初中数学几何图形初步基础测试题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何图形初步基础测试题附答案

一、选择题

1.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()

A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补

C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等

【答案】D

【解析】

【分析】

【详解】

解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;

因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.

2.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()

A.50°B.60°C.65°D.70°

【答案】C

【解析】

【分析】

由平行线性质和角平分线定理即可求.

【详解】

∵AB∥CD

∴∠GEC=∠1=50°

∵EF平分∠GED

∴∠2=∠GEF= 1

2

∠GED=

1

2

(180°-∠GEC)=65°

故答案为C.

【点睛】

本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.

3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.

D.

【答案】D

【解析】

解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.

故选D.

首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.

4.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()

A.B.C.D.

【答案】D

【解析】

分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.

详解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;

B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;

C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;

D选项中,展开图能折叠成一个三棱柱,符合题意;

故选:D.

点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

5.下列图形中,是正方体表面展开图的是()

A.B.C.D.

【答案】C

【解析】

【分析】

利用正方体及其表面展开图的特点解题.

【详解】

解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.

故选C.

【点睛】

本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.

6.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()

A.5B.2 dm C.25D.42

【答案】D

【解析】

【分析】

要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.

解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.

∵圆柱底面的周长为4dm ,圆柱高为2dm ,

∴AB=2dm ,BC=BC′=2dm ,

∴AC 2=22+22=4+4=8,

∴AC=22dm ,

∴这圈金属丝的周长最小为2AC=42dm .

故选D .

【点睛】

本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.

7.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,

34CGF ∠=︒,则BGD ∠大小为( )

A .22︒

B .34︒

C .56︒

D .90︒

【答案】A

【解析】

【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.

【详解】

解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,

又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,

∴∠AGC=∠AGF-∠CGF=56°-34°=22°,

∴∠BGD=∠AGC=22°.

故选:A .

【点睛】

本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题

8.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()

A.2

B.31

C.3

D.23

【答案】C

【解析】

【分析】

作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.

【详解】

解:作B关于AC的对称点B',连接B′D,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'为等边三角形,

∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,

∴最小值为B'到AB的距离3

故选C.

【点睛】

本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.

相关文档
最新文档