度大小为v 1,第二次推物块后,运动员速度大小为v 2……第八次推物块后,运动员速度大小为v 8,第一次推物块后,由动量守恒定律知:M v 1=m v 0;第二次推物块后由动量守恒定律知:M (v 2-v 1)=m [v 0-(-v 0)]=2m v 0,……,第n 次推物块后,由动量守恒定律知:M (v n -v n -1)=2m v 0,整理得v n =(2n -1)m v 0M ,则v 7=260 kg·m/s M ,v 8=300 kg·m/sM .由题意知,v 7<5.0 m/s ,则M >52 kg ,又知v 8>5.0 m/s ,则M <60 kg ,故选B 、C.例4 (2022·湖南岳阳市二模)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C ,现将球C 拉起使细线水平伸直,并由静止释放球C ,则下列说法不正确的是(重力加速度为g )( )A .A 、B 两木块分离时,A 、B 的速度大小均为m 0m mgL2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL2m +m 0C .球C 由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL2m +m 0D .球C 由静止释放到最低点的过程中,木块A 移动的距离为m 0L2m +m 0答案 C解析 小球C 下落到最低点时,A 、B 将要开始分离,此过程水平方向动量守恒,根据机械能守恒有:m 0gL =12m 0v C 2+12×2m v AB 2,取水平向左为正方向,由水平方向动量守恒得:m 0v C=2m v AB ,联立解得v C =2mgL 2m +m 0,v AB =m 0m mgL2m +m 0,故A 、B 正确;C 球由静止释放到最低点的过程中,选B 为研究对象,由动量定理有I AB =m v AB =m 0mgL2m +m 0,故C 错误;C 球由静止释放到最低点的过程中,系统水平方向动量守恒,设C 对地向左水平位移大小为x 1,A 、B 对地水平位移大小为x 2,则有m 0x 1=2mx 2,x 1+x 2=L ,可解得x 2=m 0L2m +m 0,故D 正确.考点三 碰撞模型及拓展1.碰撞问题遵循的三条原则 (1)动量守恒:p 1+p 2=p 1′+p 2′. (2)动能不增加:E k1+E k2≥E k1′+E k2′.(3)速度要符合实际情况:若碰后同向,后方物体速度不大于前方物体速度. 2.两种碰撞特点 (1)弹性碰撞两球发生弹性碰撞时应满足动量守恒定律和机械能守恒定律.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生弹性正碰为例,有 m 1v 1=m 1v 1′+m 2v 2′12m 1v 12=12m 1v 1′2+12m 2v 2′2 解得v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2.结论:①当m 1=m 2时,v 1′=0,v 2′=v 1,两球碰撞后交换了速度.②当m 1>m 2时,v 1′>0,v 2′>0,碰撞后两球都沿速度v 1的方向运动. ③当m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的球被反弹回来. ④当m 1≫m 2时,v 1′=v 1,v 2′=2v 1. (2)完全非弹性碰撞动量守恒、末速度相同:m 1v 1+m 2v 2=(m 1+m 2)v 共,机械能损失最多,机械能的损失:ΔE =12m 1v 12+12m 2v 22-12(m 1+m 2)v 共2. 3.碰撞拓展(1)“保守型”碰撞拓展模型图例(水平面光滑)小球-弹簧模型小球-曲面模型达到共速相当于完全非弹性碰撞,系统水平方向动量守恒,满足m v 0=(m +M )v 共,损失的动能最大,分别转化为弹性势能、重力势能或电势能再次分离 相当于弹性碰撞,系统水平方向动量守恒,满足m v 0=m v 1+M v 2,能量满足12m v 02=12m v 12+12M v 22(2)“耗散型”碰撞拓展模型图例(水平面或水平导轨光滑)达到共速 相当于完全非弹性碰撞,动量满足m v 0=(m +M )v 共,损失的动能最大,分别转化为内能或电能例5 (2022·湖南卷·4)1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v 0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v 1和v 2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是( )A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案 B解析设中子的质量为m,则氢核的质量也为m,氮核的质量为14m,设中子和氢核碰撞后中子速度为v3,取v0的方向为正方向,由动量守恒定律和能量守恒定律可得m v0=m v1+m v3,12m v02=12m v12+12m v32,联立解得v1=v0,设中子和氮核碰撞后中子速度为v4,取v0的方向为正方向,由动量守恒定律和能量守恒定律可得m v0=14m v2+m v4,12m v02=12×14m v22+12m v42,联立解得v2=215v0,可得v1=v0>v2,碰撞后氢核的动量为p H=m v1=m v0,氮核的动量为p N=14m v2=28m v015,可得p N>p H,碰撞后氢核的动能为E kH=12m v12=12m v02,氮核的动能为E kN=12×14m v22=28m v02225,可得E kH>E kN,故B正确,A、C、D错误.例6(多选)(2022·河南省名校联盟二模)如图所示,竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩擦.圆心O点正下方放置为2m的小球A,质量为m的小球B以初速度v0向左运动,与小球A发生弹性碰撞.碰后小球A在半圆形轨道运动时不脱离轨道,则小球B 的初速度v0可能为(重力加速度为g)()A.22gR B.2gRC.25gR D.5gR答案BC解析A与B碰撞的过程为弹性碰撞,则碰撞的过程中动量守恒,设B的初速度方向为正方向,设碰撞后B与A的速度分别为v1和v2,则:m v0=m v1+2m v2,由能量守恒得:12m v02=12m v12+12·2m v22,联立得:v 2=2v 03①若小球A 恰好能通过最高点,说明小球到达最高点时恰由小球的重力提供向心力,设在最高点的速度为v min ,由牛顿第二定律得: 2mg =2m ·v min 2R②A 在碰撞后到达最高点的过程中机械能守恒,得:2mg ·2R =12·2m v 22-12·2m v min 2③联立①②③得:v 0=1.55gR ,可知若小球A 经过最高点,则需要:v 0≥1.55gR若小球A 不能到达最高点,则小球不脱离轨道时,恰好到达与O 等高处,由机械能守恒定律得:2mg ·R =12·2m v 22④联立①④得:v 0=1.52gR 可知若小球A 不脱离轨道时, 需满足:v 0≤1.52gR由以上的分析可知,若小球不脱离轨道时,需满足:v 0≤1.52gR 或v 0≥1.55gR ,故A 、D 错误,B 、C 正确.例7 (多选)(2022·河北邢台市高三期末)如图所示,在足够大的光滑水平面上停放着装有光滑弧形槽的小车,弧形槽的底端切线水平,一小球以大小为v 0的水平速度从小车弧形槽的底端沿弧形槽上滑,恰好能到达弧形槽的顶端.小车与小球的质量均为m ,重力加速度大小为g ,不计空气阻力.下列说法正确的是( )A .弧形槽的顶端距底端的高度为v 024gB .小球离开小车后,相对地面做自由落体运动C .在小球沿小车弧形槽滑行的过程中,小车对小球做的功为12m v 02D .在小球沿小车弧形槽滑行的过程中,合力对小车的冲量大小为m v 0 答案 ABD解析 经分析可知,小球到达弧形槽顶端时,小球与小车的速度相同(设共同速度大小为v ),在小球沿小车弧形槽上滑的过程中,小球与小车组成的系统水平方向上动量守恒,有m v 0=2m v ,设弧形槽的顶端距底端的高度为h ,根据机械能守恒定律有12m v 02=12×2m v 2+mgh ,解得h =v 024g ,A 正确;设小球返回弧形槽的底端时,小球与小车的速度分别为v 1、v 2,在小球沿小车弧形槽滑行的过程中,小球与小车组成的系统水平方向动量守恒,以v 0的方向为正方向,有m v 0=m v 1+m v 2,根据机械能守恒定律有12m v 02=12m v 12+12m v 22,解得v 1=0,v 2=v 0,可知小球离开小车后,相对地面做自由落体运动,B 正确;根据动能定理,在小球沿小车弧形槽滑行的过程中,小车对小球做的功W =0-12m v 02=-12m v 02,C 错误;根据动量定理,在小球沿小车弧形槽滑行的过程中,合力对小车的冲量大小I =m v 2-0=m v 0,D 正确. 例8 (2022·全国乙卷·25)如图(a),一质量为m 的物块A 与轻质弹簧连接,静止在光滑水平面上;物块B 向A 运动,t =0时与弹簧接触,到t =2t 0时与弹簧分离,第一次碰撞结束,A 、B 的v -t 图像如图(b)所示.已知从t =0到t =t 0时间内,物块A 运动的距离为0.36v 0t 0.A 、B 分离后,A 滑上粗糙斜面,然后滑下,与一直在水平面上运动的B 再次碰撞,之后A 再次滑上斜面,达到的最高点与前一次相同.斜面倾角为θ(sin θ=0.6),与水平面光滑连接.碰撞过程中弹簧始终处于弹性限度内.求(1)第一次碰撞过程中,弹簧弹性势能的最大值; (2)第一次碰撞过程中,弹簧压缩量的最大值; (3)物块A 与斜面间的动摩擦因数. 答案 (1)0.6m v 02 (2)0.768v 0t 0 (3)0.45解析 (1)当弹簧被压缩到最短时,弹簧弹性势能最大,此时A 、B 速度相等,即在t =t 0时刻,根据动量守恒定律有 m B ·1.2v 0=(m B +m )v 0 根据能量守恒定律有E pmax =12m B (1.2v 0)2-12(m B +m )v 02联立解得m B =5m ,E pmax =0.6 m v 02(2)B 接触弹簧后,压缩弹簧的过程中,A 、B 动量守恒,有m B ·1.2v 0=m B v B +m v A 对方程两边同时乘时间Δt ,有 6m v 0Δt =5m v B Δt +m v A Δt0~t 0之间,根据位移等于速度在时间上的累积,可得6m v 0t 0=5ms B +ms A , 将s A =0.36v 0t 0 代入可得s B =1.128v 0t 0则第一次碰撞过程中,弹簧压缩量的最大值 Δs =s B -s A =0.768v 0t 0(3)物块A 第二次到达斜面的最高点与第一次相同,说明物块A 第二次与B 分离后速度大小仍为2v 0,方向水平向右,设物块A 第一次滑下斜面的速度大小为v A ′,取向左为正方向,根据动量守恒定律可得m v A ′-5m ·0.8v 0=m ·(-2v 0)+5m v B ′ 根据能量守恒定律可得 12m v A ′2+12·5 m ·(0.8v 0)2 =12 m ·(-2v 0)2+12·5m v B ′2 联立解得v A ′=v 0方法一:设在斜面上滑行的长度为L ,上滑过程,根据动能定理可得 -mgL sin θ-μmgL cos θ=0-12m (2v 0)2下滑过程,根据动能定理可得 mgL sin θ-μmgL cos θ=12m v 02-0联立解得μ=0.45方法二:根据牛顿第二定律,可以分别计算出滑块A 上滑和下滑时的加速度大小, mg sin θ+μmg cos θ=ma 上 mg sin θ-μmg cos θ=ma 下上滑时末速度为0,下滑时初速度为0,设在斜面上滑行的位移为L ,由匀变速直线运动的位移速度关系可得2a 上L =(2v 0)2-0,2a 下L =v A ′2 联立可解得μ=0.45.1.(2022·广西北海市一模)一辆总质量为M (含人和沙包)的雪橇在水平光滑冰面上以速度v 匀速行驶.雪橇上的人每次以相同的速度3v (对地速度)向行驶的正前方抛出一个质量为m 的沙包.抛出第一个沙包后,车速减为原来的45.下列说法正确的是( )A .每次抛出沙包前后,人的动量守恒B .雪橇有可能与拋出的沙包发生碰撞C .雪橇的总质量M 与沙包的质量m 满足M ∶m =12∶1D .拋出第四个沙包后雪橇会后退 答案 D解析 每次抛出沙包前后,雪橇(含人)和抛出的沙包总动量守恒,故A 错误;抛出沙包后,雪橇的速度不会超过v ,不可能再与抛出的沙包发生碰撞,故B 错误;规定雪橇的初速度方向为正方向,对抛出第一个沙包前后,根据动量守恒定律有M v =(M -m )45v +m ·3v ,得M =11m ,故C 错误;抛出第四个沙包后雪橇速度为v 1,由全过程动量守恒得M v =(M -4m )v 1+4m ·3v ,将M =11m 代入得v 1=-v7,故D 正确.2.(2022·江苏无锡市普通高中高三期末)如图所示,质量为M =100 g 的木板左端是一半径为R =10 m 的14光滑圆弧轨道,轨道右端与木板上表面在B 处水平相连.质量为m 1=80 g 的木块置于木板最右端A 处.一颗质量为m 2=20 g 的子弹以大小为v 0=100 m/s 的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出.已知子弹打进木块的时间极短,木板上表面水平部分长度为L =10 m ,木块与木板间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.(1)求子弹打进木块过程中系统损失的机械能; (2)若木板固定,求木块刚滑上圆弧时对圆弧的压力; (3)若木板不固定,地面光滑,求木块上升的最大高度.答案 (1)80 J (2)4 N ,方向竖直向下 (3)5 m解析 (1)子弹打进木块过程,由动量守恒定律有m 2v 0=(m 1+m 2)v 1,解得v 1=20 m/s , 由能量守恒定律有ΔE 1=12m 2v 02 - 12(m 1+m 2)v 12,解得ΔE 1=80 J.(2)木块从A 端滑到B 端过程,由动能定理有- μ(m 1+m 2)gL =12(m 1+m 2)v 22 - 12(m 1+m 2)v 12,木块滑到B 端时,由牛顿第二定律有 F N -(m 1+m 2)g =m 1+m 2R v 22,联立解得F N =4 N ,根据牛顿第三定律可得F 压=F N =4 N ,方向竖直向下.(3)从开始至木块在圆弧轨道上滑至最高过程中水平方向系统动量守恒,有m 2v 0=(m 2+m 1+M )v 3, 得v 3=10 m/s ,子弹打进木块后至木块在圆弧轨道上滑至最高过程中, 根据能量守恒定律有12(m 1+m 2)v 12=12(m 2+m 1+M )v 32+(m 1+m 2)gh +μ(m 1+m 2)gL , 解得h =5 m.专题强化练[保分基础练]1.(2022·福建三明市高三期末)跑鞋的鞋垫通常选择更软、更有弹性的抗压材料,以下说法中错误的是( )A .鞋垫减小了人与地面的作用力B .鞋垫减小了人落地过程的动量变化量C .鞋垫延长了人与地面相互作用的时间D .鞋垫可将吸收的能量尽可能多地回馈给人 答案 B解析 根据动量定理有(F -mg )t =0-(-m v ),解得F =m vt +mg ,鞋垫的作用是延长了人与地面的作用时间t ,减小了人和地面的作用力F ,鞋垫的作用是将尽可能多的能量反馈给人,A 、C 、D 正确; 鞋垫没有改变人的初动量0,也没有改变人的末动量m v ,人落地过程的动量变化量不变,B 错误.2.(2022·湖南郴州市质检)如图所示,质量分别为m 1、m 2的两个小球A 、B ,带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上.突然加一水平向右的匀强电场后,两球A 、B 将由静止开始运动,对两小球A 、B 和弹簧组成的系统,在以后的运动过程中,以下说法正确的是(设整个过程中不考虑电荷间库仑力的作用,且弹簧不超过弹性限度)( )A .系统动量守恒B .系统机械能守恒C .弹簧弹力与静电力大小相等时系统机械能最大D .系统所受合外力的冲量不为零 答案 A解析 加上电场后,两球所带电荷量相等而电性相反,两球所受的静电力大小相等、方向相反,则系统所受静电力的合力为零,系统的动量守恒,由动量定理可知,合外力冲量为零,故A 正确,D 错误;加上电场后,静电力分别对两球做正功,两球的动能先增加,当静电力和弹簧弹力平衡时,动能最大,然后弹力大于静电力,两球的动能减小,直到动能均为0,弹簧最长为止,但此过程中系统机械能一直都在增加,故B 、C 错误.3.(2022·湖北卷·7)一质点做曲线运动,在前一段时间内速度大小由v 增大到2v ,在随后的一段时间内速度大小由2v 增大到5v .前后两段时间内,合外力对质点做功分别为W 1和W 2,合外力的冲量大小分别为I 1和I 2.下列关系式一定成立的是( ) A .W 2=3W 1,I 2≤3I 1 B .W 2=3W 1,I 2≥I 1 C .W 2=7W 1,I 2≤3I 1 D .W 2=7W 1,I 2≥I 1答案 D解析 根据动能定理有W 1=12m (2v )2-12m v 2=32m v 2,W 2=12m (5v )2-12m (2v )2=212m v 2,可得W 2=7W 1;由于速度是矢量,具有方向,当初、末速度方向相同时,动量变化量最小,方向相反时,动量变化量最大,因此冲量的大小范围是m v ≤I 1≤3m v ,3m v ≤I 2≤7m v ,可知I 2≥I 1,故选D.4.(多选)(2022·河南省大联考)如图甲所示,质量均为m 的A 、B 两物块连接在劲度系数为k 的轻质弹簧两端,放置在光滑的水平面上处于静止状态,从t =0时刻开始,给A 一个水平向右、大小为v 0的初速度,A 、B 运动的v -t 图像如图乙所示,已知两物块运动的v -t 图像具有对称性,且为正、余弦曲线.弹簧的弹性势能与劲度系数和弹簧的形变量之间的关系为E p =12kx 2,弹簧始终在弹性限度内,结合所给的信息分析,下列说法正确的是( )A .t 1时刻弹簧处于伸长状态,t 2时刻弹簧的压缩量最大B .在0~t 2的时间内,弹簧对B 做的功为m v 024C .t 1时刻,若A 的速度v 1与B 的速度v 2之差为Δv ,则此时A 与B 的动能之差为12m v 0ΔvD .t 2时刻弹簧的形变量为v 02m k答案 AC解析 分析A 、B 的运动过程,可知t 1时刻A 、B 间的距离正在增大,弹簧处于伸长状态,t 2时刻A 、B 间的距离最小,弹簧的压缩量最大,A 正确;t 2时刻A 、B 达到共同速度,由动量守恒定律可得m v 0=2m v 共,0~t 2时间内,对B 运用动能定理有W =12m v 共2=m v 028,B 错误;0~t 1时间内,由动量守恒定律有m v 0=m v 1+m v 2,A 与B 的动能之差ΔE k =12m v 12-12m v 22,结合v 1-v 2=Δv ,可得ΔE k =12m v 0Δv ,C 正确;t 2时刻,由能量守恒定律可得弹簧的弹性势能E p =12m v 02-12m v 共2,结合v 共=v 02,E p =12kx 2,解得弹簧的形变量x =v 023mk,D 错误. 5.(多选)(2022·山东烟台市高三期末)如图所示,质量为3m 的小球B 静止在光滑水平面上,质量为m 、速度为v 的小球A 与小球B 发生正碰,碰撞可能是弹性的,也可能是非弹性的,因此碰撞后小球B 的速度可能有不同的值.碰撞后小球B 的速度大小可能是( )A .0.2vB .0.4vC .0.5vD .0.6v答案 BC解析 若A 、B 发生的是弹性碰撞,对A 、B 碰撞过程由动量守恒定律可得m v =m v 1+3m v 2,则由机械能守恒定律可得12m v 2=12m v 12+12·3m v 22,解得碰撞后小球B 的速度大小为v 2=2mm +3m v =12v ;若A 、B 发生的是完全非弹性碰撞,则碰后两者共速,根据动量守恒定律可得m v =(m +3m )v ′,解得碰撞后小球B 的速度大小为v ′=14v ,即碰撞后小球B 的速度大小范围为14v ≤v B ≤12v ,故选B 、C. 6.(多选)(2022·山东济南市、聊城市等高三学情检测)如图所示,金属块内有一个半径为R 的光滑圆形槽,金属块放在光滑水平面上且左边挨着竖直墙壁.一质量为m 的小球(可视为质点)从离金属块左上端R 处静止下落,沿圆槽切线方向进入圆槽内,小球到达最低点后继续向右运动,恰好不能从圆形槽的右端冲出.已知重力加速度为g ,不计空气阻力.下列说法正确的是( )A .小球第一次到达最低点时,小球对金属块的压力大小为5mgB .金属块的质量为mC .小球第二次到达最低点时的速度大小为2gRD .金属块运动过程中的最大速度为2gR 答案 ABD解析 小球从静止到第一次到达最低点的过程,根据动能定理有mg ·2R =12m v 02,小球刚到最低点时,根据圆周运动和牛顿第二定律有F N -mg =m v 02R ,根据牛顿第三定律可知小球对金属块的压力大小为F N ′=F N ,联立解得F N ′=5mg ,A 正确;小球第一次到达最低点至小球到达圆形槽右端过程,小球和金属块水平方向动量守恒,则有m v 0=(m +M )v ,根据能量守恒定律有mgR =12m v 02-12(m +M )v 2,解得M =m ,B 正确;小球第二次到达最低点的过程中,水平方向动量守恒,即有m v 0=M v 1+m v 2,又由能量守恒可得12m v 02=12M v 12+12m v 22,M =m ,解得v 1=v 0=2gR ,v 2=0,C 错误,D 正确.[争分提能练]7.(多选)(2022·山东省实验中学高三检测)在足够长的光滑水平面上,物块A 、B 、C 位于同一直线上,A 位于B 、C 之间,A 的质量为m ,B 、C 的质量都为M ,且m =12M ,若开始时三者均处于静止状态,现给A 一个向右的冲量I ,物块间的碰撞都可以看作是弹性碰撞,关于A 与B 、C 间发生碰撞的分析正确的是( )A .A 与B 、C 之间只能各发生一次碰撞B .A 、B 之间只能发生一次碰撞,A 、C 之间可以发生两次碰撞 C .A 、C 之间只能发生一次碰撞,A 、B 之间可以发生两次碰撞D .A 、C 第一次碰撞后,C 速度大小为v C 1=2m m +M ·Im答案 AD解析 选取向右为正方向,设A 、C 碰撞之前A 的速度为v A ,第一次A 、C 碰撞之后,A 的速度为v A 1,C 的速度为v C 1,对物块A ,根据动量定理有I =m v A ,A 、C 发生弹性碰撞,碰撞过程由系统的动量守恒有m v A =m v A 1+M v C 1,由能量守恒有12m v A 2=12m v A 12+12M v C 12,又有m =12M ,联立解得v A 1=m -M m +M v A =-I 3m ,v C 1=2m m +M v A =2m m +M ·I m =2I3m ,故D 正确;由上述分析可知,A 、C 碰撞之后,A 反向弹回,则A 和B 可以发生碰撞,同理可得,A 和B 碰撞之后,A 和B 的速度分别为v B 1=2m m +M v A 1=-2I 9m ,v A 2=m -M m +M v A 1=I 9m ,则v A 2<v C 1,则A 和C 不能发生第二次碰撞,要想A 和B 发生第二次碰撞,A 和C 必须发生第二次碰撞,故B 、C 错误,A 正确.8.(多选)(2021·湖南卷·8)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a -t 图像如图(b)所示,S 1表示0到t 1时间内A 的a -t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a -t 图线与坐标轴所围面积大小.A在t1时刻的速度为v0.下列说法正确的是()A.0到t1时间内,墙对B的冲量等于m A v0B.m A>m BC.B运动后,弹簧的最大形变量等于xD.S1-S2=S3答案ABD解析由于在0~t1时间内,物体B静止,则对B受力分析有F墙=F弹,则墙对B的冲量大小等于弹簧对B的冲量大小,而弹簧既作用于B也作用于A,则可将研究对象转换为A,撤去F后A水平方向只受弹力作用,则根据动量定理有I=m A v0(方向向右),则墙对B的冲量与弹簧对A的冲量大小相等、方向相同,A正确;由a-t图像可知t1后弹簧被拉伸,在t2时刻弹簧的伸长量达到最大,根据牛顿第二定律有F弹=m A a A=m B a B,由题图(b)可知a B>a A,则m B<m A,B正确;由题图(b)可得,t1时刻B开始运动,此时A速度为v0,之后A、B动量守恒,A、B和弹簧整个系统能量守恒,则m A v0=m A v A+m B v B,可得A、B整体的动能不等于0,即弹簧的弹性势能会转化为A、B系统的动能,弹簧的形变量小于x,C错误;由a-t图像可知t1后B脱离墙壁,且弹簧被拉伸,在t1~t2时间内A、B组成的系统动量守恒,且在t2时刻弹簧的伸长量达到最大,A、B共速,由a-t图像中图线与横轴所围的面积表示Δv可知,在t2时刻A、B的速度分别为v A=S1-S2,v B=S3,A、B共速,则S1-S2=S3,D正确.9.(2021·浙江1月选考·12)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪.爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2∶1、初速度均沿水平方向的两个碎块.遥控器引爆瞬间开始计时,在5 s末和6 s末先后记录到从空气中传来的碎块撞击地面的响声.已知声音在空气中的传播速度为340 m/s,忽略空气阻力.下列说法正确的是()A.两碎块的位移大小之比为1∶2。

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。

基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。

关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。

例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。

动量定理是什么?动量定理如何运行计算?

动量定理是什么?动量定理如何运行计算?

动量定理是什么?动量定理如何运行计算?在学习高中物理的时候往往会遇到很多关于物理问题,上课觉着什幺都懂了,可等到做题目时又无从下手。

以至于对于一些意志薄弱、学习方法不对的同学就很难再坚持下来。

过早的对物理没了兴趣,伤害了到高中的学习信心。

收集整理下面的这几个问题,是一些同学们的学习疑问,小编做一个统一的回复,有同样问题的同学,可以仔细看一下。

【问:动量定理是什幺?动量定理如何运行计算?】答:动量定理的内容是:合外力对物体的冲量,等于该段时间内动量的改变量。

公式表示为i=Δp或ft=mvt–mvo;动量定理是一个矢量公式,解题时首先要规定正方向。

【问:感应电流的产生过程?】答:在回路中,有部份导体在磁场中切割磁感线,闭合回路中的磁通量会发生变化,就会产生感应电动势,由于电路是闭合的,就产生了电流,我们称这种电流称为电磁感应电流。

【问:地球同步卫星有何特点?】答:地球同步卫星轨迹只能是在赤道上空,与地心的距离r为是一个固定值,运行周期和地球自转周期相同,从地球上看,永远在赤道上某个点的上空。

【问:牛顿第二运动定律有何意义?】答:牛顿第二运动定律是一个纽带,将运动学与力学牢牢联系在了一起。

从其公式f=ma中,我们也不难看出,左侧是力,属于受力分析的内容,右侧是加速度,它是运动学最重要的物理量之一。

牛顿第二定律具有极为重要的意义,是整个牛顿动力学的根基。

【问:课下总结哪些知识?】答:课下的及时总结对物理学习非常重要。

只有多总结,把问题吃透了,考试中才能够很好的发挥出来。

以上动量定理是什幺?由小编整理,希望能够帮助同学解决一些关于物理上的问题,下面是小编关于物理学习方法及技巧的一些经验。

兴趣是最好的老师,孔子曾在两千多年前就提出了“知之者不如好之者”,陶行知先生也曾说过:“学生有兴趣,就肯用全部。

电磁感应中电量的求解方法

电磁感应中电量的求解方法

电磁感应中电量的求解方法(攀枝花市大河中学 周峰 617061)电磁感应部分的知识历来是高考的重点、热点,出题时可将力学、电磁学知识溶于一体,能很好地考查学生的理解、推理、分析综合能力.求解通过导体横截面电量的问题又是很常见的问题.根据自己近几年的教学经验,总结出求电量的两条思路如下,以供同行参考。

我们求电量的出发点是电流强度的定义式: tQI =,由定义可知,所求出的I 实际上是时间t 内的平均值,为了明确其物理意义,我们将I 写成I ,从而,得到电量表达式t I Q =.在具体的问题中如何得到t I Q =,又要根据具体情况采取不同的解题策略。

方法一:利用法拉第电磁感应定律求平均电动势和平均电流再求电量。

公式推导:法拉第电磁感应定律:tN E ∆∆Φ=,式中求得的E 为平均值; 闭合电路欧姆定律:rR EI +=; 电量表达式:t I Q ∆=; 综合上面三式得)()(r R Nt t r R N t r R E t I Q +∆Φ=∆∆+∆Φ=∆+=∆= 例1:如图1所示,导线全部为裸导线,半径为r 的圆内有垂直圆平面的匀强磁场,磁感应强度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上无摩擦地从左端匀速滑动到右端,电路中的固定电阻为R ,其余电阻不计.试求MN 从圆环的左端滑到右端的过程中通过电阻R 上的电量. 解析:导线MN 在圆环上运动时,切割磁感线的有效长度在不断变化,用导线切割磁感线方式很难求出平均感应电动势,但根据法拉第电磁感应定律可求平均感应电动势22222rv B r v r B vr r B t S B t E πππφ===∆∆=∆∆= 平均感应电流Rrv B R E I 2π==则通过电阻R 的电量Rr B t I Q 2π=∆=例2.放在绝缘水平面上的两条平行导轨MN 和PQ 之间宽度为L ,置于磁感应强度为B 的匀强磁场中,B 的方向垂直于导轨平面,导轨左端接有阻值为R 的电阻,其它部分电阻不计.导轨右端接一电容为C 的电容器,长为2L 的金属棒放在导轨上与导轨垂直且接触良好,其a 端放在导轨PQ 上.现将金属棒以a 端为轴,以角速度ω沿导轨平面顺时针旋转︒90角,如图1所示.求这个过程中通过电阻R 的总电量是多少?(设导轨长度比2L 长得多) 解析:从ab 棒以a 端为轴旋转切割磁感线,直到b 端脱离导轨的过程中,其感应电动势不断增大,对C 不断充电,同时又与R 构成回路. 由上面的推导公式知通过R 的电量R S B r R n q ∆=+∆Φ=)(.式中ΔS 等于ab 所扫过的三角形aDb ’的面积,如图2所示,所以2233·21L L L S ==∆.根据以上两式得 RBL q 232=当ab 棒运动到b ’时,电容C 上所带电量为C CU q =',C图1C图2R此时m C E U =,而ω2222BL vL B E m =⨯⨯=, 所以C BL q ω22'=.当ab 脱离导轨后,C 对R 放电,通过R 的电量为q ’,所以整个过程中通过R 的总电量为)223(223'222C RBL C BL R BL q q q ωω+=+=+=总.方法二:利用动量定理结合安培力公式消去时间再求电量。

高中物理所有公式总结

高中物理所有公式总结

高中物理所有公式总结物理是自然科学的重要分支,研究的是物质的运动、能量和力学。

高中物理是培养学生科学素养和科学思维的基础课程,其中的公式更是物理学习的重要内容。

下面是高中物理中常用的公式总结:一、力学1、匀速直线运动公式:v = v₀ + ats = s₀ + v₀t + (1/2)at²2、平抛运动公式:x = v₀xty = v₀yt - (1/2)gt²3、向心加速度公式:a = v²/r4、二力平衡:F₁sinθ₁ = F₂sinθ₂F₁cosθ₁ + F₂cosθ₂ = mg5、牛顿第二定律:F = ma6、弹性力公式:F = kx7、万有引力定律:F = G(m₁m₂/r²)8、动量定理:FΔt = Δp9、功率公式:P = W/Δt10、理想机械功:W = Fs11、机械能守恒定律:E₁ = E₂二、热学1、热传导公式:Q = kA(t₂-t₁)/d2、理想气体状态方程:PV = nRT3、热容公式:Q = mcΔT4、等压热容:Cp = (5/2)R5、等体热容:Cv = (3/2)R6、焓的变化:ΔH = ΔU + PΔV7、卡诺循环效率:η = 1 - (Tc/Th)三、电学1、电流强度公式:I = Q/Δt2、欧姆定律:U = IR3、电功公式:W = UIt4、电功率公式:P = UI5、电阻与导电率:R = ρl/A6、电容与电量、电压关系:C = Q/U7、并联电容:Cp = C₁+C₂+...8、串联电容:1/Ct = 1/C₁+1/C₂+...9、电磁感应:U = -NΔΦ/Δt10、法拉第定律:Q = zF四、光学1、光速公式:v = fλ2、光的折射公式:n₁sinθ₁ = n₂sinθ₂3、光的反射公式:θ₁ = θ₂4、晶体的布拉格公式:λ = 2dsinθ5、光的衍射公式:asinθ = mλ五、原子物理1、能级公式:E = hν2、波粒二象性公式:λ = h/mv3、布洛赫定理:kf = ki + G以上是高中物理中常见的公式,覆盖了力学、热学、电学、光学和原子物理等多个领域。

电磁感应动量定理的应用(最新整理)

电磁感应动量定理的应用(最新整理)

电磁感应与动量的综合1.安培力的冲量与电量之间的关系:设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即tF I ∆=冲冲而=B L (为电流对时间的平均值)F I I 故有:安培力的冲量t L I B I ∆⋅=冲而电量q =Δt ,故有I BLq I =冲因只在安培力作用下运动 BLq =mv 2-mv 1 BLPq ∆=2.感应电量与磁通量的化量的关系:R n t R t n t R E t I q ∆Φ=∆⋅∆∆Φ=∆⋅=∆⋅=若磁感应强度是匀强磁场,R BLx R S B R q =∆=∆Φ=以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。

例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a (a <L )的正方形闭合线圈以初速度v 0垂直磁场边界滑过磁场后,速度为v (v <v 0),那么线圈A .完全进入磁场中时的速度大于(v 0+v )/2B .完全进入磁场中时的速度等于(v 0+v )/2C .完全进入磁场中时的速度小于(v 0+v )/2D .以上情况均有可能例2.在水平光滑等距的金属导轨上有一定值电阻R ,导轨宽d ,电阻不计,导体棒AB 垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B 。

现给导体棒一水平初速度v 0,求AB 在导轨上滑行的距离。

例3.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。

已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。

用动量定理解决电磁感应问题

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。

本文结合例题分析应用动量定理解决电磁感应问题的思维起点。

一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。

通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。

在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。

利用该公式结合动量定理是解答此类问题思维起点。

例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。

析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。

当它们的速度相等时,它们之间的距离最大。

设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。

v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。

例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。

动量观点在电磁感应中的应用

动量观点在电磁感应中的应用

小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中动量定理公式
动量定理是电磁感应中一项非常重要的物理定律,它描述了电磁场与运动电荷之间的相互作用关系。

根据动量定理,当电荷在电磁场中运动时,它将受到电磁力的作用,从而产生动量变化。

在电磁感应中,电磁场可以通过电场和磁场来描述。

当电荷在电磁场中运动时,电磁力将作用于电荷,改变其运动状态。

根据牛顿第二定律,电磁力等于电荷所受的加速度乘以电荷的质量。

因此,电磁力可以改变电荷的动量。

动量定理告诉我们,电磁力的作用会导致电荷的动量发生变化。

当电荷在电磁场中受到力的作用时,它将获得一个动量变化。

这个动量变化是由电荷所受的力和作用时间的乘积决定的。

如果力的方向与电荷运动方向一致,电荷的动量将增加;如果力的方向与电荷运动方向相反,电荷的动量将减小。

动量定理的公式可以表示为:动量变化等于力与时间的乘积。

这个公式可以用数学语言表示为Δp = F * Δt,其中Δp表示动量变化,F表示力,Δt表示作用时间。

根据这个公式,我们可以计算电荷在电磁场中受到的力的大小和方向,从而了解电荷的动量变化情况。

动量定理在电磁感应中具有广泛的应用。

例如,在电动机中,电流通过线圈时会产生磁场,这个磁场与电动机中的磁场相互作用,产
生力矩使电动机转动。

根据动量定理,我们可以计算出电动机所受的力矩,从而了解电动机的运动情况。

总结一下,动量定理是电磁感应中非常重要的物理定律,它描述了电磁场与运动电荷之间的相互作用关系。

根据动量定理,电磁力会改变电荷的动量,产生动量变化。

通过动量定理,我们可以计算出电荷所受的力和动量变化情况,从而更好地理解电磁感应现象。

相关文档
最新文档